abdullah's picture
Add files using upload-large-folder tool
9b50984 verified
raw
history blame
62.9 kB
1
00:00:05,040 --> 00:00:12,800
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ู…ุญุงุถุฑุฉ ุงู„ุณุงุจุนุฉ ู…ุณุงู‚ ุชุญู„ูŠู„
2
00:00:12,800 --> 00:00:18,640
ุงู„ู†ู‡ุงุฑูŠ 2 ุงู„ู„ูŠ ุทู„ุจุช ูƒู„ูŠุฉ ุงู„ุนู„ูˆู… ุจุงู„ุฌุงู…ุนุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ
3
00:00:18,640 --> 00:00:23,800
ู‚ุณู… ุงู„ุฑูŠุงุถูŠุงุช ุงู„ูŠูˆู…
4
00:00:23,800 --> 00:00:29,720
ู‡ูŠูƒูˆู† ุนู†ุฏู†ุง ุงุณุชูƒู…ุงู„ ู„ .. ุงู„ู„ูŠ ู‡ูŠ ู‚ูˆุงุนุฏ ุฃูˆ ู‚ุงุนุฏุฉ
5
00:00:29,720 --> 00:00:36,330
L'Hรดpital ุงุชุญุฏุซู†ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุนู† ุงู„ุญุงู„ุฉ ุงู„ู„ูŠ ุจุชุญุฏุซ
6
00:00:36,330 --> 00:00:41,170
ุตูุฑ ุนู„ู‰ ุตูุฑ ูˆูƒูŠู ุงู†ุนุงู„ุฌู‡ุง ูˆุชู… ุงู„ู„ูŠ ู‡ูˆ ุจุฑู‡ุงู†
7
00:00:41,170 --> 00:00:47,910
ุงู„ู†ุธุฑูŠุงุช ุงู„ู…ุนู†ูŠุฉ ููŠ ุฐู„ูƒุŒ ุงู„ุขู† ุจุฏู†ุง ู†ุชุญุฏุซ ุนู„ู‰ ุงู„ุญุงู„ุฉ
8
00:00:47,910 --> 00:00:57,110
ุงู„ู„ูŠ ุจุชุญุฏุซ ุนู†ุฏู†ุง ุฃูŠุถู‹ุง 0 ุนู„ู‰ 0 ูˆู„ูƒู† the limit ุงู„ X
9
00:00:57,110 --> 00:01:00,830
ุจุชุฑูˆุญ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุฃูˆ ุณุงู„ุจ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูˆู‚ู„ู†ุง ุนู†ู‡ุง
10
00:01:00,830 --> 00:01:05,790
ุตุญูŠุญุฉ ุจุฑุถู‡ุŒ ูˆุจุนุฏ ุฐู„ูƒ ู‡ู†ุชุญุฏุซ ุนู† ุงู„ุญุงู„ุฉ infinity ุนู„ู‰
11
00:01:05,790 --> 00:01:10,510
infinityุŒ ู†ูŠุฌูŠ ุงู„ุขู† ู„ู†ุธุฑูŠุชู†ุง ุงู„ู„ูŠ ูˆุตู„ู†ุง ุนู†ุฏู‡ุง
12
00:01:10,510 --> 00:01:11,990
suppose that
13
00:01:16,220 --> 00:01:20,260
F and G are continuous and differentiable ุนู„ู‰
14
00:01:20,260 --> 00:01:24,600
ุงู„ูุชุฑุฉ ู…ู† A ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูˆู†ูุชุฑุถ ุฃู†ู‡ limit ู„ู„ F
15
00:01:24,600 --> 00:01:27,540
of X ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู‡ูŠ ู†ูุณ limit the G of
16
00:01:27,540 --> 00:01:31,200
X ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุชุณุงูˆูŠ ุฅูŠู‡ุงุด ุตูุฑ ูŠุนู†ูŠ
17
00:01:31,200 --> 00:01:36,080
ู‡ุฐู‡ ู‡ุชุฎู„ู‚ู„ูŠ ุญุงู„ุฉ ุงู„ู„ูŠ ู‡ูˆ ุตูุฑ ุนู„ู‰ ุตูุฑ ูˆู…ู† ุซู… ู†ุดูˆู
18
00:01:36,080 --> 00:01:40,230
ูƒูŠู ุงู†ุนุงู„ุฌู‡ุงุŒ ุงู„ุนู†ูˆุงู† G of X ุฐุงุชู‡ ุณุงูˆุฉ ุตูุฑ ู†ูุชุฑุถุŒ ูˆG
19
00:01:40,230 --> 00:01:44,830
prime of X ุฐุงุชู‡ ุณุงูˆุฉ ุตูุฑ ู„ูƒู„ X ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ู„ูŠ
20
00:01:44,830 --> 00:01:48,290
ู‡ูˆ ุงู„ู…ู‚ุตูˆุฏ ู‡ู†ุง ุจูŠู‡ ุงู„ู„ูŠ ู‡ูŠ ุฃูŠุดุŸ AุŒ ูŠุนู†ูŠ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ
21
00:01:48,290 --> 00:01:52,970
ู…ูŠู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ู‚ุตูˆุฏ ุฃู†ู‡ AุŸ ูŠุง ู…ุง ู†ุฎู„ูŠ ู‡ุฐู‡ AุŒ ูŠุง ู…ุง
22
00:01:52,970 --> 00:01:58,330
ู‡ุฐู‡ AุŒ then limit F of X ุนู„ู‰ G of X ู„ู…ุง X ุชุฑูˆุญ ู„ู…ุง
23
00:01:58,330 --> 00:02:01,930
ุงู„ู†ู‡ุงูŠุฉ ู‡ุชูƒูˆู† ุจุงู„ุธุจุท ุฃูŠุด ุจุชุณุงูˆูŠุŸ limit F prime ุนู„ู‰
24
00:02:01,930 --> 00:02:06,050
G prime of X as X goes to infinity provided that
25
00:02:06,050 --> 00:02:09,590
ู‡ุฐุง ุงู„ limit ุจุชุณุงูˆูŠ ู‚ูŠู…ุฉ ู…ุนูŠู†ุฉ ุฃูˆ ุชุณุงูˆูŠ infinity
26
00:02:09,590 --> 00:02:15,730
ุฃูˆ ุณุงู„ุจ infinityุŒ ุงู„ุขู† ุงุญู†ุง ููŠ ุงู„ูˆุงู‚ุน ุงู„ู„ูŠ ู‡ู†ุณูˆูŠ
27
00:02:16,910 --> 00:02:21,910
ูˆูƒุฃู†ู‡ ูŠุนู†ูŠ ุนู…ู„ูŠุฉ ุชุญูˆูŠู„ ุงู„ู„ูŠ ู†ุฎู„ู‘ูŠ ุจุฏู„ X ุชุฑูˆุญ ุฅู„ู‰
28
00:02:21,910 --> 00:02:26,950
ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู†ุฎู„ู‘ูŠ ุงู„ู„ูŠ ู‡ูˆ ู…ุชุบูŠุฑ ูˆุฑูˆุญ ู„ุตูุฑ ูŠุนู†ูŠ ุจุฏู†ุง
29
00:02:26,950 --> 00:02:31,490
ู†ุนูŠุฏ ุชุนุฑูŠู ุงู„ุฏุงู„ุฉ ุจุญูŠุซ ุฃู†ู‡ ูŠุฑูˆุญ ู‡ุฐุง ุงู„ู…ุชุบูŠุฑ ูŠุนู†ูŠ
30
00:02:31,490 --> 00:02:34,610
ูˆูƒุฃู†ู‡ ู†ู‚ูˆู„ 1 ุนู„ู‰ T ูˆูŠุฑูˆุญ ู„ู€ .. ุงู‡ 1 ุนู„ู‰ X
31
00:02:34,610 --> 00:02:37,950
ูŠุฑูˆุญ ู„ุตูุฑ ู„ู…ุง X ุชุฑูˆุญ ู„ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูˆู…ู† ุซู… ู†ุทุจู‚
32
00:02:37,950 --> 00:02:41,030
ุงู„ู†ุธุฑูŠุงุช ุงู„ู„ูŠ ุฃุฎุฏู†ุงู‡ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉุŒ ุฏุนูˆู†ุง ู†ุดูˆู ุฅูŠุด
33
00:02:41,030 --> 00:02:47,050
ุงู„ู„ูŠ ุจู†ุญูƒูŠู‡ ุงู„ุขู† ุนู†ุฏ ..ุงู„ู€ ุงู„ู€ function F ูˆ G F ูˆ
34
00:02:47,050 --> 00:02:54,430
G ู…ุนุฑูุงุช ู…ู† A ูˆู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู„ุนู†ุฏ ุงู„ู„ูŠ ู‡ูˆ RุŒ ุงู„ุขู†
35
00:02:54,430 --> 00:02:57,970
ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุจุฏู‡ ุฃุนุฑู ุงู„ู„ูŠ ู‡ูˆ ุนุดุงู† ุฃู‚ุฏุฑ ุฃุณุชุฎุฏู…
36
00:02:57,970 --> 00:03:01,610
ู†ุธุฑูŠุฉ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุจุฏู‡ ุฃุนุฑู
37
00:03:01,610 --> 00:03:08,030
ุฏุงู„ุชูŠู† F capital ูˆ G capital ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏูŠ ู…ู†
38
00:03:08,030 --> 00:03:15,560
Zero ู„ุนู†ุฏ ุงู„ู„ูŠ ู‡ูˆ 1 ุนู„ู‰ A ู„ุนู†ุฏ ุงู„ู„ูŠ ู‡ูˆ ุตูุฑุŒ ูˆุงุถุญุฉ
39
00:03:15,560 --> 00:03:28,640
ุงู„ุตูˆุฑุฉ ุชู‚ุฑูŠุจุง ุงูƒูŠุฏ ู‡ู†ู‚ูˆู„ define F of G as F of ุงู„ู„ูŠ
40
00:03:28,640 --> 00:03:36,960
ู†ุณู…ูŠู‡ุง ุงู„ู„ูŠ ู‡ูˆ T ุจุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ G ุฃูˆ F of 1 ุนู„ู‰ T
41
00:03:36,960 --> 00:03:42,460
ู„ู…ุง T ุงู„ู„ูŠ ู‡ูŠ ู„ุง ุชุณุงูˆูŠ ุตูุฑุŒ ูˆุทุจุนุง T ุฃู†ุง ู…ุนุฑูู‡ุง
42
00:03:42,460 --> 00:03:47,140
ุงู„ู„ูŠ ู‡ูŠ ููŠ ุงู„ูุชุฑุฉ ู…ู† Zero ู„ุนู†ุฏ 1 ุนู„ู‰ AุŒ ูˆุฏู‡
43
00:03:47,140 --> 00:03:51,560
ุจูŠุฏุนุฑู ุนู†ุฏ Zero ุจู‚ูˆู„ ุตูุฑ ุฅุฐุง ูƒุงู† T ุฃูŠุด ุจุฏู‡ุง ุชุณุงูˆูŠ
44
00:03:51,560 --> 00:03:59,760
ุจุชุณุงูˆูŠ ุตูุฑุŒ ุงู„ุขู† ุงู„ู€ ุงู„ู€ G of T ุจุชุณุงูˆูŠ ู†ูุณ ุงู„ุฃุณู„ูˆุจ
45
00:03:59,760 --> 00:04:06,240
G of 1 ุนู„ู‰ T ู„ู…ุง T ู„ุง ุชุณุงูˆูŠ 0ุŒ ูˆุตูุฑ ุฅุฐุง ูƒุงู†ุช T
46
00:04:06,240 --> 00:04:13,350
ุฃุดู…ุงู„ู‡ุง ุจุชุณุงูˆูŠ 0ุŒ ุงู„ุขู† ูˆุงุถุญ ุงู„ุนู„ุงู‚ุฉ ุจูŠู† ุงู„ุฏุงู„ุชูŠู† ุงู„ู„ูŠ
47
00:04:13,350 --> 00:04:19,510
ู‡ูˆ F ูˆ F ุงู„ู„ูŠ ู‡ูˆ ุนู„ู‰ ุฃุณุงุณ ุฃู†ูŠ ุฃุญูˆู„ the limit
48
00:04:19,510 --> 00:04:25,650
ุงู„ู…ุนุทุงุฉ ุนู†ุฏูŠ limit F of X ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ
49
00:04:25,650 --> 00:04:30,450
ุชุตูŠุฑ ุนู†ุฏูŠ ุงู„ limit ุจุงู„ู†ุณุจุฉ ู„ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ 1 ุนู„ู‰ X
50
00:04:30,450 --> 00:04:35,320
ุจุชุงุนุชู†ุง ู‡ุชุฑูˆุญ ู„ู…ูŠู†ุŸ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ู„ู„ุตูุฑุŒ ูˆุจู†ุณุชุฎุฏู… ูˆู…ู†
51
00:04:35,320 --> 00:04:40,600
ุซู… ุจู†ูƒูˆู† ุญุตู„ู†ุง ุนู„ู‰ ุงู„ู…ุชุบูŠุฑ ู„ุฅู† ุฃู†ุง T ุจุฑูˆุญ ู„ู„ุตูุฑ as
52
00:04:40,600 --> 00:04:44,740
X ุจุชุฑูˆุญ ู„ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูˆู…ู† ุซู… ุจู†ุณุชุฎุฏู… ุงู„ู†ุธุฑูŠุงุช ุงู„ู„ูŠ
53
00:04:44,740 --> 00:04:49,940
ุฃุซุจุชู†ุง ุตุญุชู‡ุง ููŠ ุญุงู„ุฉ T ุจุชุฑูˆุญ ุฅู„ู‰ A ู…ู† ุงู„ูŠู…ูŠู† ู„ุฅู†
54
00:04:49,940 --> 00:04:53,060
ุงุญู†ุง ู‡ู†ุฑูˆุญ ู„ู€ Zero ู…ู† ุงู„ูŠู…ูŠู†ุŒ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฎุทุฉ ุงู„ู„ูŠ
55
00:04:53,060 --> 00:04:58,480
ู‡ู†ู…ุดูŠ ุนู„ูŠู‡ุงุŒ ุจู†ุดูˆู ุฃูˆู„ ุดูŠุก ูˆุงุถุญ ุฃู† ุงู„ู€ F ูˆุงู„ู€ G ุงู„ู€ F
56
00:04:59,090 --> 00:05:03,930
ูˆุงู„ู€ G are differentiable ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู†
57
00:05:03,930 --> 00:05:10,550
ุตูุฑ ู„ุนู†ุฏ 1 ุนู„ูŠู‡ AุŒ 1ุŒ 2ุŒ ูˆู…ุฏุงู…
58
00:05:10,550 --> 00:05:13,810
differentiable ุฏู‡ ูŠุนู†ูŠ continuous ุนู„ูŠู‡ุง ูˆู…ุด ู‡ูŠูƒ ูƒู…ุงู†
59
00:05:13,810 --> 00:05:19,230
ู„ูˆ ุฌูŠุช ุฃุฎุฏุช ุฃู†ุช ู‡ุฐู‡ ุจุชุญุณุจู‡ุง ู„ุญุงู„ูƒ limit F of T as
60
00:05:19,230 --> 00:05:27,640
T ุจุชุฑูˆุญ ู„ู„ุตูุฑ ุงู„ู„ูŠ ู‡ูŠ ุจุชุณุงูˆูŠ limit F of 1 ุนู„ู‰ T as
61
00:05:27,640 --> 00:05:32,340
T ุจุชุฑูˆุญ ู„ู„ุตูุฑ ูˆู‡ุชู„ุงู‚ูŠู‡ุง ุฅูŠุด ู‡ุชุณุงูˆูŠุŸ ู‡ุชุณุงูˆูŠ ุตูุฑ
62
00:05:32,340 --> 00:05:36,760
ูุตุงุฑุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ F ุงู„ capital is continuous ุนู„ู‰
63
00:05:36,760 --> 00:05:43,490
ุงู„ูุชุฑุฉ ู…ู† 0 ู„ุนู†ุฏ 1 ุนู„ู‰ AุŒ similarly limit G of T ู„ู…ุง
64
00:05:43,490 --> 00:05:47,650
T ุชุฑูˆุญ ู„ู„ู€ ZeroุŒ ุทุจุนุง ูƒู„ ุงู„ู€ Zero ู…ู† ูˆูŠู†ุŸ ุทุจูŠุนูŠ ู…ู†
65
00:05:47,650 --> 00:05:50,950
ุงู„ูŠู…ูŠู† ู„ุฃู†ู‡ ุงุญู†ุง ุนุงู„ู…ู†ุง ุงู„ู„ูŠ ุจู†ุดุชุบู„ ุนู„ูŠู‡ ุงู„ู„ูŠ ู‡ูŠ
66
00:05:50,950 --> 00:05:53,730
ู…ู† ุนู†ุฏ Zero ู„ุนู†ุฏ 1 ุนู„ู‰ AุŒ ู…ู† ุงู„ู…ู†ุทู‚ุฉ ุงู„ู…ูˆุฌูˆุฏุฉ ุจู‚ู‰
67
00:05:53,730 --> 00:05:58,750
ุฅุฐู† ู‡ุฑูˆุญ ู„ู„ู€ Zero ู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ู‡ูŠุณุงูˆูŠ ู†ูุณ ุงู„ุดูŠุก
68
00:05:58,750 --> 00:06:03,290
limit F of 1 ุนู„ู‰ T ู„ู…ุง T ุชุฑูˆุญ ู„ู„ู€ Zero ู…ู†
69
00:06:03,290 --> 00:06:07,590
ุงู„ูŠู…ูŠู† ูˆูŠุณุงูˆูŠ ุงู„ู„ูŠ ุฌูŠู‡ุง ุจุฑุถู‡ ุฃุดู…ุงู„ู‡ุง ุจุชุณุงูˆูŠ ุตูุฑ
70
00:06:08,590 --> 00:06:12,970
ุงู„ุขู† ุตุงุฑุช ุงู„ุขู† ุงู„ู€ F ูˆุงู„ู€ G ุฃุดู…ุงู„ูŠู† are continuous
71
00:06:12,970 --> 00:06:17,390
ุนู„ู‰ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ูˆ differentiable ุนู„ู‰ ุงู„ูุชุฑุฉ
72
00:06:17,390 --> 00:06:20,510
ุงู„ู€ open ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
73
00:06:20,510 --> 00:06:20,590
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
74
00:06:20,590 --> 00:06:20,790
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
75
00:06:20,790 --> 00:06:21,070
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
76
00:06:21,070 --> 00:06:21,290
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
77
00:06:21,290 --> 00:06:23,330
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
78
00:06:23,330 --> 00:06:23,350
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
79
00:06:23,350 --> 00:06:23,650
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
80
00:06:23,650 --> 00:06:29,210
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ ..
81
00:06:37,480 --> 00:06:43,680
ุจู†ุฌูŠ ุจู†ุญุตู„ ุนู„ู‰ ู…ุง ูŠู„ูŠุŒ ุฎู„ูŠู†ูŠ ุจุณ ุงุณู…ุญูˆู„ูŠ ุฃู…ุณุญ ู‡ุฐู‡
82
00:06:43,680 --> 00:06:49,760
ุงู„data ููŠ ุงู„ุฐุงูƒุฑุฉ ุนู†ุฏูŠุŒ ุจุฏูŠ ุฃุญุณุจ ุฃู†ุง ุบุงูŠุฉ ุฃู† ุฃูˆุฌุฏ ู…ูŠู†
83
00:06:49,760 --> 00:06:53,380
ูŠุง ุฌู…ุงุนุฉ limit ุงู„ู„ูŠ ู‡ูˆ F of X ุนู„ู‰ G of X ู„ู…ุง X
84
00:06:53,380 --> 00:07:00,780
ุชุฑูˆุญ ุฅู„ู‰ ูˆูŠู†ุŸ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉุŒ ู„ุฃู† limit F of X ุนู„ู‰ G
85
00:07:00,780 --> 00:07:07,720
of X ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุจุชุณุงูˆูŠ ุนุจุงุฑุฉ ุนู† ุงู„ุขู†
86
00:07:07,720 --> 00:07:12,180
ุงู„ู€ X ุจุชุฑูˆุญ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉุŒ F and ูˆุงู„ู€ F ุงู„ู€ 1 ุนู„ู‰ X
87
00:07:12,180 --> 00:07:20,660
ูˆูŠู† ุจุชุฑูˆุญุŸ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุตูุฑ ุจุชุณุงูˆูŠ limit F of 1 ุนู„ู‰
88
00:07:20,660 --> 00:07:26,040
T ุฎู„ูŠู†ุง ู†ุณู…ูŠู‡ุง ุนู„ู‰ G of 1 ุนู„ู‰ T ู„ู…ุง T ุชุฑูˆุญ ุฅู„ู‰
89
00:07:26,040 --> 00:07:32,420
ู…ูŠู†ุŸ ุฅู„ู‰ ุงู„ุตูุฑ ู…ู† ุงู„ูŠู…ูŠู†ุŒ ุฃูˆ ุฅุฐุง ูƒุงู† ุนู†ุฏูƒ ุงุถุทุฑุงุจ
90
00:07:32,420 --> 00:07:38,640
confusion ุดูŠุก ูˆุงู„ุชูƒู† X ู…ุงููŠ ู…ุดูƒู„ุฉุŒ X ู„ู…ุง X ุชุฑูˆุญ ู„ู€ 0
91
00:07:38,640 --> 00:07:43,660
ู…ู† ุงู„ูŠู…ูŠู† ุงู„ู„ูŠ ู‡ูŠ ุจุชุตูŠุฑ ุนู†ุฏ ุฃุณู ุงู„ู€ 1 ุนู„ู‰ X ุจุชุฑูˆุญ
92
00:07:43,660 --> 00:07:47,860
ู„ู€ 0 ู…ู† ุงู„ูŠู…ูŠู† if and only if ุงู„ู€ X ุจุชุฑูˆุญ ู„ู…ูŠู†ุŸ ุฅู„ู‰
93
00:07:47,860 --> 00:07:51,520
ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูˆู…ู† ุซู… ุจุฎุทูˆุฉ ุซุงู†ูŠุฉ ุจุชุฑุฌุนู‡ุง ู„ู„ูŠ ูƒุชุจุชู‡
94
00:07:51,520 --> 00:07:57,980
ู‚ุจู„ ุจุดูˆูŠุฉ limit ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† F of T ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ
95
00:07:57,980 --> 00:08:04,420
G of T ู„ู…ุง T ุชุฑูˆุญ ู„ู€ 0 ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠู…ูŠู†ุŒ ุจุงุดูŠ
96
00:08:04,420 --> 00:08:08,120
ุงู„ุญุงู„ ุฃู†ุง ุงู„ุขู† ุจุฏูŠ ุฃูุถู„ ููŠ ุงู„ูˆุงู‚ุน ุจุงู„ู†ุณุจุฉ ู„ู…ู†ุŸ
97
00:08:08,120 --> 00:08:14,040
ุจุงู„ู†ุณุจุฉ ู„ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ X ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ูˆุฏูŠุช ูˆุงุญุฏุฉ
98
00:08:14,040 --> 00:08:19,880
ุงู„ู€ X ู…ู† ุงู„ูŠู…ูŠู† ูˆุตุงุฑุช ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ู…ูƒุงู† ู„ุฃ ู„ุฃ ูŠุง
99
00:08:19,880 --> 00:08:26,200
ุฌู…ุงุนุฉ ู‡ุงุฏ ู†ุธุงู… ู‡ูŠ ุจุชุถู„ู‡ุง ุขุณู ุฃู‡ุŸ X X ูˆู‡ู†ุง ุจุชุตูŠุฑ
100
00:08:26,200 --> 00:08:30,900
ุฃู†ู†ุง ู…ูŠู†ุŸ 1 ุนู„ู‰ T ูˆู‡ู†ุง 1 ุนู„ู‰ TุŒ ูˆุงุถุญ ู„ูŠุด
101
00:08:30,900 --> 00:08:36,540
ุงุณุชุจุฏู„ู†ุง ู‡ู†ุง ุงุญู†ุง ุงู„ู€ 1 ุนู„ู‰ X ูƒู„ู‡ ุจู€ T ูุตุงุฑุช ู‡ุฐู‡
102
00:08:36,540 --> 00:08:41,320
ุงู„ู„ูŠ ู‡ูŠ 1 ุนู„ู‰ T ูˆู‡ุฐู‡ 1 ุนู„ู‰ TุŒ ุงู„ุขู† ุตุงุฑุช
103
00:08:41,320 --> 00:08:44,780
ุงู„ู†ุธุฑูŠุฉ ุงู„ุณุงุจู‚ุฉ ู…ุทุจู‚ุฉ ู„ุฃู† ุงู„ู€ T ุจุชุฑูˆุญ ู„ู…ูŠู†ุŸ ู„ู€ Zero
104
00:08:44,780 --> 00:08:49,780
ู…ู† ู„ู…ูŠู†ุŸ ู„ุฃู† ู‡ุฏู ุงู„ูˆุงู‚ุน ู…ูŠู† ู‡ูŠ ุงู„ู„ูŠ ู‚ู„ู†ุง ุนู†ู‡ุง ุดูŠุก
105
00:08:49,780 --> 00:08:57,850
ู‡ุฐู‡ ุจุชุณุงูˆูŠ limit F of T ุนู„ู‰ G of T ู„ู…ุง T ุชุฑูˆุญ ุฅู„ู‰
106
00:08:57,850 --> 00:09:01,310
Zero ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠู…ูŠู†ุŒ ูˆู‡ุฐุง ู…ุชุทุจู‚ ู„ุฃู† ู‡ุฐุง Zero
107
00:09:01,310 --> 00:09:05,490
ูˆู‡ุฐุง Zero ุฒูŠ ู…ุง ุนู…ู„ู†ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุฅุฐุง ุตุงุฑ ุฃูŠุด ุจูŠุณุงูˆูŠ
108
00:09:05,490 --> 00:09:10,990
ุชูุงุถู„ ุงู„ุฃูˆู„ ุนู„ู‰ ุชูุงุถู„ ุงู„ุซุงู†ูŠ ููŠ ุงู„ู€ 100 ุจุงู„ู†ุณุจุฉ ู„ุนู†
109
00:09:10,990 --> 00:09:17,220
ู†ุธุฑูŠุฉ ุงู„ุณุงุจู‚ุฉ ุฅุฐุง ุจูŠุตูŠุฑ limit ุงู„ุชูŠ ู‡ูŠ ุงู„ุชูุงุถู„ ู‡ุงุฏูŠ
110
00:09:17,220 --> 00:09:21,060
ู…ู† ู‡ู†ุง F prime of T ุฃูŠุด ุจูŠุณุงูˆูŠ ูŠุง ุดุจุงุจุŸ ุชูุงุถู„
111
00:09:21,060 --> 00:09:24,960
ู‡ุงุฏูŠุŒ ุนู† T ุจุชุฑูˆุญ ู„ู„ู€ 0ุŒ ุฅุฐู† ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู†ุงู‚ุต 1 ุนู„ู‰
112
00:09:24,960 --> 00:09:34,000
T ุชุฑุจูŠุน ููŠ F prime of 1 ุนู„ู‰ T ุชูุงุถู„ F of TุŒ F of T
113
00:09:34,000 --> 00:09:38,930
ู‡ูŠู‡ุงุŒ ูŠุนู†ูŠ T ู„ุง ุชุณุงูˆูŠ ุตูุฑ ุชูุงุถู„ู‡ุง F prime ุจุณุงูˆูŠ ู†ุงู‚ุต
114
00:09:38,930 --> 00:09:42,710
ุงู„ู„ูŠ ู‡ูˆ F prime ุงู„ู€ 1 ุนู„ู‰ T ูุชูุงุถู„ ุงู„ู„ูŠ ุฌูˆุง ุงู„ู„ูŠ
115
00:09:42,710 --> 00:09:47,450
ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุฃูŠุดุŸ ู†ุงู‚ุต 1 ุนู„ู‰ T ุชุฑุจูŠุนุŒ ูˆุงุถุญุŒ ุนู„ู‰
116
00:09:47,450 --> 00:09:53,430
similarly ู†ุงู‚ุต 1 ุนู„ู‰ T ุชุฑุจูŠุน ููŠ G prime of 1
117
00:09:53,430 --> 00:10:00,200
ุนู„ู‰ T ู„ู…ุง ุงู„ู€ T ุชุฑูˆุญ ู„ู…ูŠู†ุŸ ุฅู„ู‰ ุงู„ู€ 0 ู…ู† ุงู„ูŠู…ูŠู†ุŒ ุงู„ู†ู‚ุต 1
118
00:10:00,200 --> 00:10:03,160
ุฏู„ุช ุงู„ู€ T ุชุฑุจูŠุนุŒ ุงู„ู†ู‚ุต 1 ุฏู„ุช T ุชุฑุจูŠุน ุจุฑูˆุญู† ู…ุน ุจุนุถ
119
00:10:03,160 --> 00:10:09,780
ู†ุฑุฌุน ู„ุฃุตู„ู†ุง ุจูŠุตูŠุฑ limit F prime ุจุฏู‡ ุงุณุชุจุฏู„ ุงู„ุขู† ุงู„ู€
120
00:10:09,780 --> 00:10:17,800
1 ุนู„ู‰ T ุจุงู„ู€ X ุนู„ู‰ G prime ุจุฑุถู‡ ู†ูุณ ุงู„ุดูŠุก ุนู„ู‰ XุŒ ูˆุงู„ู€
121
00:10:17,800 --> 00:10:22,540
T ุชุณุชุจุฏู„ ุจู…ูŠู†ุŸ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† 1 ุนู„ู‰ X ุจุฏู‡ ุชุฑูˆุญ ู„ู„ู€
122
00:10:22,540 --> 00:10:29,270
0 ู…ู† ุงู„ูŠู…ูŠู†ุŒ ูŠุนู†ูŠ ุงู„ู€ X ุจุฏู‡ ุชุฑูˆุญ ู„ู…ูŠู†ุŸ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉุŒ ุจูŠุตูŠุฑ
123
00:10:29,270 --> 00:10:35,510
ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ limit F of X ุนู„ู‰ G of X ุจุณุงูˆูŠ limit F
124
00:10:35,510 --> 00:10:40,350
prime of X ุนู„ู‰ G prime of X ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจุŒ ู†ูŠุฌูŠ
125
00:10:40,350 --> 00:10:44,690
ู„ู„ู†ุธุฑูŠุฉ ุจุนุฏู‡ุงุŒ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุจุฏู‡ุง ุดุบู„ุŒ ุฎู„ูŠู†ุง ู†ุดูˆู
126
00:10:44,690 --> 00:10:53,110
ุงู„ู†ุธุฑูŠุฉุŒ ุงุทู„ุน ู„ููˆู‚ ูˆู†ุฑูƒุฒ ู†ุดูˆู ุฃูŠุด ู‡ูˆ ุงู„ู†ุธุฑูŠุฉ ุจุชุญูƒูŠ
127
00:10:53,110 --> 00:10:57,270
ูˆู…ู† ุซู… ู†ุฐู‡ุจ ุฅู„ู‰ ุจุฑู‡ุงู† ุงู„ู†ุธุฑูŠุฉ
128
00:11:04,010 --> 00:11:11,750
ุนุดุงู† ู…ุณุงุญุฉ ุงู„ู„ูˆุญุฉ ุดูˆูŠุฉ ุฎู„ูŠู†ุง ู†ุชุจุน ุนู„ู‰ ุงู„ุชู„ุฎูŠุต ูˆู…ู†
129
00:11:11,750 --> 00:11:19,110
ุซู… ุจู†ุจุฑู‡ู† theorem 636 ุงู„ู„ูŠ ู‡ูŠ ุจุงุฎุชุตุงุฑ ู‡ูŠ ุญุงู„ุฉ ู…ุง ู„ุง
130
00:11:19,110 --> 00:11:22,570
ู†ู‡ุงูŠุฉ ุนู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉุŒ ู†ูุชุฑุถ ุฃู† ุงู„ู€ F ูˆุงู„ู€ G are
131
00:11:22,570 --> 00:11:26,470
differentiable ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† A ูˆ BุŒ ูŠุนู†ูŠ ุฅุญู†ุง ุดุบู„ู†ุง
132
00:11:26,470 --> 00:11:34,230
ุงู„ุขู† ุนู„ู‰ ุงู„ูุชุฑุฉ ุฃูŠ ุฅู† ูƒุงู†ุช ู‡ุฐู‡ ุงู„ูุชุฑุฉ ู…ู† ุนู†ุฏ A ู„ุนู†ุฏ
133
00:11:34,230 --> 00:11:41,250
ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู„ุนู†ุฏ BุŒ ู„ุฃู†ู†ุง ู…ูุชุฑุถูŠู† ุฃู† ุงู„ู€ F ูˆุงู„ู€ G ุงู„ู„ูŠ ู‡ูˆ
134
00:11:41,250 --> 00:11:46,250
ู‚ุงุจู„ ู„ู„ุงุดุชู‚ุงู‚ ุนู„ู‰ ุงู„ูุชุฑุฉ A ูˆ BุŒ ูˆ limit F of X ู„ู…ุง
135
00:11:46,250 --> 00:11:48,890
X ุชุฑูˆุญ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ .. ุฅู„ู‰ Zero ู…ู† ุงู„ูŠู…ูŠู† ..
136
00:11:48,890 --> 00:11:53,230
ุฅู„ู‰ A ู…ู† ุงู„ูŠู…ูŠู† ุฅูŠุด ุจูŠุณุงูˆูŠุŸ InfinityุŒ ูˆ limit G of X
137
00:11:53,230 --> 00:11:56,090
ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ุงู„ A ู…ู† ุงู„ูŠู…ูŠู† ุจุฑุถู‡ ุฅูŠุด ู…ุงู„ู‡ุงุŸ
138
00:11:56,090 --> 00:12:01,370
InfinityุŒ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ุตุงุฑ ู„ู…ุง ุนุฑุถุช ุนู„ูŠู†ุง limit F
139
00:12:01,370 --> 00:12:06,980
of X ุนู„ู‰ G of X ู„ู…ุง X ุฑุงุญุช ุฅู„ู‰ ุงู„ู€ A ู…ู† ุงู„ูŠู…ูŠู†
140
00:12:06,980 --> 00:12:10,660
ูˆุฌุฏู†ุง limit ุงู„ู„ูŠ ููˆู‚ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูˆ limit ุงู„ู„ูŠ ุชุญุช
141
00:12:10,660 --> 00:12:14,260
ู…ู„ุง ู†ู‡ุงูŠุฉ ูŠุนู†ูŠ ุญุตู„ู†ุง ุนู„ู‰ ุงู„ูƒู…ูŠุฉ ุบูŠุฑ ุงู„ู…ุนูŠู†ุฉ
142
00:12:14,260 --> 00:12:18,220
Infinity ุนู„ู‰ Infinity ุฅุฐุง ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุณุชุนุงู„ุฌ ู‡ุฐู‡
143
00:12:18,220 --> 00:12:23,060
ุงู„ุญุงู„ุฉ ุทุจุนุง ุงู„ุขู† ุงู„ู„ูŠ ู‡ูŠ ุจุทุฑูŠู‚ุฉ ู…ุดุงุจู‡ุฉ ู„ู„ุณุงุจู‚ุฉ
144
00:12:23,060 --> 00:12:29,080
ูˆุงู„ุขู† ุงุญู†ุง ุทุจุนุง ู‡ู†ู‚ูˆู… ุจุจุฑู‡ุงู† ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ู†ูƒู…ู„ ุงู„ู†ุต
145
00:12:29,820 --> 00:12:35,900
ุงู„ุขู† ูุฑุถู†ุง ุฃูŠุถู‹ุง ุฃู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ g of x ู„ุง ุชุณุงูˆูŠ
146
00:12:35,900 --> 00:12:40,160
ุตูุฑ ูˆุงู„ู€ g prime of x ู„ุง ุชุณุงูˆูŠ ุตูุฑ ู„ูƒู„ x ูˆุฅู…ุง ู„ู‡ุง
147
00:12:40,160 --> 00:12:44,920
ููŠ ุงู„ูุชุฑุฉ a ูˆ b ูŠุนู†ูŠ ู…ูุชุฑุถ ุฃู† ุงู„ู€ g of x ู„ุง ุชุณุงูˆูŠ
148
00:12:44,920 --> 00:12:52,860
ุตูุฑ ุนู„ู‰ ูƒู„ ุงู„ูุชุฑุฉ a ูˆ b ู†ุฃุชูŠ ุฅู„ู‰ ุงู„ุฌุฒุฆูŠุฉ ุงู„ุฃูˆู„ู‰ ู…ู†
149
00:12:52,860 --> 00:12:57,380
ุงู„ู†ุธุฑูŠุฉ if limit f' ุนู„ู‰ g' ูŠุณุงูˆูŠ L element in R
150
00:12:57,380 --> 00:13:02,040
ุฅุฐุง ูlimit f ุนู„ู‰ g ุจุฑุถู‡ ุฃูŠุถู‹ุง ุฃูŠุด ู‡ุชุณุงูˆูŠุŸ L ุงู„ู„ูŠ ู‡ูŠ
151
00:13:02,040 --> 00:13:05,280
ู†ุธุฑูŠุงุช ุงู„ู„ูŠ ู‚ุจู„ ุจุดูˆูŠุฉ ุจู†ูุณ.. ุจู†ูุณ.. ุฎู„ู‘ูŠู†ูŠ ุฃู‚ูˆู„
152
00:13:05,280 --> 00:13:10,160
ุจู†ูุณ ุงู„ู…ู†ุทู‚ ูˆู†ูุณ ุงู„ู†ุตูˆุต ุจุณ ู…ุจุฏู„ 0 ุนู„ู‰ 0 ุนู…ุงู„ุฉ
153
00:13:10,160 --> 00:13:13,560
ู†ู‡ุงูŠุฉ ูู„ุงู† limit f prime ุนู„ู‰ g prime ุตุงุฑุช ู…ุงู„ู‡ุง
154
00:13:13,560 --> 00:13:17,700
ู†ู‡ุงูŠุฉ ุฃูˆ ุณุงู„ุจ ู…ุงู„ุง ู†ู‡ุงูŠุฉุŒ ุจุฑุถู‡ ุงู„ู†ุธุฑูŠุฉ ุจุชุธุจุทุŒ ุณูŠุฑ
155
00:13:17,700 --> 00:13:23,310
limit ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ู‡ูŠ ุจุงู„ุธุจุท limit ุงู„ู€ F ุนู„ู‰ G as
156
00:13:23,310 --> 00:13:26,170
X ูˆุชุฑูˆุญ ู„ู€ M ู…ู† ุงู„ูŠู…ูŠู† ูŠุณุงูˆูŠ Infinity ูˆุณุงู„ุจ
157
00:13:26,170 --> 00:13:30,550
Infinity ูŠุนู†ูŠ ููŠ ุงู„ู†ู‡ุงูŠุฉ ุงู„ู„ูŠ ุจุจุญุซ ุนู†ู‡ ู‡ุฐุง ู‡ูˆ ููŠ
158
00:13:30,550 --> 00:13:34,650
ุงู„ุญุงู„ุฉ ู‡ุฐู‡ ุฃูˆ ููŠ ุงู„ุญุงู„ุฉ ุงู„ู„ูŠ ููˆู‚ ูŠุณุงูˆูŠ limit ู…ูŠู†
159
00:13:34,650 --> 00:13:37,750
ุงู„ู€ F prime ุนู„ู‰ G prime ุงู„ู„ูŠ ู‡ูŠ ุงู„ุทุฑูŠู‚ุฉ ุงู„ู…ุญุฏูˆุฏุฉ
160
00:13:37,750 --> 00:13:40,330
ุจู†ูุถู„ ุงู„ู„ูŠ ููˆู‚ ูˆ ุจู†ูุถู„ ุงู„ู„ูŠ ุชุญุช ูˆ ุจู†ูˆุฌุฏ limit ู‡ูŠู†
161
00:13:40,330 --> 00:13:44,670
ุจูŠูƒูˆู† ู‡ูŠู† limit ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฃุตู„ ุงู„ู„ูŠ ุงุญู†ุง ุจุฏู†ุง ุฅูŠุงู‡ุง
162
00:13:45,410 --> 00:13:49,590
ุงู„ุขู† ู†ูŠุฌูŠ ุงู„ู„ูŠ ู‡ูˆ in Berlin ุงู„ู„ูŠ ู‡ูˆ a ูˆ b ุทุจุนุง
163
00:13:49,590 --> 00:13:54,410
ุจู†ูุณ ุงู„ุฃุณู„ูˆุจ ุงู„ุขู†
164
00:13:54,410 --> 00:14:02,790
ู‚ุจู„ ู…ุง ู†ุจุฏุฃ ุงุญู†ุง ู„ูˆ ุงุฌูŠู†ุง ูˆ ู‚ู„ู†ุง limit f of x ู„ู…ุง
165
00:14:02,790 --> 00:14:06,610
x ุชุฑูˆุญ ู„ุฃูŠ ุดูŠุก ู…ุซู„ุง a ู…ู† ุงู„ูŠู…ูŠู† ูŠุณุงูˆูŠ L
166
00:14:11,700 --> 00:14:14,480
ูˆู‚ู„ู†ุง ุงู„ู„ูŠ ู‡ูˆ for every epsilon ุชุนุฑูŠูู‡ุง for every
167
00:14:14,480 --> 00:14:16,660
epsilon ุฃูƒุจุฑ ู…ู† ุตูุฑ there exists a delta ุฃูƒุจุฑ ู…ู†
168
00:14:16,660 --> 00:14:21,300
ุตูุฑ such that if x element in A ุทุจุนุง ู…ู† ุงู„ูŠู…ูŠู†
169
00:14:21,300 --> 00:14:27,780
ู…ุนู†ุงุชู‡ A ูˆ A ุฒุงุฆุฏ ุฏู„ุชุง then ุงู„ู„ูŠ ู‡ูˆ ู‡ูŠูƒูˆู† ุนู†ุฏูŠ f
170
00:14:27,780 --> 00:14:35,230
of x ู†ุงู‚ุต ุงู„ู€ L ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุฅุจุณูŠู„ูˆู† ุงู„ุขู† ู„ูˆ ูƒุงู†ุช ุนู†ุฏูŠ
171
00:14:35,230 --> 00:14:39,330
ุงู„ู€ epsilon ุฃุซุจุชุช ุฃู†ุง ู‡ุฐุง ุงู„ูƒู„ุงู… ู„ู€ epsilon ู„ู€
172
00:14:39,330 --> 00:14:45,410
epsilon ู„ูˆ ุฃุซุจุชุช ู„ูƒู„ epsilon element in ู…ุซู„ุง in
173
00:14:45,410 --> 00:14:51,970
ุตูุฑ ูˆ ู†ุต ุฃูˆ ู†ุต ุฑุจุน ุฃูˆ ู†ุต ุชู„ุช ู„ูˆ ุฃุซุจุชุช ุฃู†
174
00:14:51,970 --> 00:14:54,950
ู„ูƒู„ ุฅุจุณูŠู„ูˆู† ู„ุฌู‡ุฉ ุฏู„ุชุง ุจุญูŠุซ ุฃู† ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃุตุบุฑ ู…ู†
175
00:14:54,950 --> 00:15:01,650
ู…ูŠู†ุŸ ู…ู† ุฅุจุณูŠู„ูˆู† ุจุฑุถู‡ ุจูŠูƒูˆู† ูŠุฌุฒุฆ ุนู† ุงู„ู€ limit ู„ูŠุดุŸ ู„ุฃู†
176
00:15:01,650 --> 00:15:04,950
ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ุจูŠูƒูˆู† ุฃุตุบุฑ ู…ู† ุฅุจุณูŠู„ูˆู† ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ู…ู†
177
00:15:04,950 --> 00:15:09,830
ุงู„ู†ุต ุฃูƒูŠุฏ ุจู†ูุน ู„ู…ูŠู†ุŸ ู„ู„ุฏู„ุชุง ุจู†ูุน ู„ู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ุงู„ู€
178
00:15:09,830 --> 00:15:15,450
ุฅุจุณูŠู„ูˆู† ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ู†ุต ู„ุฃู†ู‡ ุฃุตู„ุง ุงู„ู„ูŠ ู‡ูŠ ู…ุดูƒู„ุฉ
179
00:15:15,450 --> 00:15:19,620
ุฃูˆ ุฎู„ูŠู†ุง ู†ู‚ูˆู„ ุงู„ู€ limit ููŠ ุญุฏ ุฐุงุชู‡ุง ุฃู†ู‡ ู„ู…ุง ุงู„ู€ A
180
00:15:19,620 --> 00:15:24,880
ุชุฑูˆุญ ุงู„ู€ X ุชุฑูˆุญ ุฅู„ู‰ ุงู„ู€ A ู…ู† ุงู„ูŠู…ูŠู†ุŒ ุจุฏู†ุง ู†ุฌู…ุน ุฃู†
181
00:15:24,880 --> 00:15:27,720
ุงู„ู€ F of X ุชู‚ุชุฑุจ ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ู€ L ู…ู† ุงู„ูŠู…ูŠู†ุŒ ูŠุนู†ูŠ ุงู„ุชุนุฌูŠุฒ ูˆ
182
00:15:27,720 --> 00:15:31,100
ูƒุฃู†ู‡ ุจุนุฌุฒู†ูŠ ุฃู†ู‡ ูŠู‚ูˆู„ ู„ูŠ ุฅู†ูƒ ุชู„ุงู‚ูŠ ุงู„ู€ Delta ููŠ
183
00:15:31,100 --> 00:15:34,600
ุญุงู„ุฉ ุงู„ู€ Epsilon ุฃูƒุงุด ุงู„ู„ูŠ ุจูŠูƒูˆู† ุตุบูŠุฑุฉ ูุงู„ู€ Close
184
00:15:34,600 --> 00:15:38,960
ุงู„ู„ูŠ ู‡ูˆ ุชู…ูŠู† to ZeroุŒ ู„ุฅู†ู‡ ุฃุตู„ุง ุงู„ู…ูู‡ูˆู… ุงู„ู„ูŠ
185
00:15:38,960 --> 00:15:43,160
ุจุชู‚ูŠู„ู‡ ู‡ุฐู‡ ุงู„ู…ุณุงูุฉ ุชุถูŠู‚ุŒ ุชุถูŠู‚ุŒ ุชุถูŠู‚ุŒ ุจุญูŠุซ ุฃู† F of
186
00:15:43,160 --> 00:15:46,760
X ุชู‚ูˆู„ ุฅู„ู‰ ุงู„ู€ ู…ูŠู† ุงู„ู„ูŠ ุจุชุนุจุฑ ุนู†ู‡ุงุŸ ุงู„ู€ EpsilonุŒ
187
00:15:46,760 --> 00:15:51,190
ู„ุฃู† ุจุนุทูŠูƒ Epsilon ุตุบูŠุฑุฉ ุฌุฏู‹ุง ุฌุฏู‹ุง ุจุฏูƒ ุชู„ุงู‚ูŠ ู„ูŠ Delta
188
00:15:51,190 --> 00:15:54,870
ุฃู†ุง ุงู„ุขู† ุงู„ู€ Epsilon ุจูŠู† ุตูุฑ ูˆ ู†ุต ู„ู‚ูŠุช ู„ูƒ ุงู„ู€
189
00:15:54,870 --> 00:15:59,070
Delta ุงู„ู„ูŠ ุทู„ุนุช ู‡ู†ุง ู…ุนู†ุงุชู‡ ุงู„ู„ูŠ ู†ูุน ู„ู„ู€ Epsilon
190
00:15:59,070 --> 00:16:03,510
ุงู„ุตุบูŠุฑุฉ ุฃูƒูŠุฏ ุจูŠูƒูˆู† ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ุฃูƒุจูŠุฑุฉ ุฅุฐุง ู‡ุฐุง
191
00:16:03,510 --> 00:16:09,250
ูŠุฌุฒุฆ ุจุณ ู‡ุฐุง ู‚ุจู„ ู…ุง ู†ุจุฏุฃ ู„ุฃู†ู‡ ู‡ุณุฃุฎุฏู… ุดุบู„ุฉ ุงู„ู„ูŠ ู‡ูˆ
192
00:16:09,250 --> 00:16:14,930
ููŠ ู‡ุฐุง ุงู„ุงุชุฌุงู‡ ู†ูŠุฌูŠ ุงู„ุขู† ุนู†ุฏูŠ ุฃูˆู„ ุดูŠุก ุงู„ู…ุนุทู‰
193
00:16:14,930 --> 00:16:23,550
ู…ุงุชูŠู†ูŠ LimitF prime of X ุนู„ู‰ G prime of X as X
194
00:16:23,550 --> 00:16:29,190
ุจุชุฑูˆุญ ู„ู„ู€ A ู…ู† ุงู„ูŠู…ูŠู† ุฃูŠุด ูŠุณุงูˆูŠุŸ ูŠุณุงูˆูŠ ุฃู‚ู„ ุชุนุฑูŠู
195
00:16:29,190 --> 00:16:32,850
ุงู„ู€ Limit for every Y ุฃูƒุจุฑ ู…ู† 0 ุงู„ู„ูŠ ู‡ุชุงุฎุฏ for
196
00:16:32,850 --> 00:16:39,190
every Y element in 0 ูˆู†ุต ุงู„ู„ูŠ ู‡ูŠ ู„ุฒูˆู… ุญุณุงุจุงุชุŒ ุจุนุฏ
197
00:16:39,190 --> 00:16:44,650
ุดูˆูŠุฉ ู‡ู†ุดูˆูู‡ุง ุงู„ุขู† ู„ูƒู„ y ุชู†ุชู…ูŠ ุฅู„ู‰ 0.5 ูˆู‡ุฐุง ู…ุดุฑูˆุน
198
00:16:44,650 --> 00:16:49,270
ุญุณุจ ู…ุง ุญูƒูŠุช ู‚ุจู„ ุจุดูˆูŠุฉ there exist delta ุฃูƒุจุฑ ู…ู† 0
199
00:16:49,270 --> 00:16:57,650
such that ุงู„ู„ูŠ ู‡ูˆ if x element in a ูˆ a ุฒูŠุงุฏุฉ ุฏู„ุชุง
200
00:16:57,650 --> 00:17:04,230
ู„ุฅู† ุฑุงูŠุญ ู„ู„ a ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠู…ูŠู† ู„ุฌูŠุช ุงู„ู„ูŠ ู‡ูˆ ุฏู„ุชุง
201
00:17:04,230 --> 00:17:11,420
ุจุญูŠุซ ุฃู†ู‡ ู„ูƒู„ x ููŠ ุงู„ูุชุฑุฉ ู…ู† a ู„ุนู†ุฏ a ุฒุงุฆุฏ ุฏู„ุชุง ุจุตูŠุฑ
202
00:17:11,420 --> 00:17:16,780
ุนู†ุฏูŠ ู„ูƒู„ x ุงู„ู…ุชู†ูŠุฉ ุฒุงุฆุฏ ุฏู„ุชุง ุจุชุทู„ุน ุนู†ุฏูŠ then f
203
00:17:16,780 --> 00:17:23,420
prime of x ุนู„ู‰ g prime of x ู†ุงู‚ุต ุงู„ L ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ
204
00:17:23,420 --> 00:17:32,060
ู…ู† ุงู„ epsilon ุฅุฐุง ุงู„ุขู† ู…ู† ู‡ุฐู‡ ุงู„ limit ุญุตู„ุช ุนู„ู‰ ุฃู†
205
00:17:32,060 --> 00:17:36,540
ู„ุฃูŠ ุฅุจุณู„ูˆู† ุจูŠู† ุงู„ู€ 0 ูˆ ู†ุต ุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ Delta ุจุญูŠุซ
206
00:17:36,540 --> 00:17:40,540
ู„ูƒู„ ุงู„ุฅูƒุณุงุช ููŠ ุงู„ู…ู†ุทู‚ุฉ ู‡ุฐู‡ ู‡ุฐู‡ ุงู„ู€ Inequality ุฅูŠุด
207
00:17:40,540 --> 00:17:44,880
ู…ุงู„ู‡ุง ุชุชุญู‚ู‚ ุงู„ุขู† ุจุณ ุฎู„ู‘ูŠู†ูŠ ุฃูƒู…ู„ู‡ุง ุฏูŠ ุดูˆูŠุฉ ุนุดุงู†
208
00:17:44,880 --> 00:17:52,040
ุจุณุชุฎุฏู…ู‡ุง ู„ุดุบู„ุงุช ุฃุฎุฑู‰ ุนู†ุฏ A ุฒุงุฆุฏ Delta ู‡ุฐุง ุจุณ ู…ุฌุฑุฏ
209
00:17:52,040 --> 00:17:56,340
ุชุนุฑูŠู ุงู„ู€ Limit F' ุนู„ู‰ ุงู„ู€ G' ู„ู…ุง X ุชุฑูˆุญ ู„ู„ู€ A ู…ู†
210
00:17:56,340 --> 00:17:59,120
ุงู„ูŠู…ูŠู† ุงู„ุขู†
211
00:18:01,110 --> 00:18:04,910
ุจุฏูŠ ุฃุฎุชุงุฑ.. ุจุฏูŠ ุฃุณู‡ู„ ุนู„ู‰ ุญุงู„ูŠ ุจุฏู„ ู…ู† ูƒู„ ู…ุฑุฉ ุฃู‚ูˆู„
212
00:18:04,910 --> 00:18:08,130
a ุฒูŠ ุงู„ู€ delta ูˆุจุนุฏ ุดูˆูŠุฉ ุฃู„ุงู‚ูŠ delta prime ูˆุฃุฎุฏ
213
00:18:08,130 --> 00:18:12,010
ุงู„ู€ minimum ุจูŠู†ู‡ู… ุงู„ุขุฎุฑ ุฃุฌุฏู ุนู„ูŠู‡ ุนุดุงู† ุงู„ู„ูŠ ุจุญูƒูŠู‡
214
00:18:12,010 --> 00:18:17,910
ุจุฏูŠ ุฃุฎุฏ ุงู„ู„ูŠ ู‡ูˆ ุฃู‚ูˆู„ choose c1 element in a ูˆ a ุฒูŠ
215
00:18:17,910 --> 00:18:24,630
ุงู„ู€ delta ุงู„ุขู† ุงุฎุชุงุฑ ู„ูŠ c1 ู…ู† ุงู„ a ู„ุนู†ุฏ ู…ูŠู†ุŸ ู„ุนู†ุฏ ุงู„ู€
216
00:18:24,630 --> 00:18:30,340
a ุฒูŠ ุงู„ delta ุณู…ูŠู‘ู‡ c1 ูŠุนู†ูŠ ู…ุฌุฑุฏ ุงุฎุชูŠุงุฑ ุฃู†ุง ุงุฎุชุฑุชู‡
217
00:18:30,340 --> 00:18:38,260
ุงู„ุขู† choose.. choose C1 element in A ูˆ A ุฒุงุฆุฏ
218
00:18:38,260 --> 00:18:44,140
ุฏู„ุชุง ูŠุนู†ูŠ C1 ูˆูŠู† ู…ูˆุฌูˆุฏุŸ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู…ู†ุทู‚ุฉ ุงู„ุชูŠ
219
00:18:44,140 --> 00:18:50,140
ุชุชุญู‚ู‚ ููŠู‡ุง F' ุน G' ู†ุงู‚ุต ุฃุตุบุฑ ู…ู† ู…ูŠู„ ู…ู† ุฅุจุณู„ ุนุดุงู†
220
00:18:50,140 --> 00:18:56,080
ุชุณุชุฎุฏู…ู‡ุง ุจุนุฏ ุดูˆูŠุฉ ูˆุงุถุญ ุทูŠุจ ู‡ุฐู‡ ู…ู† ุฌู‡ุฉ ุงู„ุขู† ู…ู† ุงู„ุฌู‡ุฉ
221
00:18:56,080 --> 00:19:03,100
ุงู„ุซุงู†ูŠุฉ ุนู†ุฏ limit f of x ู„ู…ุง x ุชุฑูˆุญ ุฅู„ู‰ ู…ุงู„ุง ู†ู‡ุงูŠุฉ
222
00:19:03,100 --> 00:19:09,880
ุขุณู ู„ู„ู€ a ู…ู† ุงู„ูŠู…ูŠู† ุจุณูˆุก ุฃูŠุด ู‡ูˆ ู…ุนุทูŠู†ูŠ ุฅูŠุงู‡ุง ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ
223
00:19:09,880 --> 00:19:13,540
ู‡ูŠ limit f of x ู„ู…ุง x ุชุฑูˆุญ ุฅู„ู‰ ุงู„ a ู…ู† ุงู„ูŠู…ูŠู† ุจุณูˆุก
224
00:19:13,540 --> 00:19:15,760
limit g of x ู„ู…ุง x ุชุฑูˆุญ ุฅู„ู‰ ุงู„ a ู…ู† ุงู„ูŠู…ูŠู† ุจุณูˆุก
225
00:19:15,760 --> 00:19:23,170
ุฃูŠุด ู…ุงู„ู‡ุŸ ู…ุงู„ุง ู†ู‡ุงูŠุฉ ู…ู† ุชุนุฑูŠูู‡ุง ู‡ุฐุง ุฅูŠุด ูŠุนู†ูŠุŸ ู„ูƒู„ K
226
00:19:23,170 --> 00:19:29,270
ุงู„ู„ูŠ ู‡ูˆ element in R there exists Delta A' ุฃูƒุจุฑ ู…ู†
227
00:19:29,270 --> 00:19:36,590
0 such that ุงู„ู„ูŠ ู‡ูˆ F of X ุฃูƒุจุฑ ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ K
228
00:19:36,590 --> 00:19:42,210
ู„ูƒู„ X ูˆ N ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ A ูˆ A ุฒุงุฆุฏ ู…ูŠู†ุŸ Delta
229
00:19:42,210 --> 00:19:49,300
PrimeุŒ ู…ุธุจูˆุท ูˆู„ุง ู„ุงุŸ ู…ุงุดูŠ ุงู„ุญุงู„ ุงู„ุขู† ู„ูƒู„ x element
230
00:19:49,300 --> 00:19:52,200
in A ูˆ A ุฒูŠ ุงู„ู€ delta prime ู‡ุฐู‡ ุงู„ F of X ุฃูƒุจุฑ ู…ู†
231
00:19:52,200 --> 00:20:02,420
ู…ูŠู†ุŸ ู…ู† K ุงู„ุขู† ู„ูˆ ูƒุงู†ุช ุงู„ A ูˆ ุงู„ A.. ุงู„ุขู† ุนู†ุฏูŠ
232
00:20:02,420 --> 00:20:07,540
ู„ูƒู„ subset ู…ู† ู‡ุฐู‡.. ู„ูƒู„ subset.. ู„ูˆ ูƒุงู† ุนู†ุฏูŠ A ูˆ
233
00:20:07,540 --> 00:20:10,940
C2 ู…ุซู„ุง subset ู…ู† ุงู„ A ูˆ ุงู„ A ุฒูŠ ุงู„ delta prime
234
00:20:12,470 --> 00:20:17,070
ุจุฑุถู‡ ุงู„ F of X ุฃูƒุจุฑ ู…ู† K ู‡ุฐู‡ ุจุชุญู‚ู‚ู‡ุง ุจุชุญู‚ู‚ ุฅูŠุดุŸ ู„ูƒู„ X
235
00:20:17,070 --> 00:20:24,610
ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ูุชุฑุฉ ู…ู† A ู„ุนู†ุฏ ู…ูŠู†ุŸ ู„ุนู†ุฏ C2 ุงู„ุขู† ู„ูˆ
236
00:20:24,610 --> 00:20:30,410
ูƒุงู†ุช ุงู„ Delta ุงู„ู„ูŠ ู„ุฌูŠุชู‡ุง ุจุฑุง ูˆู„ุง ุฌูˆุง ุจู‚ุฏุฑ ุฃุฎุชุงุฑ
237
00:20:30,410 --> 00:20:36,990
ุฌูˆุง ุงู„ู„ูŠ ู‡ูˆ C2 ุจุญูŠุซ ุฃู†ู‡ ู„ูˆ ุงู„ู€ C2 ู‡ุฐู‡ ู‡ูŠ ุงู„ู„ูŠ
238
00:20:36,990 --> 00:20:42,450
ุงุฎุชุฑุชู‡ุง ุฌูˆุงุช ู…ู† ุงู„ู€ A ูˆุงู„ู€ A ุฒุงุฆุฏ ุฏู„ุชุง ุจุชุธู„ ุงู„ู€ F
239
00:20:42,450 --> 00:20:47,470
of X A ุดู…ุงู„ู‡ุง ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ู€ KุŒ ูˆุงุถุญุŸ ุฅุฐุง ู…ู†
240
00:20:47,470 --> 00:20:52,330
ู‡ุฐู‡ ุจุฏูŠ ุฃุณุชููŠุฏ ุดุบู„ุชูŠู† ุจุฏูŠ ุฃุทุจู‚ ุงู„ุชุนุฑูŠู ู‡ุฐุง ู„ู€ K
241
00:20:52,330 --> 00:20:56,730
ู…ุญุฏุฏุฉ ู…ูŠู† ุงู„ู€ K ุงู„ู„ูŠ ุจุฏูŠ ุฃุทุจู‚ู‡ุงุŸ ุงู„ู„ูŠ ุนุจุงุฑุฉ ุนู† F
242
00:20:56,730 --> 00:21:02,560
ุนู†ุฏ ู…ูŠู†ุŸ ุนู†ุฏ C1 ูˆุงุถุญุŸ ุฅุฐุง ุงู„ุขู† ุจู…ุง ุฃู†ู‡ limit f of X
243
00:21:02,560 --> 00:21:05,680
ุซู… X ุชุฑูˆุญ ุฅู„ู‰ ุงู„ู€A ุจุงู„ูŠู…ูŠู† ูŠุณุงูˆูŠ Infinity ุฅุฐุง for
244
00:21:05,680 --> 00:21:13,720
K.. ุฅุฐุง for f of C1 there exists Delta Prime ุฃูŠ
245
00:21:13,720 --> 00:21:19,840
Delta Prime ู…ุนูŠู†ุฉ ุจุญูŠุซ ุฃู† f of X ุฃูƒุจุฑ ู…ู† 100 ู…ู† f
246
00:21:19,840 --> 00:21:27,060
of C1 ู„ูƒู„ X ู…ูˆุฌูˆุฏุฉ ุจูŠู† ุงู„ู€A ูˆุงู„ู€A ุฒุงุฆุฏ Delta Prime
247
00:21:27,680 --> 00:21:31,860
ุฃู†ุง ุจุฏูŠ ุฃุฎุชุงุฑ ููŠ ู…ูŠู†ุŸ ู„ูƒู„ X ุงู„ู…ูˆุฌูˆุฏุฉ ุจูŠู† ุงู„ู€ A ูˆ
248
00:21:31,860 --> 00:21:37,940
ุงู„ู€ C2 ุญูŠุซ ุงู„ู€ C2 ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ูุชุฑุฉ ู‡ุฐู‡ ูˆ ุจุฏูŠ ุฅูŠุงู‡ุง ู…ู†
249
00:21:37,940 --> 00:21:44,120
C1 ูˆู„ุฌุงูŠ ุฅุฐุง ุนุดุงู† ู‡ูŠูƒ ุจู‚ุฏุฑ ุฃู‚ูˆู„ then we can
250
00:21:44,120 --> 00:21:50,280
choose C2 ุจูŠู† A ูˆ C1 ุงู„ู€ C2 ุจู‚ุฏุฑ ุฃุฎุชุงุฑู‡ุง ูุนู„ู‹ุง
251
00:21:50,280 --> 00:21:55,640
ุจุฎุชุงุฑู‡ุง ุจุณ ุทุจุนู‹ุง ูˆูŠู† ุชุดุชุฑูŠ ุชุดุฑูŠุน ุงู„ู„ูŠ ุงุฎุชูŠุงุฑู‡ุง ุฃู†ู‡ุง
252
00:21:55,640 --> 00:22:01,420
ุชูƒูˆู† ุจูŠู† ุงู„ูุชุฑุฉ A ูˆ A ุฒุงุฆุฏ Delta Prime ูˆุจุฏูŠ ุฅูŠุงู‡ุง
253
00:22:01,420 --> 00:22:06,900
ุชูŠุฌูŠ ููŠ ุฏุงุฎู„ ุงู„ู€ A ูˆ ุงู„ู€ C1 ุฅุฐุง then we can choose
254
00:22:06,900 --> 00:22:13,200
C2 element A of C1 ุจุญูŠุซ ุฃู† ุงู„ F of X ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ
255
00:22:13,200 --> 00:22:22,810
ู…ู† F of C1 ู„ูƒู„ X ูˆูŠู†ููŠ ุงู„ูุชุฑุฉ ุจูŠู† A ูˆ C2 ุทูŠุจ
256
00:22:22,810 --> 00:22:28,050
ู‡ุฐู‡ ู…ุนู†ุงุชู‡ ุฃู† ุงู„ F of X ู‡ุฐู‡ ู„ูƒู„ ุงู„ู€ Xุงุช ุงู„ู„ูŠ ู‡ุงู† ุงู„ู€
257
00:22:28,050 --> 00:22:34,290
F of X ุฃูƒูŠุฏ ุฃูŠ ุดู…ุงู„ู‡ุง ู„ู‡ุง ุชุณุงูˆูŠ ุฃูŠุดุŸ F of C1 ู‡ู„
258
00:22:34,290 --> 00:22:38,930
ุฌุฏ ุชุนุฑู ู„ูŠุด ุจุฏูŠ ุฅูŠุงู‡ุง ู‡ุฐู‡ุŸ ุนุดุงู† ู„ุฒูˆู… ุชุนุฑูŠู ุดุบู„ ู…ุนูŠู†ุฉ
259
00:22:38,930 --> 00:22:44,770
ุจู†ูุนุด ุชูƒูˆู† ุงู„ F of X ุฃูŠุด ุจุชุณุงูˆูŠุŸ F of C1 ุงู„ุขู†
260
00:22:44,770 --> 00:22:55,550
similarly Similarly ุงู„ู„ูŠ ู‡ูˆ ุจู…ุง ุฃู†ู‡ limit G of X
261
00:22:55,550 --> 00:23:00,690
ูŠุณุงูˆูŠ ู…ุงู„ุง ู†ู‡ุงูŠุฉ as X ุจุชุฑูˆุญ ู„ู„ู€ A ู…ู† ุงู„ูŠู…ูŠู† ุฅุฐุง
262
00:23:00,690 --> 00:23:13,160
ุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ C1 ุจุฑุงูŠู… ุจุญูŠุซ ุฃู†ู‡ G of X ุฃูƒุจุฑ ุฃูˆ
263
00:23:13,160 --> 00:23:17,240
ู„ุง ุชุณุงูˆูŠ ุทุจุนู‹ุง ุฃูƒุจุฑ ุงู„ู€ thrifty ูŠุนู†ูŠ ู„ุง ุชุณุงูˆูŠ G of
264
00:23:17,240 --> 00:23:27,860
C1 ู„ูƒู„ X ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ A ูˆ C1 ุฅูŠุด ุฅุจุฑุงู‡ูŠู… ุงู‡ G C1
265
00:23:27,860 --> 00:23:34,680
ุฅุจุฑุงู‡ูŠู… ุงู‡ G C1 ุฅุจุฑุงู‡ูŠู… ุงู„ุขู†
266
00:23:34,680 --> 00:23:40,760
ุงู„ู€..ุงู„ู€..ุงู„ู€.. ุงู„ุจุงุฎุฏ ุงู„ู€ Minimum ุนุดุงู† ุทุจุนู‹ุง ู‡ุฐุง
267
00:23:40,760 --> 00:23:46,120
ุงู„ู„ูŠ ู„ุฌู‡ุฉ N C1' ู…ู…ูƒู† ุงู„ู„ูŠ ู‡ูŠ ู„ูƒู„ X ููŠ ุงู„ู€ A ูˆ C1'
268
00:23:46,620 --> 00:23:52,840
ูˆ ู„ูƒู„ X element in A ูˆ C2' ุจุท ู…ุงู†ุด.. ู…ุด ุนุงุฑู ู…ูŠู†
269
00:23:52,840 --> 00:23:58,670
ุงู„ุฃูƒุจุฑ ู…ู† ู‡ุฐูˆู„ ูุจุงุฎุฏ ุงู„ู€ Minimum ู…ู† ุงู„ุฌู‡ุชูŠู† ูˆ
270
00:23:58,670 --> 00:24:03,090
ุจุณู…ูŠู‡ุง C1 ู…ุซู„ุง ุฃูˆ C2 ุงู„ู€ minimum ู…ู† ุงู„ุชู†ุชูŠู† C2
271
00:24:03,090 --> 00:24:09,550
ูุจุชุตูŠุฑ ุนู†ุฏูŠ ู„ุฃู† ู„ูƒู„ X ููŠ ุงู„ A ูˆ ุงู„ู€ minimum ุจูŠู†ู‡ู†
272
00:24:09,550 --> 00:24:14,630
ู‡ุฐู‡ ุจุชุธุจุท ูˆู‡ุฐู‡ ุจุชุธุจุท ูŠุนู†ูŠ ุงู„ G of X ู„ุง ุชุณุงูˆูŠ F of
273
00:24:14,630 --> 00:24:20,670
C1 ูˆุงู„ู€ F of X ู„ุง ุชุณุงูˆูŠ ู…ูŠู†ุŸ F of C1 ุจุฑุงูŠู… ูˆู…ู†ู‡
274
00:24:20,670 --> 00:24:25,870
ุจุนุฑู ุงู„ู„ูŠ ุจุฏูŠ ุฅูŠุงู‡ ุฃูˆ ุจุนู…ู„ ุฒูŠ ู…ุง ู‡ูˆ ุนุงู…ู„ ููŠ ุงู„ูƒุชุงุจ ุฅูŠุด
275
00:24:25,870 --> 00:24:29,280
ุงู„ู„ูŠ ุจู‚ูˆู„ู‡ุŸ ู†ุดูˆู ุงู„ู„ูŠ ุจุนุฏู‡ุง ุฅุฐุง ุงู„ุขู† ุงู„ู„ูŠ ุงุชูุฌู†ุง
276
00:24:29,280 --> 00:24:38,540
ุนู„ูŠู‡ ุฃู†ู‡ ููŠ ุงู„ูุชุฑุฉ ู…ู† A ู„ุนู†ุฏ A ุฒุงุฆุฏ Delta ู‡ุฐู‡
277
00:24:38,540 --> 00:24:45,480
ู…ุชุญู‚ู‚ุฉ ู‡ุงูŠ ูˆุงุญุฏ ูˆุงู„ู„ูŠ ุงุชูุฌู†ุง ุนู„ูŠู‡ ุฃู† F of X ู„ุง
278
00:24:45,480 --> 00:24:50,140
ุชุณุงูˆูŠ F of C1 ููŠ ุงู„ูุชุฑุฉ ู…ู† A ู„ุนู†ุฏ C2
279
00:24:50,140 --> 00:24:55,580
ุฃุดู…ุงู„ู‡ุง ู…ุชุญู‚ู‚ุฉ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ุงู„ู€ Inequality ู‡ุฐู‡
280
00:24:55,580 --> 00:25:03,800
ูˆู‡ุฐู‡ ุงู„ุชู†ุชูŠู† ู…ุญู‚ู‚ุงุช ู…ู† ุฃูŠู†ุŸ ู…ู† A ู„ุนู†ุฏ C2
281
00:25:03,800 --> 00:25:05,360
ูˆุงุถุญุŸ
282
00:25:11,650 --> 00:25:17,590
ุงู„ุขู† ูˆุตู„ู†ุง ู„ู…ุฑุญู„ุฉ ุฃู†ู‡ ู†ู‚ุฏุฑ ู†ุนุฑู ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุจุชุฏูŠู‡ุง
283
00:25:17,590 --> 00:25:23,890
ุงู„ู„ูŠ ู‡ูŠ F of X ุจุชุณุงูˆูŠ 1 ู†ุงู‚ุต F of C ูˆุงุญุฏ ุนู„ู‰ F
284
00:25:23,890 --> 00:25:30,470
of X ูˆ1 ู†ุงู‚ุต G of C ูˆุงุญุฏ ุนู„ู‰ G of X ู„ูƒู„ X ูˆูŠู†
285
00:25:30,470 --> 00:25:37,330
ู…ูˆุฌูˆุฏุฉ ุจูŠู† A ูˆC ุงุซู†ูŠู† ูˆ F of C ูˆุงุญุฏ ู„ุง ุชุณุงูˆูŠ F of X
286
00:25:37,330 --> 00:25:43,340
ู…ุธุจูˆุทุŸ ู‡ูŠู‘ุง ุงุนู…ู„ู‡ุง ุฃู‡ ู„ุฅู† ูˆูŠู† ุจุฏูŠ ุฃุนุฑู ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ F
287
00:25:43,340 --> 00:25:50,480
ู…ู† A ู„ุนู†ุฏ ู…ูŠู† ุงู„ู„ูŠ ู‡ูŠ ุจุชุชุญู‚ู‚ ุนู„ูŠู‡ุง ุฎุงุตูŠุฉ F of X ุฏู‡
288
00:25:50,480 --> 00:25:55,080
ุชุณุงูˆูŠ ู…ูŠู†ุŸ F of C ูˆุงุญุฏ ูˆุจุชุชุญู‚ู‚ ุนู„ูŠู‡ุง ู…ูŠู† ุงู„ู„ูŠ ู‡ูŠ
289
00:25:55,080 --> 00:26:00,480
ุงู„ุฎุงุตูŠุฉ ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุฐู‡ ู„ุฅู† ูƒู„ู‡ ู‡ูŠู„ุฒู…ู†ูŠ ู‡ุฐุง ุฅุฐุง ุงู„ุขู†
290
00:26:05,340 --> 00:26:09,980
ุงุชูู‚ู†ุง ุนู„ูŠู‡ุง ุฏูŠ ุฃู‡ ุนุดุงู† ุจุฏูŠ ุงู…ุณุญ ุฃู†ู‡ ุนู†ุฏูŠ f prime
291
00:26:09,980 --> 00:26:13,800
ุนู„ู‰ ุงู„ู€ g prime ู†ู‚ุตู‡ุง ุงู„ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ู„ูƒู„ ุงู„ู€ Xุงุช
292
00:26:13,800 --> 00:26:18,700
ู…ู† A ู„ุนู†ุฏ A ุฒุงุฆุฏ ุฏู„ุชุง ู„ูƒู„ ุงู„ู€ Xุงุช ุงู„ู„ูŠ ู‡ู†ุง
293
00:26:18,700 --> 00:26:22,040
ูˆุงุชูู‚ู†ุง ุฃู† F of X ู„ุง ุชุณุงูˆูŠ F of C one ุจุฑุถู‡ ููŠ
294
00:26:22,040 --> 00:26:27,350
ุงู„ูุฑู‚ ููŠ ุงู„ู…ู†ุทู‚ุฉ ู…ู† ุฅูŠุดุŸ ู…ู† A ู„ู€ C2 ุงุชูู‚ู†ุง ุนู„ูŠู‡ ุงู„ุขู†
295
00:26:27,350 --> 00:26:33,510
ู†ูŠุฌูŠ ู†ุนุฑู ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ู‡ุชูˆุตู„ู†ูŠ ู„ู‡ุฏููŠ ุฎุฐ ุงู„ุขู† f of x
296
00:26:33,510 --> 00:26:42,670
ุจุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ 1 ู†ุงู‚ุต f of c ูˆุงุญุฏ ุนู„ู‰ f of x
297
00:26:42,670 --> 00:26:52,450
ุนู„ู‰ 1 ู†ุงู‚ุต g of c ูˆุงุญุฏ ุนู„ู‰ g of x ุงู„ุขู† g of c
298
00:26:52,450 --> 00:26:55,810
ูˆุงุญุฏ ู…ุณุชุญูŠู„ ุชุณุงูˆูŠ g of x ู…ู† ุฃูŠ ุฃุณุจุงุจ ุงู„ู„ูŠ ุญูƒูŠู†ุงู‡ุง
299
00:26:55,810 --> 00:27:01,710
ูˆู„ูŠุณ ุณุจุจ ุขุฎุฑ ุฃูŠุถุง ุงู„ู„ูŠ ู‡ูˆ ู„ูŠุด ุฃู†ู‡ ุนู†ุฏูŠ ุงู„ู€ g prime
300
00:27:01,710 --> 00:27:07,570
ุงู„ู€ g prime of x ุฏู‡ ูŠุณุงูˆูŠ ุตูุฑ ุฅุฐุง ุญุณุจ Rolle's
301
00:27:07,570 --> 00:27:13,570
theorem ู…ุณุชุญูŠู„ ุงู„ู€ g of c ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุชุณุงูˆูŠ g of
302
00:27:13,570 --> 00:27:20,530
x ู„ูŠุดุŸ ุนู†ุฏูŠ g continuous
303
00:27:21,550 --> 00:27:29,350
on a .. ุทุจุนุง ุงู„ู€ x ูˆุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุฌูˆุงู‡ุง ู…ู†ู‡ุง ุงู„ุขู† ู…ู† x
304
00:27:29,350 --> 00:27:37,110
ู„ุนู†ุฏ c ูˆุงุญุฏ ุตุญุŸ ูˆ g is differentiable on x ู„ุนู†ุฏ
305
00:27:37,110 --> 00:27:44,090
ุงู„ู„ูŠ ู‡ูŠ c ูˆุงุญุฏ open ูˆุงุถุญุฉุŸ
306
00:27:44,090 --> 00:27:48,670
ู„ุฃู†ู‡ ุฃุซุฑ ู‡ุฐุง continuous ูˆ differentiable ู…ู† a ู„ุนู†ุฏ
307
00:27:48,670 --> 00:27:52,550
b ุงู„ุนู„ู…ูŠ ุฅุฐุง ููŠ ุงู„ุฌุฒุฆูŠุฉ ู‡ุฐู‡ ุฅุฐุง ุฃูƒูŠุฏ ุงู„ู„ูŠ ู‡ู… ุชุชุญู‚ู‚
308
00:27:52,550 --> 00:28:01,270
ู‡ุฐู‡ ุงู„ุขู† ู„ูˆ ุฒูŠ ู…ุง ุจู†ู‚ูˆู„ ุฃู† g prime ู„ูˆ ู„ูˆ ุนู†ุฏูŠ ุจุฏูŠ
309
00:28:01,270 --> 00:28:09,250
ูŠูƒูˆู† g of x ุจุณูˆุก g of c ูˆุงุญุฏ ู…ุนู†ุงุชู‡ ุญุณุจ role
310
00:28:09,250 --> 00:28:16,360
theorem ู‡ูŠุนุทูŠู†ูŠ there exist cx element in x ูˆ c1
311
00:28:16,360 --> 00:28:22,800
such that g prime of cx ู‡ูŠ ุณุงูˆูŠ ุตูุฑ ูˆู‡ุฐุง ู…ุณุชุญูŠู„
312
00:28:22,800 --> 00:28:27,320
ู„ุฅู† ู‡ูˆ ู…ุนุทูŠู†ูŠ ุงู„ู€ g prime of x ู„ุง ุชุณุงูˆูŠ ุตูุฑ ู„ูƒู„ x
313
00:28:27,320 --> 00:28:34,630
element ู…ู† a ูˆb ู…ุนู†ุงุชู‡ ู…ุนู†ุงู‡ ุงู„ุญุฏูŠุซ ุฅู†ู‡ ุงู„ู€ G of C
314
00:28:34,630 --> 00:28:41,510
ูˆุงุญุฏ ูˆุงู„ู€ G of X ู…ุณุชุญูŠู„ ูŠูƒูˆู† ู…ุชุณุงูˆูŠุงุช ู„ูƒู„ ุงู„ู€ Xุงุช
315
00:28:41,510 --> 00:28:47,230
ุงู„ู„ูŠ ููŠ ุงู„ูุชุฑุฉ ู…ู† A ู„ุนู†ุฏ ู…ูŠู†ุŸ ู„ุนู†ุฏ C ุงุซู†ูŠู† ูˆุงุถุญุฉ ุฅุฐุง
316
00:28:47,230 --> 00:28:50,730
ุงู„ู…ู‚ุงู… ู„ุง ูŠุณุงูˆูŠ ุตูุฑ ุฅุฐุง ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐู‡ is well
317
00:28:50,730 --> 00:29:00,950
defined ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ูุชุฑุฉ A ู…ุธุจูˆุท ูˆC2 ุฎู„ูŠู‡ุง ููŠ
318
00:29:00,950 --> 00:29:05,070
ุงู„ุฐุงูƒุฑุฉ ุทูŠุจ ุงุทู„ุน ู„ููˆู‚ ูˆุญุณุจ ู„ู„ limit ุงู„ุขู† ู‡ุฐุง
319
00:29:05,070 --> 00:29:12,070
ุนุฑูู†ุงู‡ุง ุญูุธู†ุงู‡ุง ุจู†ุถุทุฑ ุฃู† ุงู…ุณุญ ุงู„ุขู† ุงุญุณุจ ู„ู„ limit
320
00:29:12,070 --> 00:29:20,230
ู„ู„ูŠ ููˆู‚ limit F of X ู„ู…ุง X ุชุฑูˆุญ ุงู„ูŠ ูˆูŠู†ุŸ ุงู„ูŠ a ู…ู†
321
00:29:20,230 --> 00:29:23,390
ุงู„ูŠู…ูŠู† ุจุณุงูˆูŠ 1
322
00:29:24,530 --> 00:29:32,650
ู†ุงู‚ุต limit F of C1 ุนุฏุฏ ุนู„ู‰ F of X ู„ู…ุง X ุชุฑูˆุญ ู„ู„ู€ A
323
00:29:32,650 --> 00:29:36,950
ู…ู† ุงู„ูŠู…ูŠู† ุงุชุฌุฑุฃุช ู„ุฃู†ู‡ ุนุงุฑู ุฃู† ุงู„ limit ู…ูˆุฌูˆุฏุฉ
324
00:29:36,950 --> 00:29:42,290
ุนู„ู‰ ุงู„ุชูˆุฒูŠุน ุงุชุฌุฑุฃุช ุนู„ูŠู‡ ู„ุฃู†ู‡ ุนุงุฑู limit G of C1
325
00:29:42,290 --> 00:29:49,530
ุนู„ู‰ G of X ู„ู…ุง X ุชุฑูˆุญ ู„ูˆูŠู†ุŸ ู„ู„ู€ A ู…ู† ุงู„ูŠู…ูŠู† ูˆุงุถุญุฉ
326
00:29:49,530 --> 00:29:56,130
ุฌุฏุด ู‡ุฐู‡ ุงู„ limit ุตูุฑ ู„ุฃู† ุงู„ู€ F of X ูˆูŠู† ุจุชุฑูˆุญุŸ ุฅู„ู‰ ู…ุงู„ุงู†ู‡ุงูŠุฉ
327
00:29:56,130 --> 00:30:00,010
ู†ู‡ุงูŠุฉ ู‡ูŠ ุจุฏุงูŠุฉ ุงู„ู…ูˆุถูˆุน ู…ุด ุจุฏุงูŠุฉ ุงู„ู…ูˆุถูˆุน ูƒุงู† ุนู†ุฏู†ุง
328
00:30:00,010 --> 00:30:05,010
ุฃู† ุงู„ limit F of X ุนู„ู‰ G of X ู„ู…ุง X ุชุฑูˆุญ ุงู„ู‰ A ู…ู†
329
00:30:05,010 --> 00:30:08,670
ุงู„ูŠู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุณุจุจ ู„ูƒู„ ุงู„ู‚ุตุฉ ุฃู† ู‡ุฐู‡ ุงู„ limit
330
00:30:08,670 --> 00:30:11,230
ู…ุงู„ุงู†ู‡ุงูŠุฉ ูˆู‡ุฐู‡ ู…ุงู„ุงู†ู‡ุงูŠุฉ ุตุงุฑุช ู…ุงู„ุงู†ู‡ุงูŠุฉ ู…ุงู„ุงู†ู‡ุงูŠุฉ
331
00:30:11,230 --> 00:30:15,710
ู†ู‡ุงูŠุฉ ูˆู‡ูŠ ุงู„ู„ูŠ ุฎู„ุชู†ูŠ ุงุฑูˆุญ ุจู‡ุฐุง ุงู„ุงุชุฌุงู‡ ุฅุฐุง ู‡ุฐู‡
332
00:30:16,610 --> 00:30:19,750
ุจุชุฑูˆุญ ุฅู„ู‰ ู…ุงู„ุงู†ู‡ุงูŠุฉ ุฅุฐุง ู‡ุฐู‡ ุจุชุฑูˆุญ ุฅู„ู‰ ุตูุฑ ูˆู‡ุฐู‡
333
00:30:19,750 --> 00:30:22,330
ุงู„ู…ุงู„ ุงู†ู‡ุงูŠุฉ ุจุชุฑูˆุญ ุฅู„ู‰ ุตูุฑ ุฅุฐุง ู‡ุฐุง ูƒู„ู‡ ุนู„ู‰ ุจุนุถ ุฅูŠุด
334
00:30:22,330 --> 00:30:30,170
ุจูŠุณุงูˆูŠุŸ ุจูŠุณุงูˆูŠ 1 ูˆุงุถุญ ุทูŠุจ ุงู„ุขู† for every
335
00:30:30,170 --> 00:30:34,570
epsilon ุฃูƒุจุฑ ู…ู† ุตูุฑ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ููˆู‚ ุฎู„ุงุต ุจุฏู†ุง
336
00:30:34,570 --> 00:30:39,270
ููŠู‡ุง ุงู„ุขู† ุจูŠุจู‚ู‰ ุฃู† ุงู„ limit ุจูŠุณุงูˆูŠ 1 ุฅุฐุง there
337
00:30:39,270 --> 00:30:44,890
exists Delta ุฃูƒุจุฑ ู…ู† ุตูุฑ ุฃูŠ ุฅู† ูƒุงู†ุช ุงู„ู€ Delta ุฃูƒุจุฑ
338
00:30:44,890 --> 00:30:53,790
ู…ู† ุตูุฑ Such that F of X ู†ุงู‚ุต 1 ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู†
339
00:30:53,790 --> 00:30:59,190
ุงู„ู€ Epsilon ุงู„ู€ Epsilon ุงู„ู„ูŠ ุจุฏู†ุง ููŠู‡ุง ู…ู† ุงู„ุฃูˆู„ ู‡ุฐุง ู„ูˆ
340
00:30:59,190 --> 00:31:04,830
ูŠุนู†ูŠ ู„ูƒู„ ุงู„ู€ X ุงู„ู„ูŠ ููŠ ุงู„ูุชุฑุฉ ู…ู† a ู„ a ุฒุงุฆุฏ ุงู„ู€ delta
341
00:31:04,830 --> 00:31:07,910
ู‡ุฐู‡ ุงู„ู€ delta ุงู„ุฌุฏูŠุฏุฉ ู…ุด ุตุงุฑุช ุชูƒูˆู† ุงู„ุฃูˆู„ู‰ ูุฃู†ุง
342
00:31:07,910 --> 00:31:13,330
ุนุดุงู† ุฃุฑูŠุญ ุญุงู„ูŠ ุจุฏูŠ ุงุฎุฐ ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ delta ุจู„ุงู‚ูŠู‡ุง
343
00:31:13,330 --> 00:31:17,910
ูˆุฃู‚ูˆู„ ุญุทู‡ุง ูƒู…ุงู† ุฌูˆุงู‡ุง ู‡ุงุฏูŠ ุญุฑ ุฃู†ุง ู…ุฏุงู… ุจุชู†ูุน ู„ูŠ
344
00:31:17,910 --> 00:31:21,690
ูƒุจูŠุฑุฉ ุฃูŠุถุง ูƒุฏู‡ ุจุชู†ูุน ู„ู…ู†ุŸ ู„ู„ุตุบูŠุฑุฉ ูุงู‡ู…ูŠู† ุฃู†ุง ุฅูŠุด
345
00:31:21,690 --> 00:31:28,270
ุจู‚ูˆู„ุŸ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ู†ุณู…ูŠู‡ุง C3 ู…ุนุงูŠุงุŸ ูุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ุขู†
346
00:31:28,270 --> 00:31:39,200
F of X ู„ูƒู„ X element in A ู„ุนู†ุฏ ู…ูŠู†ุŸ C3 ุฃูŠ
347
00:31:39,200 --> 00:31:46,120
ุณุคุงู„ุŸ F of X ู†ุงู‚ุต 1 ุฃุตุบุฑ ู…ู† Y ุฃูƒุจุฑ ู…ู† ุณุงู„ุจ Y
348
00:31:46,120 --> 00:31:49,960
ุชู„ุฒู…ู†ูŠ ู‡ุฐู‡ ุงู„ู…ู†ุทู‚ุฉ ุงู„ู„ูŠ ุงู„ู„ูŠ ุฌุงูŠ ู„ุฃู† F of X ู‡ุฐู‡
349
00:31:49,960 --> 00:31:56,720
ูŠุนู†ูŠ F of X ูŠุนุทูŠู†ุง F of X ุฃูƒุจุฑ ู…ู† 1 ู†ุงู‚ุต Y
350
00:31:59,390 --> 00:32:03,370
ูˆุงุถุญุฉุŸ ู„ุฃู† ู‡ุฐู‡ ุฌู„ุจู‡ุง .. ุงู„ู„ูŠ ู‡ุฐู‡ ุทุจุนุง 1 ู†ุงู‚ุต
351
00:32:03,370 --> 00:32:07,850
ุฅุจุณู„ูˆู† ุงู„ู„ูŠ ู‡ูŠ ุจูŠุตูŠุฑ ุนู†ุฏู‡ ุงู„ .. ุงู„ .. ุงู„ ุฅุจุณู„ูˆู†
352
00:32:07,850 --> 00:32:12,650
ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ู†ุตู ุงู„ู€ 1 ู†ุงู‚ุต ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ
353
00:32:12,650 --> 00:32:20,670
ุงู„ู„ูŠ ู‡ูŠ ุจูŠุตูŠุฑ ุฃูƒุจุฑ ู…ู† ู†ุตู ูˆุงุถุญุฉุŸ ุงู„ู„ูŠ ู‡ูŠ ุจูŠุตูŠุฑ 1
354
00:32:20,670 --> 00:32:28,400
ุนู„ู‰ f of x ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู‡ุฐุง ู„ู…ูŠู†ุŸ ู„ูƒู„
355
00:32:28,400 --> 00:32:32,760
ุงู„ู€ Xุงุช ุงู„ู„ูŠ ู…ู† A ู„ุนู†ุฏ ู…ูŠู†ุŸ C3 ูˆุทุจูŠุนูŠ ุงู„ู€
356
00:32:32,760 --> 00:32:36,880
inequalities ูƒู„ู‡ุง ุงู„ู„ูŠ ู‚ุจู„ ุชุชุญู‚ู‚ ู‡ู†ุง ู„ุฅู†ู‡ุง ุจุชุชุญู‚ู‚
357
00:32:36,880 --> 00:32:41,360
ู…ู† ู‡ู†ุง ู„ู‡ู†ุง ุจุนุถู‡ุง ูˆุจุนุถู‡ุง ุจุชุชุญู‚ู‚ ู…ู† ู‡ู†ุง ู„ู‡ู†ุง ูุฃูƒูŠุฏ
358
00:32:41,360 --> 00:32:47,040
ูƒู„ู‡ุง ู‡ุชุชุญู‚ู‚ ู„ู„ุฅูƒุณุงุช ุงู„ู„ูŠ ู…ูŠู†ุŸ ููŠ ุงู„ู€ A ูˆC3 ุฃุตู„ุง ุฃู†ุง
359
00:32:47,040 --> 00:32:52,620
ุฑุงูŠุญ ุจุงุชุฌุงู‡ ู…ูŠู†ุŸ ุฑุงูŠุญ ุจุงุชุฌุงู‡ ุฃุซุจุช ู„ูƒู… ุฃู†ู‡ limit of
360
00:32:53,680 --> 00:32:59,060
of x ุนู„ู‰ g of x ู„ู…ุง x ุชุฑูˆุญ ู„ู„ a ู…ู† ุงู„ูŠู…ูŠู† ุจุณุงูˆูŠ
361
00:32:59,060 --> 00:33:04,880
limit f prime of x ุนู„ู‰ g prime of x as x ุชุฑูˆุญ ู„ู„ a
362
00:33:04,880 --> 00:33:10,080
ู…ู† ุงู„ูŠู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุฅูŠุด ู†ุณู…ูŠู‡ ุงุญู†ุงุŸ ู‚ุงู„ ุฅุฐุง ุฃู†ุง ุจู‡ู…ู†ูŠ
363
00:33:10,080 --> 00:33:14,920
ู…ูŠู† ุงู„ู€ Xุงุช ุงู„ู„ูŠ ุฌู†ุจ ุงู„ู€ a ู„ุฅู† ุฃู†ุง ุฑุงูŠุญ ู„ู„ู€ a ู…ู† ูˆูŠู†ุŸ
364
00:33:14,920 --> 00:33:18,800
ู…ู† ุงู„ูŠู…ูŠู† ูุฃู†ุง ุจู‡ู…ู†ูŠ ุงู„ุฌูˆุงุฑ ุงู„ู‚ุฑูŠุจ ุฌุฏุง ู…ู† ุงู„ู€ a ู„ุฅู†
365
00:33:18,800 --> 00:33:21,960
ุฃู†ุง ุฑุงูŠุญ ู„ู‡ ุฃุตู„ุง ู…ู† ู‡ู†ุง ูุงู„ุฅูƒุณุงุช ุงู„ู„ูŠ ููŠู‡ุง ู‡ูŠ ุงู„ู„ูŠ
366
00:33:21,960 --> 00:33:27,760
ุจุชู„ุฒู…ู†ูŠ ุนุดุงู† ุฃุตู„ ู„ู„ูŠ ุจุฏูŠู‡ุง ุฎู„ูŠ ู‡ุฐู‡ ููŠ ุงู„ุฐุงูƒุฑุฉ
367
00:33:27,760 --> 00:33:34,560
ูุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ุตุงุฑ
368
00:33:34,560 --> 00:33:38,800
ุนู†ุฏูŠ ู‡ุฐุง ูƒู„ู‡ ุญูƒูŠู†ุงู‡ ูˆุฎู„ุตู†ุง ู…ู†ู‡ ุงู„ุขู† ู†ูŠุฌูŠ ุจุฏู†ุง ู†ุตู„
369
00:33:38,800 --> 00:33:44,620
ู„ู„ูŠ ุจุฏู†ุง ูŠุงู‡ุง ุจุชุชุฐูƒุฑูˆุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุฃู†ุง ุฃุตู„ุง ุฌุจุช
370
00:33:44,620 --> 00:33:56,350
ู‡ุฐู‡ ุฌุจุช ู‡ุฐู‡ ุฃุทู„ุน ููŠู‡ุง ูˆู‚ุงุฑู† ู„ูŠ ุฅูŠุงู‡ุง ู…ุน ุงู„ู€ F of X ุนู„ู‰
371
00:33:56,350 --> 00:34:01,310
ุงู„ู€ G of X ุงู„ู„ูŠ ุฃู†ุง ุจุฏูŠู‡ุง ู„ู‡ุง ุงู„ู€ F of X ุนู„ู‰ ุงู„ู€ G of X
372
00:34:01,310 --> 00:34:08,170
ู„ูˆ ุฌูŠุช ู‚ุงุฑู†ุชู‡ุง F of X ุนู„ู‰ ุงู„ู€ G of X ุฅูŠุด ู‡ุชู„ุงู‚ูŠู‡ุงุŸ
373
00:34:08,170 --> 00:34:14,810
ู„ูˆ ุฌูŠุช ุถุฑุจุช ู‡ุฐู‡ ููŠ F of X ูˆู‡ุฐู‡ ููŠ G of X
374
00:34:17,460 --> 00:34:22,500
ุจู†ุฑุฌุน ู„ู€ F of X ู†ุงู‚ุต F of C ูˆุงุญุฏ ูˆ G of X ู†ุงู‚ุต G of
375
00:34:22,500 --> 00:34:26,680
C ูˆุงุญุฏ ุทุจ ุฅูŠุด ุฏุฎู„ู†ุง ููŠู‡ ู‡ุฐู‡ F of X ู†ุงู‚ุต F of C
376
00:34:26,680 --> 00:34:30,500
ูˆุงุญุฏ ูˆ G of X ู†ุงู‚ุต G of C ูˆุงุญุฏ ู‡ุฐู‡ ุงู„ู„ูŠ ุจุงู„ูƒูˆุดูŠ
377
00:34:30,500 --> 00:34:33,920
mean value theorem ุงู„ู„ูŠ ู‡ุชุฌูŠุจ ู„ู„ู€ F prime ูˆ G prime
378
00:34:33,920 --> 00:34:38,340
ุงู„ู„ูŠ ุฃู†ุง ุฃุตู„ุง ู…ูˆุฌูˆุฏุงุช limited ูุจุญุตู„ ุนู„ู‰ ุงู„ู„ูŠ ุจุฏูŠู‡ุง
379
00:34:40,230 --> 00:34:44,470
ุจุงู„ุถุจุท ุงู„ุดูŠุก ุงู„ู„ูŠ ุจู‚ูˆู„ู‡ ุฃู†ุช ูŠุนู†ูŠ ู„ูŠุด ู‡ูˆ ููƒุฑ ููŠ ู‡ุฐู‡
380
00:34:44,470 --> 00:34:50,470
ุจุงู„ุณุจุจ ุงู„ู„ูŠ ุญูƒูŠุชู‡ F of X ุนู„ู‰ D of X ุจุงู„ุณุงูˆูŠ F of X
381
00:34:50,470 --> 00:34:59,890
ุนู„ู‰ D of X ููŠ F of X ุนู„ู‰ D of X ุนู„ู‰ F of X ู…ุธุจูˆุทุŸ
382
00:34:59,890 --> 00:35:09,170
ู…ุง ุนู…ู„ุด ุดูŠุก ุงู„ุขู† ุงุณุญุจ ู„ูŠ ู‡ุฐู‡ ุฎู„ูŠู‡ุง ูˆุญุท ู„ูŠ ุฅูŠุงู‡ุง ู‡ุฐู‡ 1 ุนู„ู‰
383
00:35:09,170 --> 00:35:15,210
f of x ู…ุงู‡ูŠ ุงู„ุญุงู„ุฉ ู‡ุฐู‡ุŸ ู…ูŠู† ู‡ูŠ ููŠ ุงู„ูˆุงู‚ุนุŸ ู‡ูŠ ุงู„ู„ูŠ
384
00:35:15,210 --> 00:35:20,410
ููˆู‚ ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงุถุฑุจ f of x ู‡ุฐู‡ ููŠ ู‡ุฐู‡ ุจูŠุตูŠุฑ
385
00:35:20,410 --> 00:35:32,250
1 ูˆูŠุณุงูˆูŠ 1 ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต f of c ุตุญุŸ f of x
386
00:35:32,250 --> 00:35:42,660
ู†ุงู‚ุต f of c ุนู„ู‰ g of x ู†ู‚ุต g of c ู‡ุฐุง ู…ูŠู† ู‡ูŠ ุงู„ู„ูŠ
387
00:35:42,660 --> 00:35:46,700
ู‡ูŠ f of x ุนู„ู‰ g of x ููŠ f of x ุนูˆุถุช ู‡ุฐู‡ ูˆุญุทูŠุชู‡ุง ูˆ
388
00:35:46,700 --> 00:35:51,760
ุทู„ุน ุนู†ุฏูŠ ู‡ุฐุง ู…ุถุฑูˆุจ ููŠ ูƒู„ู‡ ููŠ ู…ูŠู†ุŸ ููŠ ูˆุงุญุฏุฉ ุงู„ู€ f of
389
00:35:51,760 --> 00:36:01,080
x ุงู„ุขู† ุนู†ุฏูŠ ุฎู„ูŠู†ูŠ ุฃุทุจู‚ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†ุŸ ุงู„ู€ Cauchy mean
390
00:36:01,080 --> 00:36:06,390
value theorem ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† a ู„ู…ูŠู†ุŸ ู„ู€ c ุชู„ุงุชุฉ ู…ุงุดูŠ
391
00:36:06,390 --> 00:36:11,130
ุงู„ู„ูŠ ู‡ูˆ there exist ุทุจุนุง ูƒู„ู‡ ู…ุชุญู‚ู‚ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ F ูˆ
392
00:36:11,130 --> 00:36:15,230
ุงู„ู€ G continuous ูˆ differentiable ุนู„ู‰ ุงู„ู€ A ูˆ ุงู„ู€ C 3
393
00:36:15,230 --> 00:36:21,430
ุฅุฐุง there exist ุงู„ู„ูŠ ู‡ูˆ ุฅูŠู‡ุŸ ุงู„ู„ูŠ ุจุฏูƒูŠ ุงุณู…ูŠู‡ุง ุงู„ู„ูŠ
394
00:36:21,430 --> 00:36:25,690
ู‡ูŠ ู…ุซู„ุง there exist gamma ุฃูˆ ุฒูŠ ู…ุง ู‡ูˆ ู…ุณู…ูŠู‡ุง ููŠ
395
00:36:25,690 --> 00:36:32,230
ุงู„ูƒุชุงุจ there exist xi element in A ูˆ C ุชู„ุงุชุฉ such
396
00:36:32,230 --> 00:36:41,500
that f prime of xi ุนู„ู‰ g prime of xi ุจุณุงูˆูŠ ุจุณ ุฅู†
397
00:36:41,500 --> 00:36:44,780
ุฃู†ุง ุนุดุงู† ุจุชุทุจู‚ู‡ุง ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ูุชุฑุฉ f of x ู„ุนู†ุฏ
398
00:36:44,780 --> 00:36:48,800
ู…ูŠู†ุŸ ุนุดุงู† ุชุทู„ุน ุนู†ุฏูŠ f of x of ู…ูŠู†ุŸ ูˆ f of c ูˆุงุญุฏ
399
00:36:48,800 --> 00:36:53,120
ู…ุนุงูŠุง ู„ู€ Xุงุช ุงู„ู„ูŠ ูˆูŠู†ุŸ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู…ู† a ู„ุนู†ุฏ c
400
00:36:53,120 --> 00:36:58,060
ุชู„ุงุชุฉ ุจุนุฏ ุงุฐู†ูƒู… ุจุชุทุจู‚ู‡ุง ุงู„ูƒูˆุดูŠ mean value theorem
401
00:36:58,760 --> 00:37:01,840
ู…ุง ู‡ูŠ ุฃุตู„ุง continuous ูˆ differentiable ุนู„ู‰ ุงู„ูุชุฑุฉ
402
00:37:01,840 --> 00:37:06,500
ุฏูŠ ูƒู„ู‡ุง ู…ู† ุถู…ู†ู‡ุง ู…ูŠู†ุŸ ุงู„ูุชุฑุฉ A ูˆC ุชู„ุงุชุฉ ูˆู…ู† ุถู…ู†ู‡ุง
403
00:37:06,500 --> 00:37:11,040
ุงู„ูุชุฑุฉ A ูˆC ูˆุงุญุฏ ุงู„ู„ูŠ ุฃู†ุง ุจุฏูŠ ุฃุทุจู‚ ุนู„ูŠู‡ุง ุจุงู„ end
404
00:37:11,040 --> 00:37:15,900
point ู…ูŠู† ุงู„ู€ end point C ูˆุงุญุฏ ู‡ูŠู‡ุง ูˆุงู„ู€ end point
405
00:37:15,900 --> 00:37:21,890
ุงู„ู€ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุจูŠู† A ูˆ B ู…ูŠู†ุŸ C3 ูˆุงุถุญุฉ ูˆุงุถุญุฉ ุงู„ู„ูŠ
406
00:37:21,890 --> 00:37:26,350
ุจุฏูŠ .. ุฅุฐุง ุงู„ุขู† ุงู„ุขู† there exists x i ุงู„ุขู† ุจุงู„ุถุจุท
407
00:37:26,350 --> 00:37:30,630
ุจุฏูŠ ุฃุทุจู‚ ุงู„ู…ูŠูƒูˆุดูŠ main value term ุนู„ู‰ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ู‡ูŠ
408
00:37:30,630 --> 00:37:37,790
X ูˆ C1 ุงู„ู„ูŠ ุงู„ู€ F ูˆุงู„ู€ G differentiable ุนู„ูŠู‡ุง ู…ู†
409
00:37:37,790 --> 00:37:40,530
ูˆูŠู† ุงู„ู€ X ู‡ุฐู‡ุŸ ุงู„ู€ X ุงู„ู„ูŠ ููˆู‚ ู‡ุฐู‡ ุงู„ู„ูŠ ุจุดุชุบู„ ููŠู‡ุง
410
00:37:40,530 --> 00:37:45,890
ุงู„ู„ูŠ ู‡ูŠ ู…ู† A ู„ุนู†ุฏ ู…ูŠู†ุŸ ู„ุนู† C3 ุฅุฐู† there exists xi
411
00:37:45,890 --> 00:37:50,750
element in x ูˆ c ูˆุงุญุฏ such that f prime of xi ุนู„ู‰
412
00:37:50,750 --> 00:37:58,770
g prime of xi ููŠ ุฅูŠุด ุจุชุณุงูˆูŠุŸ f of c ูˆุงุญุฏ ุฃูˆ f of x
413
00:37:58,770 --> 00:38:05,390
ู†ุงู‚ุต f of c ูˆุงุญุฏ ูุงู‡ู…ูŠู†ุŸ ุทุจุนุง ุนู„ู‰ g of x ู†ุงู‚ุต g of
414
00:38:05,390 --> 00:38:10,990
c ูˆุงุญุฏ ุจุณ ุถุฑุจุช ููŠ ู†ุงู‚ุต ููˆู‚ ูˆู†ุงู‚ุต ุตุญูŠุญ ุชุชุนุฏู‰ ุฒูŠ ู…ุง
415
00:38:10,990 --> 00:38:20,080
ู‡ูŠ ู„ุฃู† ู‡ุฐู‡ ู‡ูŠ ู‡ุฐู‡ ุฅุฐุง ุตุงุฑุช ุนู†ุฏูŠ F of X ุนู„ู‰ G of X
416
00:38:20,080 --> 00:38:26,000
ุจุณูˆุก F prime ุนู„ู‰ G prime ููŠ 1 ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ F of
417
00:38:26,000 --> 00:38:32,060
X ูˆู‡ูˆ ุงู„ู„ูŠ ุจุฏู‡ ูŠูˆุตู„ู†ุง ู„ู„ูŠ ุจุฏู†ุง ู‡ูŠ ู…ุนู„ูŠุด ุงู…ุณุญ ุงู„ู„ูŠ
418
00:38:32,060 --> 00:38:35,280
ู‡ุงู† ุจูŠุตูŠุฑ ุนู†ุฏูŠ
419
00:38:38,180 --> 00:38:45,160
ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ู€ F of X ุนู„ู‰ ู…ูŠู†ุŸ F of X ุนู„ู‰ G of X
420
00:38:45,160 --> 00:38:48,540
ุจุณุงูˆูŠ
421
00:38:48,540 --> 00:38:54,120
ุงู„ู„ูŠ ู‡ูˆ ู‡ุฏู‰ ุดู„ู†ุงู‡ ูˆุญุทูŠู†ุง ู…ูƒุงู†ู‡ุง ู…ูŠู† ุจุณุงูˆูŠ F prime
422
00:38:54,120 --> 00:39:02,140
of X ุนู„ู‰ G prime of X ููŠ ู…ูŠู† ููŠ ูˆุงุญุฏ ุนู„ู‰ ุงูŠู‡
423
00:39:02,140 --> 00:39:03,500
ุงูŠุด ุนู„ู‰ F
424
00:39:09,880 --> 00:39:18,360
ูˆุงุถุญ ุฃู‡ุŸ ุงู„ุขู† ู†ู…ุญู‰ ู‡ู†ุง ู‡ุฏูˆู„ ุงู„ู€ Xุงุช ุงู„ู„ูŠ ู‡ู†ุง ู‡ู…ุง
425
00:39:18,360 --> 00:39:23,380
ุงู„ู€ Xุงุช ุงู„ู„ูŠ ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ุจูŠู† A ูˆC3 ู…ุงุดูŠ ุงู„ุญุงู„ ุจุฏูŠ
426
00:39:23,380 --> 00:39:29,120
ุงู„ุขู† ุบุงูŠุชูŠ ุฃู†ูŠ ุฃูˆุฌุฏ F of X ุนู„ู‰ G of X ู†ุงู‚ุต ู…ูŠู†ุŸ
427
00:39:29,120 --> 00:39:34,600
ู†ุงู‚ุต L ูˆุงุถุญุฉ ุฅุฐุง ู†ู„ุฎุต ูƒู„ ุงู„ู„ูŠ ุงุฎุฐู†ุงู‡ for every
428
00:39:34,600 --> 00:39:38,800
epsilon element in zero ู†ุต there exists delta ุฃูƒุจุฑ
429
00:39:38,800 --> 00:39:48,980
ู…ู† ุตูุฑ such that if ุงู„ู„ูŠ ู‡ูˆ x ุฃูƒุจุฑ ู…ู† a ุฃุตุบุฑ ู…ู† c3
430
00:39:48,980 --> 00:39:53,260
ุฃุตุบุฑ ู…ู† c2 ุฃุตุบุฑ ู…ู† c1 ุฃุตุบุฑ ู…ู† a ุฒูŠ ุงู„ delta ุงู„ู„ูŠ
431
00:39:53,260 --> 00:40:02,070
ู„ุฌู†ุงู‡ุง ูุงู‡ู…ูŠู† ุนู„ูŠู‡ุง ูˆูƒูˆู† ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ู‚ูŠู…ุฉ ุงู„ุนูˆุถ f
432
00:40:02,070 --> 00:40:08,110
of x ุนู„ู‰ g of x ู†ุงู‚ุต ุงู„ .. ุจุฏูŠ ุฃู‚ุจู„ ู„ูƒ ูŠู…ูŠู‡ุง ู‡ุฐุง
433
00:40:08,110 --> 00:40:12,510
ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ู…ู† epsilon ููŠ something ู…ุด ู…ุดูƒู„ุฉ ูˆ
434
00:40:12,510 --> 00:40:15,810
epsilon is arbitrary ุฃูŠุถุง ุจูŠุตูŠุฑ limit ุฒูŠ ู…ุง ุจุฏู†ุงูŠุง
435
00:40:15,810 --> 00:40:24,170
ูˆุงุถุญ ู‡ุฐุง ุงู„ุขู† ุจุงู„ุธุจุท ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุนูˆุถ ุงู„ู„ูŠ ู‡ูˆ
436
00:40:24,170 --> 00:40:28,590
f of x ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ
437
00:40:32,680 --> 00:40:41,680
ุฃู ุจุฑุงูŠู… of x i ุนู„ู‰ ุฌูŠ ุจุฑุงูŠู… of x i ููŠ ูˆุงุญุฏ ุนู„ู‰ ุฃู
438
00:40:41,680 --> 00:40:48,180
of x ู†ุงู‚ุต ุงู„ู„ูŠ
439
00:40:48,180 --> 00:40:54,460
ูˆุงุถุญ ู„ุญุชู‰ ุงู„ุงู† ู†ุงุฎุฏ ู‡ุฐู‡ ุนุงู…ู„ ู…ุดุชุฑูƒ ุจุฑุง ูŠุตุจุญ ูˆุงุญุฏ
440
00:40:54,460 --> 00:41:02,140
ุนู„ู‰ ุฃู of x ููŠ ุฃู ุจุฑุงูŠู… of x i ุนู„ู‰ g prime of xi
441
00:41:02,140 --> 00:41:13,560
ู†ุงู‚ุต L ููŠ F of X ุตุญุŸ ุฃุฎุฏุช
442
00:41:13,560 --> 00:41:17,300
ุงู„ูˆุงุญุฏ ุนู„ู‰ F of X ุนุงู…ู„ ู…ุดุชุฑูƒ positive ุฃู‡ positive
443
00:41:17,300 --> 00:41:21,080
ุงู„ู„ูŠ ู‡ูˆ F of X ู‡ูŠ ุฃูƒุจุฑ ู…ู† 2 ุทู„ุนุช ุงู„ู„ูŠ ู‡ูˆ ุงูŠุด ู…ุงู„ู‡
444
00:41:21,080 --> 00:41:27,260
ู‡ุฐุงุŸ ู‡ู†ุง ุฏู‡ ุจุฏูŠ ุฃุถูŠู term ูˆุฃุทุฑุญ term ุนุดุงู† ุฃุญุตู„ ุนู„ู‰
445
00:41:27,260 --> 00:41:31,780
ู‡ุฐู‡ ุงู„ู„ูŠ ุจุฏูŠุงู‡ุง ุฃุตู„ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฌุฏ ุชูู‡ู…ูˆู‡ ู…ุด ู…ู‚ุตูˆุฏุฉ
446
00:41:31,780 --> 00:41:38,900
1 ุนู„ู‰ f of x ููŠ f prime of xi ุนู„ู‰ g prime of xi
447
00:41:38,900 --> 00:41:50,130
ู†ุงู‚ุต L ุฒุงุฆุฏ ุงู„ู„ูŠ ู‡ูˆ L ู†ุงู‚ุต L F of X ุงูŠุด ุณูˆูŠุช ุงุณุชุฎุฏู…ุช
448
00:41:50,130 --> 00:41:56,170
ุงู„ triangle inequality ุจุฅุถุงูุฉ L ูˆุทุฑุญ L ู‡ุฐุง ูƒู„ู‡
449
00:41:56,170 --> 00:42:04,130
ู…ุถุฑูˆุจ 100 ููŠ 1 ุนู„ู‰ F of X ู‡ุฐุง ุงู„ุขู† ุงู„ F of X ุฃูƒุจุฑ
450
00:42:04,130 --> 00:42:12,690
ู…ู† 2 ุญุตู„ู†ุงู‡ุง ู…ุธุจูˆุท ุจุตูŠุฑ ุฃุตุบุฑ ู…ู† ู†ุต ูˆุงุถุญุฉ
451
00:42:13,760 --> 00:42:18,920
ุงู„ุขู† F' ุนู„ู‰ G' ู„ู€ XI ุงู„ู€ XI ูˆูŠู† ู„ุงุฌูŠู†ุงู‡ุงุŸ ููŠ
452
00:42:18,920 --> 00:42:24,940
ุงู„ูุชุฑุฉ ุจูŠู† A ูˆC1 ูŠู†ุทุจู‚ ุนู„ูŠู‡ุง ุงู„ู„ูŠ ู‡ูˆ ู…ู† ุฑุฃุณ ุงู„ุฏูˆุฑ
453
00:42:24,940 --> 00:42:34,580
ุงู„ู„ูŠ ู‡ูŠ F' ุนู„ู‰ G' of X ู†ุงู‚ุต
454
00:42:34,580 --> 00:42:41,200
L ุฃุตุบุฑ ู…ู† ุงู„ู€ Y ู…ู† ุฃูˆู„ ู…ุง ุจุฏูŠู†ุง ูŠุนู†ูŠ ุฅู†ู‡ ู‡ุฐุง ุฃุตุบุฑ
455
00:42:41,200 --> 00:42:44,460
ู…ู† ุฅุจุณู„ูˆู† ู„ูƒู„ ุงู„ู€ Xุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู…ู† A ู„ุนู†ุฏ ู…ูŠู†ุŸ
456
00:42:44,460 --> 00:42:48,080
ู„ุนู†ุฏ ุงู„ู€ A ุฒุงุฏ ุฏู„ุชู‡ุง ู…ู† ุถู…ู†ู‡ู… ู…ูŠู†ุŸ ู„ูƒ ููŠุจุฑุงูŠู† ูƒู„ุงู…
457
00:42:48,080 --> 00:42:55,940
ุฏู‚ูŠู‚ ู‡ุฐู‡ ููŠ ุฅุจุณู„ูˆู† ุฒุงุฏ ุงู„ุขู† ู‡ุฐุง ุงู„ ุจุทู„ุนู‡ ุจุฑุง ุนู†
458
00:42:55,940 --> 00:43:01,760
ุงู„ู…ุดุชุฑูƒ ุงู„ ุงู„ู„ูŠ ู‡ูŠ ููŠ ู…ูŠู†ุŸ ููŠ ูˆุงุญุฏ ู†ุงู‚ุต F of X
459
00:43:01,760 --> 00:43:10,240
ูˆุงุญุฏ ู†ุงู‚ุต F of X ุงู„ุขู† ูˆู‡ุฐุง ุฃุตุบุฑ ู…ู† ู†ุต ููŠ ุฅุจุณู„ูˆู†
460
00:43:10,240 --> 00:43:15,440
ุฒุงุฆุฏ absolute value ู„ู€ L ูˆุงุญุฏ ู†ุงู‚ุต F of X ู‡ุฐู‡ ุงู„
461
00:43:15,440 --> 00:43:20,260
Xุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุจูŠู† A ูˆC ุชู„ุงุชุฉ ูˆู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ู‚ุจู„
462
00:43:20,260 --> 00:43:26,150
ุจุดูˆูŠุฉ ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุฅุจุณู„ูˆู† ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู†
463
00:43:26,150 --> 00:43:30,030
ูˆุงุญุฏ ู†ุงู‚ุต F of X ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุฅุจุณู„ูˆู† ู…ุด ู‡ุซุจุชู†ุง
464
00:43:30,030 --> 00:43:33,910
limit F of X ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ู‚ุจู„ ุจุดูˆูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ
465
00:43:33,910 --> 00:43:37,050
ู†ุงู‚ุต F of X ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ู…ู† ุงูŠุด ู…ู† ุฅุจุณู„ูˆู† ููŠ
466
00:43:37,050 --> 00:43:42,850
ุฅุจุณู„ูˆู† ุตุงุฑ ุนู†ุฏูŠ ุงู„ุงู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ู‡ูˆ ุจูŠุณุงูˆูŠ
467
00:43:42,850 --> 00:43:47,030
epsilon ุนู„ู‰ ุงุชู†ูŠู† ููŠ ูˆุงุญุฏ ุฒุงุฆุฏ absolute value
468
00:43:47,030 --> 00:43:52,810
ู„ู€ L ู„ุฃู† ุงู„ epsilon ู…ุถุฑูˆุจุฉ ููŠู‡ ุฅุฐุง as ู„ุฃู† ู‡ุฐุง ุงู„
469
00:43:52,810 --> 00:43:55,430
epsilon arbitrary ูˆู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญ for every
470
00:43:55,430 --> 00:43:59,710
epsilon epsilon ุจูŠู† zero ูˆ ู†ุต ุฅุฐุง ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจู‚ุฏุฑ
471
00:43:59,710 --> 00:44:04,350
ุงุตุบุฑู‡ ุฌุฏ ู…ุง ุจุฏูŠ ุจุชุตุบูŠุฑ epsilon ู„ุงู†ู‡ ู…ุถุฑูˆุจ ููŠู‡ ุถุฑุจ
472
00:44:04,350 --> 00:44:08,630
ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ู„ูƒู„ epsilon ุฃูƒุจุฑ ู…ู† zero ูˆ ู†ุตู„ู€ G ุงู„ู€
473
00:44:08,630 --> 00:44:12,650
Delta ุจุญูŠุซ ุฃู†ู‡ ุงู„ู€ Xุงุช ุงู„ู„ูŠ ู‡ู†ุง ุจูŠู‚ุฏู‘ูŠ ู„ูŠ ุฃู† ู‡ุฐุง
474
00:44:12,650 --> 00:44:20,810
ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ู…ู† ุฃูŠ ู‚ูŠู…ุฉ ุจุฏูŠู‘ู‡ุง ุฅุฐุง ู‡ุฐุง ู…ูู‡ูˆู… limit
475
00:44:20,810 --> 00:44:31,530
F of X ุนู„ู‰ G of X as X ุจุชุฑูˆุญ ู„ูŠู†ุŸ ู„ู„ู€ A ู…ู† ุงู„ูŠู…ูŠู†
476
00:44:31,530 --> 00:44:38,920
ุจุณุงูˆูŠ ุงู„ู€ L ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุงู„ุซูŠูˆุฑู… ุงู„ู„ูŠ ุญูƒูŠู†ุง ุนู†ู‡ุง
477
00:44:38,920 --> 00:44:45,060
ุจุฑุถู‡ ุตุญูŠุญุฉ ููŠ ุญุงู„ุฉ ุงู„ู„ูŠ ู‡ูˆ the same .. under the
478
00:44:45,060 --> 00:44:50,160
same conditions for the calculation of limits as x
479
00:44:50,160 --> 00:44:55,540
goes to infinity or x as goes mean to ุณุงู„ุจ infinity
480
00:44:55,540 --> 00:44:59,140
ุจุณ ุจูˆุฑู‡ุงู† ูŠุนู†ูŠ ุจุฏูˆู† modification ุนู† ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ
481
00:44:59,140 --> 00:45:03,140
ุจุชุตู„ูŠ ุงู„ู„ูŠ ุจุฏูƒูŠู‡ุง ู†ูŠุฌูŠ ู†ุงุฎุฏ ุฃู…ุซู„ุฉ ุงู„ุฃู…ุซู„ุฉ ู‡ุฐู‡ ุทุจุนุง
482
00:45:03,140 --> 00:45:09,500
ุฃู…ุซู„ุฉ ุณู‡ู„ุฉ ูˆู…ุซู„ุฉ calculus ู†ู…ุฑ ุนู„ูŠู‡ุง ุงู„ู„ูŠ ู‡ูˆ ูˆู†ุดูˆู
483
00:45:09,500 --> 00:45:16,480
ูƒูŠู ู†ุทุจู‚ ู†ุธุฑูŠุชู†ุง ุฃูˆ ู†ุธุฑูŠุงุชู†ุง ูƒูŠู ู†ูˆุธูู‡ุง ุงู„ุญุณุงุจ ู‡ุฐู‡
484
00:45:16,480 --> 00:45:23,260
ุงู„ู†ู‡ุงูŠุงุช ุนู†ุฏูŠ ุดูˆููˆุง ุตู„ู‰ ุงู„ู†ุจูŠ ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู…
485
00:45:24,800 --> 00:45:30,720
Find Limit log sin x ุนู„ู‰ log x as x ุจุชุฑูˆุญ ู„ู„ู€ 0 ู…ู†
486
00:45:30,720 --> 00:45:35,480
ูˆูŠู†ุŸ ู…ู† ุงู„ูŠู…ูŠู† ูˆุงุญู†ุง ุนุงุฑููŠู† .. ู…ุดุชุบู„ูŠู† ุนู„ู‰ ุงู„ูุชุฑุฉ
487
00:45:35,480 --> 00:45:40,460
0 or by ูŠุนู†ูŠ ูุชุฑุฉ ุจุฌูˆุงุฑ ู…ูŠู†ุŸ ุงู„ุตูุฑ ู…ู† ุงู„ูŠู…ูŠู† ูˆ
488
00:45:40,460 --> 00:45:43,540
ุจุฏู†ุง ู†ุฑูˆุญ ู„ู„ู€ 0 ู…ู† ุงู„ูŠู…ูŠู† ู‡ุฐุง ุทุจุนุง ู„ูˆ ุฌูŠู†ุง ุนูˆุถู†ุง
489
00:45:43,540 --> 00:45:48,080
ู‡ุชุทู„ุน ุงู„ู„ูŠ ู‡ูˆ sin 0 0 ูˆ ุฃู†ุง 0 ูุจุตูŠุฑ ู…ุงู„ู‡ ู†ู‡ุงูŠุฉ ุนู„ู‰
490
00:45:48,080 --> 00:45:53,580
ู…ูŠู†ุŸ ุนู„ู‰ ู…ุงู„ู‡ ู†ู‡ุงูŠุฉ ูƒ limits ุงู„ุขู† ุตุงุฑุช ุนู†ุฏูŠ ู…ุงู„ู‡
491
00:45:53,580 --> 00:45:57,880
ู†ู‡ุงูŠุฉ ุนู„ู‰ ู…ุงู„ู‡ ู†ู‡ุงูŠุฉ ุฅุฐุง ุงูŠุด ุจุชู†ุณูˆู‡ุŸ ุงูŠุด ู†ุณูˆูŠุŸ
492
00:45:57,880 --> 00:46:06,400
ุฑุงุญูŠู† ู„ู€ 0 ู…ู† ุงู„ูŠู…ูŠู† ุจูŠุตูŠุฑ ุนู†ุฏู‡ ุงู„ู„ูŠ ู‡ูˆ ุจุงู„ูุงุถู„
493
00:46:06,400 --> 00:46:11,400
ู‡ุฐู‡ ูˆุจุงู„ูุงุถู„ ู‡ุฐู‡ ุจูŠุตูŠุฑ ุชูุงุถู„ู‡ุง ู‡ุฐู‡ ูˆุงุถุญุฉ ูˆู‡ุฐู‡
494
00:46:11,400 --> 00:46:14,060
ุชูุงุถู„ู‡ุง ู‡ูŠูƒ ู…ุงููŠุด ุฏุงุนูŠ ู„ู†ุง ู†ุฏุฎู„ ููŠ ุงู„ุชูุงุตูŠู„ ู„ุฃู† ูƒู„
495
00:46:14,060 --> 00:46:20,320
ุจุนุฑูู‡ุง ุงู„ุขู† ุจู†ุจุณุท ุงู„ุฃู…ุฑ ุจูŠุตูŠุฑ X Cos X ุนู„ู‰ Sine X
496
00:46:20,930 --> 00:46:26,550
ุงู„ุขู† ู„ูˆ ุฌูŠุช ุงุชุทู„ุนุช ู„ู‡ุฐู‡ ุงู„ limit ูˆ ู„ู‡ุฐู‡ ุงู„ limit
497
00:46:26,550 --> 00:46:29,530
ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ูˆู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ู„ุฃู†ู‡ ุชุนูˆูŠุถ
498
00:46:29,530 --> 00:46:33,410
ู…ุจุงุดุฑ ูˆุงุญุฏ ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ู„ุฃู†ู‡ ุจูŠุตูŠุฑ ุตูุฑ ุนู„ู‰ ุตูุฑ ุจุชุนู…ู„ู‡ุง
499
00:46:33,410 --> 00:46:36,570
global rule ุจูŠุตูŠุฑ ูˆุงุญุฏ ุนู„ู‰ cosine ุจุชุทู„ุน ูˆุงุญุฏ ุจุฑุถู‡
500
00:46:36,570 --> 00:46:40,590
ุฅุฐุง ู‚ุฏุฑุช ุงูˆุฒุน ู„ุฃู†ู‡ ุนุงุฑู ุงู„ู„ูŠู…ุชูŠู† ุงู„ู…ูˆุฌูˆุฏุฉ ูุจูŠุตูŠุฑ
501
00:46:40,590 --> 00:46:46,220
ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ููŠ ูˆุงุญุฏ ุจูŠุณุงูˆูŠ ุงูŠู‡ุŸ ูˆุงุญุฏ ุงู„ุขู† ุฎุฏ ุนู„ู‰
502
00:46:46,220 --> 00:46:49,900
ุงู„ูุชุฑุฉ ู…ู† Zero ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ ุจุงูŠ ุนู„ู‰ ุงุชู†ูŠู† limit
503
00:46:49,900 --> 00:46:53,300
ูˆุงุญุฏ ุนู„ู‰ X ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ sign ุงู„ X ุซู… X ุชุฑูˆุญ ู„ Zero
504
00:46:53,300 --> 00:46:57,140
ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠู…ูŠู† ูˆู‡ุฐู‡ ุทุจุนุง ุดุบู„ุงุช ุงู„ู„ูŠ ู‡ูˆ ุฏุฑุฌู†ุง
505
00:46:57,140 --> 00:47:01,120
ุนู„ูŠู‡ุง ููŠ ุงู„ calculus ุจู†ูˆุญุฏ ุงู„ู…ู‚ุงู…ุงุช ูˆุจุตูŠุฑ ู…ูƒุชูˆุจุฉ
506
00:47:01,120 --> 00:47:05,030
ุนู„ู‰ ุตูˆุฑุฉ sign ุงู„ X ู†ุงู‚ุต X ุนู„ู‰ X ููŠ sign ุงู„ X ู…ุงุดูŠ
507
00:47:05,030 --> 00:47:10,650
ุงู„ุญู„ ุจุฑุถู‡ 0 ุนู„ู‰ 0 ุจู†ูุถู„ู‡ุง ุจูŠุตูŠุฑ cos X ู†ุงู‚ุต 1 ุนู„ู‰
508
00:47:10,650 --> 00:47:15,470
ุงู„ู„ูŠ ู‡ูˆ sin X ุฒุงุฆุฏ X ูcos X ู„ูˆ ุฌูŠู†ุง ุนูˆุถู†ุง ู‡ุชุทู„ุน
509
00:47:15,470 --> 00:47:21,250
ุจุฑุถู‡ 0 ุนู„ู‰ 0 ุจู†ุดุชู‚ ูƒู…ุงู† ู…ุฑุฉ ุจุชุทู„ุน ู†ุงู‚ุต sin X ุนู„ู‰
510
00:47:21,250 --> 00:47:26,150
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู‡ู†ุง ุจุชุตูุฑ ูˆู‡ู†ุง ุจูŠุตูŠุฑ 2
511
00:47:26,150 --> 00:47:32,680
ูˆู‡ู†ุง 0 0 ุนู„ู‰ 2 ู…ุด ุจูŠุณุงูˆูŠ ุจูŠุณุงูˆูŠ 0 ู†ุฃุชูŠ ู„ู‡ุฐุง ุงู„ู…ุซุงู„
512
00:47:32,680 --> 00:47:36,440
ู…ุนู‡ูˆุฏ ุงู„ let I ุจูŠุณุงูˆูŠ ู…ู† 1 ุฅู„ู‰ ู…ุง ู„ู†ู‡ุงูŠุฉ ุงู„ู€
513
00:47:36,440 --> 00:47:39,760
interval ุงู„ู„ูŠ ุนู„ูŠู‡ุง ุจุฏู†ุง ู†ุดุชุบู„ ูˆุจุฏู†ุง ู†ุงุฎุฏ ุงู„
514
00:47:39,760 --> 00:47:43,600
limit ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ูˆูŠู† ุฅู„ู‰ ู…ุง ู„ู†ู‡ุงูŠุฉ ุงู„ู…ู‚ุฏุงุฑ 1
515
00:47:43,600 --> 00:47:48,960
ุฒุงุฆุฏ 1 ุนู„ู‰ X ูˆุงู„ูƒู„ ุฃูุณ X ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ุขู† ุจุฏูŠ
516
00:47:48,960 --> 00:47:53,460
ุงุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูˆ ุงุญูˆู„ู‡ ู„ exponential to the len ู…ุง
517
00:47:53,460 --> 00:47:55,660
ุงุญู†ุง ุนุงุฑููŠู† ุงู„ exponential ูˆุงู„ len ุงู„ู„ูŠ ู‡ูˆ n
518
00:47:55,660 --> 00:47:59,860
versus ู„ุจุนุถ ูุจุตูŠุฑ ุนู†ุฏูŠ E to the X ู„ู† ุงู„ 1 ุฒุงุฆุฏ 1
519
00:47:59,860 --> 00:48:05,120
ุนู„ู‰ X ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจุฏูŠ ุงุดุบู„ ุนู„ู‰ ู‡ุฐุงูƒ ุฎุทูˆุฉ ุฃูˆู„ู‰ ุจู‚ูˆู„
520
00:48:05,120 --> 00:48:09,260
limit ุงู„ X ู„ู…ุง ูˆุงุญุฏ ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ X ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰
521
00:48:09,260 --> 00:48:14,140
ู…ุงู„ ู†ู‡ุงูŠุฉ ุจูŠุตูŠุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ limit ู„ู…ุง ูˆุงุญุฏ ุฒุงุฆุฏ X
522
00:48:14,140 --> 00:48:18,160
ุนู„ู‰ ูˆุงุญุฏ ุนู„ู‰ X ู„ูŠุด ุนู…ู„ุช ู‡ูŠูƒ ู„ุฃู† ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ู…ุงู„
523
00:48:18,160 --> 00:48:21,360
ู†ู‡ุงูŠุฉ ู‡ุฐุง ุตูุฑ ูˆู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ู…ุงู„ ู†ู‡ุงูŠุฉ ู‡ุฐุง ุตูุฑ ูˆ
524
00:48:21,360 --> 00:48:25,340
ู‡ุฐุง ู„ู…ุง ูˆุงุญุฏ ูุจุตูŠุฑ ุตูุฑ ุนู„ู‰ ุตูุฑ ุจู‚ุฏุฑ ุงุณุชุฎุฏู… ุงู„ loop
525
00:48:25,340 --> 00:48:30,730
ุชุงู„ุฐุฑูˆู„ ุงู„ู„ูŠ ุงู†ุง ุจุฑู‡ู†ุชู‡ุง ุจู‚ูŠ ูุงุถู„ ุงู„ู„ูŠ ููˆู‚ ูˆูุงุตู„
526
00:48:30,730 --> 00:48:33,850
ุงู„ู„ูŠ ุชุญุช .. ูุถู„ู†ุง ุงู„ู„ูŠ ููˆู‚ ู‡ูŠ ูˆูุถู„ู†ุง ุงู„ู„ูŠ ุชุญุช
527
00:48:33,850 --> 00:48:37,590
ู‡ูŠ .. ุจุฑูˆุญ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู…ุน ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ .. ุจุธู„
528
00:48:37,590 --> 00:48:42,800
limit 1 ุฒูŠ 1 ุนู„ู‰ X ู†ุงู‚ุต 1 ู„ู…ุง X ุชุฑูˆุญ ู„ู…ุฏุฉ ู†ู‡ุงูŠุฉ ุฏู‡
529
00:48:42,800 --> 00:48:47,940
ุจุฑูˆุญ ู„ุตูุฑ ุจุทู„ุน ุฌุฏุงุด 1 ู„ุฃู† 1 ุจู†ุฑุฏ ุจู†ุนูˆุถ ูˆูŠู†ู‡ุง ู„ุฃู†
530
00:48:47,940 --> 00:48:50,940
ุงู„ exponential is a continuous function ู„ุฐุง ู†ุตุญูŠ
531
00:48:50,940 --> 00:48:54,180
ุนู† ุนู†ุฏ limit ุงู„ 1 ุฒูŠ 1 ุนู„ู‰ X ู„ู…ุง X ุชุฑูˆุญ ู„ู…ุฏุฉ ู†ู‡ุงูŠุฉ
532
00:48:54,180 --> 00:48:57,920
to the X ูˆุนุจุงุฑุฉ ุนู† E to the limit ู„ุฃู† ุงู„
533
00:48:57,920 --> 00:49:01,760
exponential ุนุจุงุฑุฉ ุนู† continuous function ูุจุตูŠุฑ E
534
00:49:01,760 --> 00:49:08,300
to the 1 ูˆูŠุณุงูˆูŠ E ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุจูŠูƒูˆู† ู‡ูŠูƒ ุงุญู†ุง ุงู†ู‡ูŠู†ุง
535
00:49:08,300 --> 00:49:16,240
ุงู„ู„ูŠ ู‡ูŠ lobitals rules ุฃูˆ ู‚ูˆุงุนุฏ lobital ุฃูˆ ุตุฑู†ุง
536
00:49:16,240 --> 00:49:20,360
ุงู„ุขู† ู†ุฏุฎู„
537
00:49:20,360 --> 00:49:28,120
ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ chapter ุงู„ section ุงู„ุฃุฎูŠุฑ ุงู„ู„ูŠ ู‡ูˆ
538
00:49:28,120 --> 00:49:32,120
ุงู„ section ุนุจุงุฑุฉ ุนู† ุณุชุฉ ุฃุฑุจุนุฉ ุงู„ู„ูŠ ู‡ูˆ taylor's
539
00:49:32,120 --> 00:49:38,540
theorem ุฃูˆ tailors ุงู„ู„ูŠ ู‡ูŠ .. ู‡ู†ุญูƒูŠ ุนู† tailors
540
00:49:38,540 --> 00:49:43,640
polynomial ุฃูˆ tailors ุฃูŠุถุง ุงู„ู„ูŠ ู‡ูˆ approximation
541
00:49:43,640 --> 00:49:49,820
ูƒูŠู ุงู„ู„ูŠ ู‡ูˆ .. ุฅู† ู…ุฑุฉ ุฌุงูŠุฉ ุฅู† ุดุงุก ุงู„ู„ู‡ ูƒูŠู ุจู†ู‚ุฑุจ
542
00:49:49,820 --> 00:49:54,840
ุจุนุถ ุงู„ุฏูˆุงู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุญุชุฑู…ุฉ ุงู„ู„ูŠ ุจุชูƒูˆู†
543
00:49:54,840 --> 00:49:58,220
differentiable first derivative ูˆ second
544
00:49:58,220 --> 00:50:00,400
derivative ูˆ third derivative ู„ุฃ ุนู†ุฏ ุงู„ derivative
545
00:50:00,400 --> 00:50:05,700
ุงู„ู„ูŠ ุจุฏู†ุง .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ ู‡ูŠ ู…ุง ู‚ุจู„ ุงุดุชู‚ุงู‚ ุนู†ุฏู‡ุง
546
00:50:05,700 --> 00:50:11,760
ุจู†ู‚ุฑุจู‡ุง ุจ polynomial ูˆุทุจุนุง ุงู†ุชูˆุง ุนุงุฑููŠู† ุฌุฏุงุด ุงู„
547
00:50:11,760 --> 00:50:17,380
polynomial ู…ู† ุงู„ุฏูˆุงู„ ุงู„ุณู‡ู„ุฉ ุณู‡ู„ุฉ ุงู„ุชุนุงู…ู„ ุณูˆุงุก ููŠ
548
00:50:17,380 --> 00:50:21,500
ุชูุงุถู„ ุฃูˆ ููŠ ุชูƒุงู…ู„ ุฃูˆ ุญุชู‰ ู„ูˆ ุจุฏู†ุง ู†ุญู„ู‡ุง ูˆู†ุฌูŠุจ
549
00:50:21,500 --> 00:50:26,340
ุฌุฐูˆุฑู‡ุง ูˆู†ุฌูŠุจ ูƒุฐุง ููŠ ุดุบู„ ุนู„ูŠู‡ุง ูƒุซูŠุฑ ูุงู„ู†ุงุณ ุชุฑุบุจ ููŠ
550
00:50:26,340 --> 00:50:30,540
ุฅู†ู‡ุง ุชุฌูŠุจ ุจุนุถ ุงู„ุฏูˆุงู„ ุงู„ู„ูŠ ุจุชูƒูˆู† ุฃุญูŠุงู†ุง ู…ุนู‚ุฏุฉ ูˆ
551
00:50:30,540 --> 00:50:35,380
ุตุนุจุฉ ุงู„ุชูƒุงู…ู„ ุฃูˆ ุฎู„ู†ุง ู†ู‚ูˆู„ ุจุชุบู„ุจ ุดูˆูŠุฉ ููŠ ุงู„ุชูุงุถู„ ุฃูˆ
552
00:50:35,380 --> 00:50:40,040
ููŠ ูˆุฌูˆุฏ ุงู„ุฌุฐูˆุฑ ุฃูˆ ูƒุฏู‡ ูˆู†ุญูˆู„ู‡ุง ุฅู„ู‰ ุงู„ู„ูŠ ู‡ูŠ
553
00:50:40,040 --> 00:50:44,020
polynomial ุทุจุนุง ููŠ ู…ู‚ุฏุงุฑ ุฎุทุฃ ุงู„ุฎุทุฃ ู‡ู† .. ุฅู† ุดุงุก
554
00:50:44,020 --> 00:50:47,520
ุงู„ู„ู‡ ุงู„ Taylor's theorem ุจุชู‚ูˆู„ู†ุง ูƒูŠู ุฅู† ู‡ูˆ ู†ูˆุฌุฏ
555
00:50:47,520 --> 00:50:51,320
ู‡ุฐุง ุงู„ุฎุทุฃ ุฃูˆ ุงูŠุด ู‡ูˆ ุงู„ุฎุทุฃ ูˆุงูŠุถุง Taylor's theorem
556
00:50:51,320 --> 00:50:55,780
ุฒูŠ ู…ุง ุงู†ุชูˆุง ุนุงุฑููŠู† ู‡ู†ูˆุถุญ ูƒูŠู ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุชุนู…ูŠู… ู„ู„
557
00:50:55,780 --> 00:51:00,340
main value theorem ู‡ูŠ ุชุนู…ูŠู… ู„ู„ main value theorem
558
00:51:00,340 --> 00:51:05,140
ููŠ ุญุงู„ุฉ ุงู„ู„ูŠ ู‡ูŠ n ุจุชุณุงูˆูŠ ุตูุฑ ุจุชุทู„ุน ู‡ูŠ ุจุงู„ุธุจุท ุงู„
559
00:51:05,140 --> 00:51:09,100
main value theorem ูƒูŠูุŸ
560
00:51:10,860 --> 00:51:15,100
ุงู„ู€ Main Value Theorem ุนุจุงุฑุฉ ุงู„ู€ Taylor's Theorem
561
00:51:15,100 --> 00:51:19,900
ุนุจุงุฑุฉ ุนู† ุชุนู…ูŠู… ู„ู„ู€ Main Value Theorem ุฎุฐ ุงู„ุขู†
562
00:51:19,900 --> 00:51:25,020
ุจุชุณุงูˆูŠ ุตูุฑ ุจุชุทู„ุน ู„ูƒ ุงู„ู€ Main Value Theorem ุจูŠุดุญู…ู‡ุง
563
00:51:25,020 --> 00:51:27,740
ูˆ ู„ุญู…ู‡ุง ูˆุฅู„ู‰ ู„ู‚ุงุก