abdullah's picture
Add files using upload-large-folder tool
76a1e1d verified
raw
history blame
52.7 kB
1
00:00:09,440 --> 00:00:15,180
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู…ุŒ ุญุงุจูŠู† ู†ุฐูƒุฑ ุฃู† ุงู„ุงู…ุชุญุงู† ุงู„ู†ุตู
2
00:00:15,180 --> 00:00:20,600
ุงู„ุฃูˆู„ ุฅู† ุดุงุก ุงู„ู„ู‡ ุจุนุฏ ุฃุณุจูˆุนูŠู†ุŒ ูŠุนู†ูŠ ุงู„ุซู„ุงุซุงุก ุจุนุฏ
3
00:00:20,600 --> 00:00:25,460
ุงู„ู‚ุงุฏู… ููŠ ู…ุซู„ ู‡ุฐุง ุงู„ูŠูˆู… ุฅู† ุดุงุก ุงู„ู„ู‡ ุงู„ุณุงุนุฉ ุฃุญุฏ ุนุดุฑ
4
00:00:25,460 --> 00:00:28,360
ูˆุงู„ู‚ุงุนุฉ ุจุฌุจุงู„ูƒู… ุฅู† ุดุงุก ุงู„ู„ู‡ ููŠ ุงู„ุฃุณุจูˆุน ุงู„ู‚ุงุฏู…
5
00:00:28,360 --> 00:00:34,720
ุงู„ุญุฏ ุงู„ุฃู‚ุตู‰ ู‡ูˆ ุงู„ู‚ุงุนุฉ ู…ุงุดูŠ P 302ุŸ ุฎู„ุงุต ุจุชู…ูˆู… P 302
6
00:00:38,290 --> 00:00:42,170
ูŠุจู‚ู‰ ุดุนุจูƒู… ูƒู„ู‡ุง ู„ูŠู‡ ูˆุงุญุฏ ูˆ ุซู…ุงู†ูŠู† ุทุงู„ุจุŒ ุงู„ู‚ุงุนุฉ ูŠู‡
7
00:00:42,170 --> 00:00:46,770
ุซู„ุงุซ ู…ุฆุฉ ูˆ ุงุซู†ูŠู† ููŠ ุงู„ู…ุจู†ู‰ ุงู„ู„ูŠ ุฌุจุงู„ ู…ุจู†ู‰ ุงู„ู‚ุฏุณ
8
00:00:46,770 --> 00:00:52,430
ุทูŠุจุŒ ู†ุฑุฌุน ู„ู…ูˆุถูˆุนู†ุง ู‡ุฐุงุŒ ู„ุงุฒู„ู†ุง ููŠ ู…ูˆุถูˆุน relative
9
00:00:52,430 --> 00:00:56,630
rates of growthุŒ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุฃุฎุฐู†ุง definition
10
00:00:56,630 --> 00:01:02,130
ูˆู‡ุฐู‡ ู…ู„ุงุญุธุฉ ู…ุฑุชุจุทุฉ ุจู‡ุฐุง ุงู„ู€ definition ูˆู‡ูŠ ุขุฎุฑ ู†ู‚ุทุฉ
11
00:01:02,130 --> 00:01:07,790
ู…ูˆุฌูˆุฏุฉ ููŠ ู‡ุฐุง ุงู„ู€ sectionุŒ ุจู‚ูˆู„ ุฅุฐุง ูƒุงู†ุช ุงู„ุฏุงู„ุฉ f
12
00:01:07,790 --> 00:01:13,710
grows at the same rate as g ุฃูˆ f grow at the same
13
00:01:13,710 --> 00:01:18,550
rate as x tends to infinityุŒ ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช ูƒุงู† g
14
00:01:18,550 --> 00:01:22,930
grows at the same rate as h as x tends to infinity
15
00:01:23,430 --> 00:01:29,850
ูŠุจู‚ู‰ ู…ู† ุงู„ุฃูˆู„ู‰ ู…ุน ุงู„ุฃุฎูŠุฑุฉุŒ ุงู„ู€ F ู…ุน H ุงุซู†ูŠู† grow at
16
00:01:29,850 --> 00:01:33,970
the same rate as X tends to infinity, that is
17
00:01:33,970 --> 00:01:38,110
ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ู‚ู„ู†ุงู‡ ุจู†ุฑูˆุญ ู†ุนุจุฑ ุนู†ู‡ ุจุตูŠุบุฉ ุฑูŠุงุถูŠุฉ
18
00:01:38,580 --> 00:01:43,060
ุงู„ุฃูˆู„ู‰ F grows ุฒูŠ G as X tends to infinityุŒ ูŠุนู†ูŠ ู„ูˆ
19
00:01:43,060 --> 00:01:47,280
ู‚ุณู…ุช ุงุซู†ูŠู† ุนู„ู‰ ุจุนุถ ูˆ ุฃุฎุฐุช limit ู„ู…ุง ุงู„ู€ X ุจุฏุฃุช ุชุฑูˆุญ
20
00:01:47,280 --> 00:01:54,120
ู„ู„ู…ุงู„ุงู†ูŠุฉ ุจุชุนุทูŠู†ูŠ ุฑู‚ู… L1ุŒ ูˆ L1 ู…ุญุตูˆุฑ ุจูŠู† ุงู„ู€ zero ูˆ ุงู„ู€
21
00:01:54,120 --> 00:02:00,400
infinity ุจุนุฏุฏ ู…ูˆุฌุจุŒ ุงุซู†ูŠู†ุŒ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ G ูˆ ุงู„ู€ h
22
00:02:00,400 --> 00:02:04,620
grow at the same rateุŒ ูŠุจู‚ู‰ ู…ุน ุงู„ูƒู„ุงู… ุฃู† ุงู„ู€ limit
23
00:02:04,620 --> 00:02:08,020
ุงู„ู€ g of x ุนู„ูŠ h of x ู„ู…ุง ุงู„ู€ x ุจุฏู‡ุง ุชุฑูˆุญ ู„ู„ู…ุงู„ุงู†ูŠุฉ
24
00:02:08,020 --> 00:02:14,200
ู†ู‡ุงูŠุฉ ุจุฏู‡ุง ุชุณุงูˆูŠ L2ุŒ ูˆ ุงู„ู€ L2 ู…ุญุตูˆุฑุฉ ุจูŠู† ุงู„ู€ zero ุจูŠู†
25
00:02:14,200 --> 00:02:20,900
ุงู„ู€ infinityุŒ ุฅู† ุญุฏุซ ุฐู„ูƒ ูŠุจู‚ู‰ ุจูƒู„ ู‡ุฐุง ุจูŠูƒูˆู† ุงู„ู€ F ูˆ ุงู„ู€
26
00:02:20,900 --> 00:02:25,200
H grow at the same rate as X tends to infinity
27
00:02:25,200 --> 00:02:31,440
ุจูŠุจู‚ู‰ ู†ุนุจุฑ ุนู† ุฐู„ูƒ ุจุตูŠุบุฉ ุฑูŠุงุถูŠุฉ ุชุงู„ูŠุฉุŒ limit ู„ู…ุง ุงู„ู€
28
00:02:31,440 --> 00:02:39,220
X tends to infinity ู„ู„ู€ F of X ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ู€ H of
29
00:02:39,220 --> 00:02:46,770
XุŒ ู‡ุฐุง limit ู„ู…ุง ุงู„ู€ X tends to infinityุŒ ู‡ุฐู‡ ู…ู…ูƒู†
30
00:02:46,770 --> 00:02:51,450
ุฃูƒุชุจู‡ุง ุจุทุฑูŠู‚ุฉ ุฃุฎุฑู‰ุŒ ู„ูˆ ุถุฑุจุช ููŠ ูˆุงุญุฏ ุตุญูŠุญ ุญุงู„ ุชุชุบูŠุฑ
31
00:02:51,450 --> 00:02:56,950
ุงู„ู‚ูŠู…ุฉุŒ ุจุฏูŠ ุงุนุชุจุฑ ุงู„ูˆุงุญุฏ ุงู„ุตุญูŠุญ ู‡ูˆ G of X ุนู„ู‰ G of
32
00:02:56,950 --> 00:03:03,630
XุŒ ูŠุจู‚ู‰ ุจูŠุตูŠุฑ limit ุงู„ู€ F of X ุนู„ู‰ ุงู„ู€ G of X ููŠ ุงู„ู€ G
33
00:03:03,630 --> 00:03:10,620
of X ุนู„ู‰ ุงู„ู€ H of X ูˆูŠุณุงูˆูŠุŒ ูŠุจู‚ู‰ ุงู„ู€ limit ุจุชุฏุฎู„ ุนู„ู‰ ูƒู„
34
00:03:10,620 --> 00:03:17,560
ูˆุงุญุฏุฉ ููŠู‡ู…ุŒ ูŠุจู‚ู‰ limit ุงู„ุฃูˆู„ู‰ ู‡ุฐุง ุจู‚ุฏุงุดุŸ ุงู„ู€ one ูŠุจู‚ู‰
35
00:03:17,560 --> 00:03:26,070
ู‡ุฐุง ุงู„ู€ oneุŒ ูˆ limit ุงู„ุชุงู†ูŠ ู‡ุฐุง ุงู„ู€ twoุŒ ุงู„ู€ L1 ูˆ L2 ู‡ู…
36
00:03:26,070 --> 00:03:29,730
ุฃุนุฏุงุฏ ุญู‚ูŠู‚ูŠุฉ ู„ุฃู† ุงู„ู…ุญุตูˆุฑุฉ ุจูŠู† ุงู„ู€ 0 ูˆ 1ุŒ ูŠุจู‚ู‰ ุญุงุตู„
37
00:03:29,730 --> 00:03:36,990
ุถุฑุจู‡ู… ุจุฑุถู‡ ูŠุจู‚ู‰ ุฃุนุฏุงุฏ ุญู‚ูŠู‚ูŠุฉุŒ ูˆู‡ุฐุง ูŠู†ุทุจู‚ ู„ู€ L1 L2
38
00:03:36,990 --> 00:03:44,870
ูˆ L1 L2 ุฃูƒุจุฑ ู…ู† 0ุŒ ุฃู‚ู„ ู…ู† 1ุŒ 00ุŒ ู…ุง ู‡ูˆ ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…ุŸ
39
00:04:06,500 --> 00:04:11,500
ู…ุชู‰ ู†ู„ุฌุฃ ู„ุงุณุชุฎุฏุงู… ู‡ุฐู‡ ุงู„ู€ remark ุจุญู„ ุงู„ู…ุณุงุฆู„
40
00:04:11,500 --> 00:04:15,840
ุงู„ู…ุฎุชู„ูุฉุŸ ู„ู†ู‚ู„ ุฃุจุฏุงุŒ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุจูƒุฐุงุŒ ู†ุงุฎุฏ
41
00:04:15,840 --> 00:04:18,800
ุงู„ู€ two functionsุŒ ู†ุญุท ุงู„ุงุซู†ุชูŠู† ุนู„ู‰ ุจุนุถ ูˆ ู†ุงุฎุฏ ุงู„ู€
42
00:04:18,800 --> 00:04:22,420
limit ูˆ ู†ุญุณุจ ุงู„ู€ limit ู‡ุฐู‡ุŒ ุฃุญูŠุงู†ุง ูŠู…ูƒู† ุชูŠุฌูŠ ุชุนู…ู„
43
00:04:22,420 --> 00:04:26,820
ู‡ู…ุฌูŠุฉ ูˆ ุชุงุฎุฏ limit ู„ุงุฌูŠู‡ุง ุตุนุจุฉุŒ ูู„ู…ุง ุชู„ุงุฌูŠู‡ุง ุตุนุจุฉุŒ
44
00:04:26,820 --> 00:04:33,300
ู†ุถุทุฑ ู†ุฏุฎู„ ุฏุงู„ุฉ ูˆุณูŠุทูŠุฉ ู…ุง ุจูŠู† ุงู„ุงุซู†ูŠู†ุŒ ุงู„ุฏุงู„ุฉ ุจู†ุฏุฎู„ู‡ุงุŒ
45
00:04:33,300 --> 00:04:36,960
ุจู†ุฌูŠุจู‡ุง ู…ู† ู…ูŠู†ุŸ ู…ู† ุดูƒู„ ุงู„ุฏุงู„ุชูŠู† ุงู„ู„ูŠ ู…ูˆุฌูˆุฏูŠู†ุŒ ู…ุด
46
00:04:36,960 --> 00:04:42,540
ุญูŠุงู„ู‡ุง ูŠุนู†ูŠ ู„ุง ุชุฌูŠุจ ูˆู„ุง ุชุญุท ูˆุฎู„ุงุต ู†ุญุทู‡ุงุŒ ู„ุฃ ุจุฏู†ุง
47
00:04:42,540 --> 00:04:49,300
ู†ุญุงูˆู„ ู†ุณุชู†ุชุฌู‡ุง ู…ู† ุดูƒู„ ุงู„ุฏุงู„ุชูŠู† ุงู„ุขุฎุฑูŠู†ุŒ ู†ุนุทูŠ ู…ุซุงู„
48
00:04:49,300 --> 00:04:59,200
ุชูˆุถูŠุญูŠ ุนู„ู‰ ุฐู„ูƒุŒ ูŠุจู‚ู‰ ุจู†ุฌูŠ ู†ุงุฎุฏ example ุจูŠู‚ูˆู„
49
00:04:59,200 --> 00:05:08,240
ุงู„ู…ุซุงู„ show thatุŒ show that ุจูŠู„ูŠ ุฃู† ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ
50
00:05:08,240 --> 00:05:17,080
ุฅู„ู‰ x ุชุฑุจูŠุน ุฒุงุฆุฏ ุฎู…ุณุฉุŒ and ุงุซู†ูŠู† ุฌุฐุฑ ุงู„ู€ x ู†ุงู‚ุต ูˆุงุญุฏ
51
00:05:17,080 --> 00:05:20,160
ู„ูƒู„ ุชุฑุจูŠุนุŒ ุงู‚ุฑุฃ
52
00:05:21,900 --> 00:05:31,960
at the same rate as x tends to nุŒ ุนุทูŠู†ูŠ ุฏุงู„ุชูŠู† ูˆ
53
00:05:31,960 --> 00:05:35,740
ู‚ุงู„ ุจูŠุจูŠู†ูŠ ุฃู† ุงู„ุฏุงู„ุชูŠู† ู‡ุฏูˆู„ grow at the same rate
54
00:05:35,740 --> 00:05:40,840
ุญุณุจ ุงู„ู…ูู‡ูˆู… ุงู„ู„ูŠ ุงุญู†ุง ุนุงุฑููŠู†ู‡ ู‚ุจู„ ุฐู„ูƒุŒ ู…ู…ูƒู† ู†ู‚ุณู…
55
00:05:40,840 --> 00:05:43,920
ุงุซู†ูŠู† ุนู„ู‰ ุจุนุถ ูˆ ู†ุงุฎุฏ ุงู„ู€ limit ู„ู…ุง ุงู„ู€ x ุจุฏู‡ุง ุชุฑูˆุญ ู„ู…ุง
56
00:05:43,920 --> 00:05:48,880
ู„ู„ู…ุงู„ุงู†ูŠุฉุŒ ูˆ ูŠู…ูƒู† ูŠุทู„ุน ุงู„ุฃู…ุฑ ููŠ ู†ูˆุน ู…ู† ุงู„ุตุนูˆุจุฉ ู„ุฐู„ูƒ
57
00:05:48,880 --> 00:05:55,060
ุจู†ุญุงูˆู„ ู†ุฏุฎู„ ุฏุงู„ุฉ ููŠ ุงู„ูˆุณุท ุจูŠู† ุงู„ุฏุงู„ุชูŠู† ู‡ุฏูˆู„ ุฒูŠ ู…ุง
58
00:05:55,060 --> 00:05:59,640
ูƒุงู†ุช G ููŠ ุงู„ูˆุณุท ุฌุงูŠุฉ ุจูŠู† ู…ู† ู…ูŠู†ุŸ ุจูŠู† ุงู„ู€ F ูˆ HุŒ ูƒูŠู
59
00:05:59,640 --> 00:06:03,700
ุจุงุฌูŠ ุจู‚ูˆู„ ู…ูŠู† ุงู„ู„ูŠ ุฃูƒุจุฑ ู„ู…ุง ุงู„ู€ X ุจุชุฑูˆุญ ู„ู„ู…ุงู„ุงู†ูŠุฉ ูŠุนู†ูŠ
60
00:06:03,700 --> 00:06:09,030
ุงู„ู€ X ุงุณ ุณุจุนุฉุŒ ูˆ ุงู„ู„ู‡ ุฎู…ุณุฉุŒ ุงู„ู€ X ุงุณ ุฃุฑุจุนุฉุŒ ูŠุจู‚ู‰ ุงู„ุฎู…ุณุฉ ู‡ุฐู‡
61
00:06:09,030 --> 00:06:13,590
ู…ุน ุงู„ุณู„ุงู…ุฉุŒ ูˆ ู…ุง ุจูŠุธู„ ุฃูŠู‡ุงุด ุงู„ุฐูŠ ูŠุชุญูƒู… ููŠ ุณู„ูˆูƒ ู‡ุฐู‡
62
00:06:13,590 --> 00:06:18,290
ุงู„ุฏุงู„ุฉ ู‡ูˆ ุงู„ู€ X ุงุณ ุฃุฑุจุนุฉ ุจุณ ุชุญุช ุงู„ุฌุฐุฑุŒ ูŠุนู†ูŠ ุจุงูƒู…ุฉ ุชุทู„ุน
63
00:06:18,290 --> 00:06:25,510
XุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ู…ู…ูƒู† ุฃุฎุฏ X ู‚ุฑูŠุจุฉ ุฌุฏุง ุนู„ู‰ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉุŒ ู†ุฌูŠ
64
00:06:25,510 --> 00:06:30,390
ู„ู„ุฏุงู„ุฉ ุงู„ุซุงู†ูŠุฉ ู‡ุฐู‡ุŒ ู„ูˆ ุฑุจุนุชู‡ุง ุจูŠุตูŠุฑ ู…ุฑุจุน ุงู„ูƒู…ูŠุฉ
65
00:06:30,390 --> 00:06:37,000
ุงู„ุฃูˆู„ู‰ุŒ ุฃุฑุจุนุฉ X ู…ุธุจูˆุทุŸ ุฒุงุฆุฏ ุถุนู ุญุงุตู„ ุถุฑุจ ุงู„ูƒู…ูŠุชูŠู†
66
00:06:37,000 --> 00:06:43,840
ุฒุงุฆุฏ ุฃุฑุจุนุฉุŒ ู†ู‚ุต ุฃุฑุจุนุฉ ุฌุฐุฑ ุงู„ู€ X ุฒุงุฆุฏ ูˆุงุญุฏุŒ ูŠุจู‚ู‰
67
00:06:43,840 --> 00:06:49,680
ุงู„ูƒุจุฑู‰ ููŠู‡ู… ู…ูŠู†ุŸ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ XุŒ ูˆ ุงู„ู„ู‡ ุฌุฐุฑ ุงู„ู€ XุŒ ุงู„ู€ X
68
00:06:49,680 --> 00:06:54,860
ู‡ูŠ ุงู„ุฃูƒุจุฑุŒ ูŠุจู‚ู‰ X ู…ู† ู‡ู†ุง ูƒู…ุงู† ู…ู…ูƒู† ุฃุฎุฏู‡ุง ู‚ุฑูŠุจุฉ ุฌุฏุง
69
00:06:54,860 --> 00:06:59,740
ุฃูˆ ู‡ูŠ ุงู„ู„ูŠ ุชุชุญูƒู… ููŠ ุณู„ูˆูƒ ุงู„ุฏุงู„ุฉ ู„ุฃู†ู‡ุง ู‡ุฐู‡ุŒ ุฅุฐุง ุตุงุฑุช X
70
00:06:59,740 --> 00:07:03,620
ู‡ุฐู‡ ูƒุฅู†ู‡ุง ูˆุณูŠุท ู…ุดุชุฑูƒ ุจูŠู† ุงู„ู€ function ุงู„ุฃูˆู„ู‰ ูˆ
71
00:07:03,620 --> 00:07:08,500
ุงู„ุซุงู†ูŠุฉุŒ ูˆ ุงู„ู€ function ุงู„ุซุงู†ูŠุฉุŒ ุฅุฐุง ุจู†ู‚ุฏุฑ ู†ู‚ุงุฑู† ู‡ุฐู‡
72
00:07:08,500 --> 00:07:12,940
ู…ุน ุงู„ู€ X ูˆ ู†ู‚ุงุฑู† ุงู„ุซุงู†ูŠุฉ ู‡ุฐู‡ ู…ุน ุงู„ู€ XุŒ ุงู†ุทู„ุงู‚ุง
73
00:07:12,940 --> 00:07:16,100
ุงู„ุฃูˆู„ู‰ has the same rateุŒ grow at the same rateุŒ ูˆ
74
00:07:16,100 --> 00:07:18,640
ุงู„ุซุงู†ูŠุฉ grow at the same rate as X tends to
75
00:07:18,640 --> 00:07:22,700
infinity ุฒูŠ ู…ุง ู‚ู„ู†ุง ููŠ ุงู„ุฌูŠุฒ ุงู„ู†ุธุฑูŠุŒ ุฅุฐุง ุจุตูŠุฑ ุงู„ุฏุงู„ุฉ
76
00:07:22,700 --> 00:07:28,100
ุงู„ุฃูˆู„ู‰ ูˆ ุงู„ุฃุฎูŠุฑุฉ grow at the same rate as x tends
77
00:07:28,100 --> 00:07:32,260
to infinityุŒ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ุจู†ุญูƒูŠู‡ ู‡ู†ุง ู†ุธุฑูŠุŒ ุจู†ุฑูˆุญ ู†ุญุทู‡
78
00:07:32,260 --> 00:07:38,340
ุนู„ู‰ ุฃุฑุถ ุงู„ูˆุงู‚ุนุŒ ุฅุฐุง ู„ูˆ ุฃู†ุง ุฑูˆุญุช ุฃุฎุฐุช limit ุงู„ุฌุฐุฑูŠ
79
00:07:38,340 --> 00:07:43,700
ุงู„ุชุฑุจูŠุนูŠ ุฅู„ู‰ x ุชุฑุจูŠุน ุฒุงุฆุฏ ุฎู…ุณุฉ ุนู„ู‰ xุŒ ู„ู…ุง ุงู„ู€ x tends
80
00:07:43,700 --> 00:07:44,520
to infinity
81
00:08:03,350 --> 00:08:07,640
ุทุจุนุง ุงู„ุฌุฐุฑ ู‡ุฐุง ู„ู„ู…ู‚ุงุฏูŠุฑ ูƒู„ู‡ุง ุดุจู‡ู‡ุงุŒ ูŠุจู‚ู‰ infinity
82
00:08:07,640 --> 00:08:19,140
ุนู„ู‰ infinityุŒ ูŠุจู‚ู‰ ูŠุง ู„ูˆุจูŠุชุงู„ ุฑูˆู„ุŒ ูŠุง ู„ูˆุจูŠุชุงู„
83
00:08:19,140 --> 00:08:23,640
ุฑูˆู„ุŒ ูŠุง ู„ูˆุจูŠุชุงู„ ุฑูˆู„ุŒ ูŠุง ู„ูˆุจูŠุชุงู„ ุฑูˆู„ุŒ ูŠุง ู„ูˆุจูŠุชุงู„
84
00:08:23,640 --> 00:08:28,660
ุฑูˆู„ุŒ ูŠุง ู„ูˆุจูŠุชุงู„ ุฑูˆู„ุŒ X ุชุฑุจูŠุนุŒ ูŠุจู‚ู‰ ูƒุฃู† ุงู„ู…ุณุฃู„ุฉ ุฃุตุจุญุช
85
00:08:28,660 --> 00:08:34,020
limit ู„ู…ุง ุงู„ู€ X tends to infinity ู„ู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ู€
86
00:08:34,020 --> 00:08:39,680
X ุชุฑุจูŠุน ุฒุงุฆุฏ ุฎู…ุณุฉ ูƒู„ู‡ ุนู„ู‰ X ุชุฑุจูŠุนุŒ ูŠุนู†ูŠ limit ู„ู…ุง
87
00:08:39,680 --> 00:08:44,700
ุงู„ู€ X tends to infinity ู„ู…ูŠู†ุŸ ู„ู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ูˆุงุญุฏ
88
00:08:44,700 --> 00:08:50,100
ุฒุงุฆุฏ ุฎู…ุณุฉ ุนู„ู‰ X ุชุฑุจูŠุนุŒ ุทุจุนุง ู‡ุฐุง ุจูŠุตูŠุฑ ูˆ ุจูŠุธู‡ุฑ ุนู†ุฏูŠ
89
00:08:50,100 --> 00:08:55,570
ูƒุฐุง ูˆุงุญุฏุŒ ุงู„ูˆุงุญุฏ ุฒูŠ ู…ุง ุฃู†ุช ุดุงูŠู ู…ู†ู‡ ุฃูƒุจุฑ ู…ู† ุงู„ู€ zero
90
00:08:55,570 --> 00:09:00,290
ุฃู‚ู„ ู…ู† ุงู„ู€ oneุŒ ู…ุนู†ุงุชู‡ ุงู„ู€ two functions ุฏูˆู„ grow at
91
00:09:00,290 --> 00:09:06,530
the same rateุŒ ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ุฅู„ู‰ x ุชุฑุจูŠุน
92
00:09:06,530 --> 00:09:19,790
ุฒุงุฆุฏ ุฎู…ุณุฉุŒ and ุงู„ู€ x grow at the same rate as x
93
00:09:19,790 --> 00:09:26,450
tends to infinityุŒ ุจุงู„ู…ุซู„ ุจุฑูˆุญ ุฃุฎุฏ limit ู„ู…ุง ุงู„ู€ X
94
00:09:26,450 --> 00:09:32,470
ุชู†ุฒู„ ุฅู„ู‰ infinity ู„ู„ู€ X ุนู„ู‰ ุงู„ุฏุงู„ุฉ ุงู„ุซุงู†ูŠุฉุŒ ุงุซู†ูŠู† ุฌุฐุฑ
95
00:09:32,470 --> 00:09:38,070
ุงู„ู€ X ู†ุงู‚ุต ูˆุงุญุฏ ู„ูƒู„ ุชุฑุจูŠุนุŒ ุงู„ุชุนูˆูŠุถ ุงู„ู…ุจุงุดุฑ ุจูŠุฌูŠุจ ู„ูŠ
96
00:09:38,070 --> 00:09:44,050
infinity ุนู„ู‰ infinityุŒ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุณุชุฎุฏู… ู‚ุงุนุฏุฉ ู„ูˆุจูŠุชุงู„
97
00:09:44,050 --> 00:09:48,770
ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุช ุฃุฎุฐุช ุงุณุชุฎุฏุงู… ู‚ุงุนุฏุฉ ู„ูˆุจูŠุชุงู„ ุจูŠุตูŠุฑ ุนู†ุฏูŠ
98
00:09:48,770 --> 00:09:54,110
ุงู„ู€ limit ู„ู…ุง ุงู„ู€ X tends to infinityุŒ ู…ุดุชู‚ุฉ ุฏุงู„ุฉ
99
00:09:54,110 --> 00:10:00,770
ุงู„ุจุณุท ุนู„ู‰ ู…ุดุชู‚ุฉ ุฏุงู„ุฉ ุงู„ู…ู‚ุงู…ุŒ ุงุซู†ูŠู† ููŠ ุงู„ุฌุฐุฑ ุฒูŠ ู…ุง ู‡ูˆ
100
00:10:00,770 --> 00:10:08,450
ู…ุฑููˆุน ู„ู„ุฃุณ ูˆุงุญุฏ ููŠ ู…ุดุชู‚ุฉ ู…ุฏุงุฎู„ ุงู„ู‚ูˆุณุŒ ู…ุดุชู‚ุฉ ู…ุฏุงุฎู„
101
00:10:08,450 --> 00:10:14,300
ุงู„ู‚ูˆุณ ูŠุจู‚ู‰ ุงุซู†ูŠู†ุŒ ู…ุงู„ู‡ุงุด ุฏุนูˆุฉุŒ ูˆ ุงู„ู„ู‡ ู„ุงู† ู†ุญุท ููˆู‚ ู‡ุฐู‡
102
00:10:14,300 --> 00:10:19,420
ู…ุดุชู‚ุฉุŒ ูŠุจู‚ู‰ ุงุญู†ุง ู…ุดุชู‚ุฉ ูƒู„ ุงู„ู…ู†ุธูˆู…ุฉุŒ ูˆุงู„ู…ู‚ุงู… ุนู„ู‰
103
00:10:19,420 --> 00:10:24,760
ุญุฏู‡ุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุงุดุชู‚ุงู‡ ููŠ ุงู„ู…ู‚ุงู…ุŒ ูุชุจู‚ู‰ ููŠ ุงู„ู…ู‚ุงู…ุŒ ูˆู‡ุฐุง
104
00:10:24,760 --> 00:10:30,680
ูˆุงุญุฏ ุนู„ู‰ ุงุซู†ูŠู† ุฌุฐุฑ ุงู„ู€ XุŒ ู†ุฎุชุตุฑ ุงู„ุงุฎุชุตุงุฑุงุช ุงู„ู„ูŠ
105
00:10:30,680 --> 00:10:35,370
ู…ูˆุฌูˆุฏุฉุŒ ูŠุจู‚ู‰ ุงู„ุงุซู†ูŠู† ู‡ุฐู‡ ู…ุน ุงู„ุงุซู†ูŠู† ู‡ุฐู‡ุŒ ูŠุจู‚ู‰ ุขู„ุฉ
106
00:10:35,370 --> 00:10:41,310
ุงู„ู…ุณุฃู„ุฉ ุฅู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠุŒ ุฌุฐุฑ ุงู„ู€ X ู‡ุชู†ู‚ู„ุจ ูˆ ุชุทู„ุน ููˆู‚
107
00:10:41,310 --> 00:10:50,760
ูˆ ู‡ู†ุง ุฃุฑุจุนุฉ ุฌุฐุฑ ุงู„ู€ X ู†ุงู‚ุต ุงุซู†ูŠู†ุŒ ุงู„ุชุนูˆูŠุถ ุงู„ู…ุจุงุดุฑ ุจุชุฌูŠุจ
108
00:10:50,760 --> 00:10:55,400
ุงู†ููŠู†ูŠุชูŠ ุนู„ู‰ ุงู†ููŠู†ูŠุชูŠุŒ ูŠุฌุจ ู†ุดุชู‚ ุงู„ุจุณุท ุนู„ู‰ ุญุฏู‡ ุฃูˆ
109
00:10:55,400 --> 00:10:58,960
ุงู„ู…ู‚ุงู… ุนู„ู‰ ุญุฏู‡ุŒ ูŠุฌุจ ู†ู‚ุณู… ูƒู„ ู…ู† ุงู„ุจุณุท ูˆ ุงู„ู…ู‚ุงู…
110
00:10:58,960 --> 00:11:05,910
ุนู„ู‰ ุฌุฐุฑ ุงู„ู€ X ุงู„ู„ูŠ ู‡ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู…ู‚ุงู…ุŒ ูŠุจู‚ู‰ x
111
00:11:05,910 --> 00:11:10,870
tends to infinityุŒ ุจูŠุจู‚ู‰ ุงู„ูˆุงุญุฏ ุนู„ู‰ ุฃุฑุจุนุฉ ู†ุงู‚ุต ุงุซู†ูŠู†
112
00:11:10,870 --> 00:11:16,970
ุนู„ู‰ ุฌุฐุฑ ุงู„ู€ x ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุฐุงุŒ ุชู…ุงู…ุŒ ู‡ุฐุง ูƒู„ู‡
113
00:11:16,970 --> 00:11:22,990
ุจู‚ุฏุงุดุŸ ุจู€ zeroุŒ ูŠุจู‚ู‰ ุทุงู„ุน ุงู„ุฌูˆุงุจ ุฑุจุนุŒ ูˆ ุงู„ุฑุจุน ู…ุญุตูˆุฑ ุจูŠู†
114
00:11:22,990 --> 00:11:28,130
ุงู„ุตูุฑ ูˆ ุงู„ู€ infinityุŒ ูŠุจู‚ู‰ ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู† ุงู„ู€ two
115
00:11:28,130 --> 00:11:32,590
functions ู‡ุฏูˆู„ ู…ุนู‡ู… grow at the same rateุŒ ูŠุจู‚ู‰
116
00:11:32,590 --> 00:11:39,590
ุจุงุฌูŠ ุจู‚ูˆู„ ู„ู‡ soุŒ ุงู„ู€ x and ุงู„ู€ ุงุซู†ูŠู† ุฌุฐุฑ ุงู„ู€ x ู†ุงู‚ุต
117
00:11:39,590 --> 00:11:50,530
ุงู„ูˆุงุญุฏ ู„ูƒู„ ุชุฑุจูŠุน grow at the same rate as x tends
118
00:11:50,530 --> 00:11:51,450
to infinity
119
00:11:54,320 --> 00:12:04,200
ุงู„ุขู† ุจุงู„ู€ remark ุงู„ู„ูŠ ู‚ุจู„ ู‚ู„ูŠู„ุŒ by the above remark
120
00:12:09,610 --> 00:12:17,830
ุงู„ู„ูŠ ู‡ูˆ ู…ู† ุงู„ุฌุฐุฑ ู„ู„ู€ X ุชุฑุจูŠุน ุฒุงุฆุฏ ุฎู…ุณุฉุŒ and ู„ู„ุงุซู†ูŠู†
121
00:12:17,830 --> 00:12:29,070
ุฌุฐุฑ ุงู„ู€ X ู†ู‚ุต ูˆุงุญุฏ ู„ูƒู„ ุชุฑุจูŠุน grow at the same rate
122
00:12:29,070 --> 00:12:33,550
as X tends to infinity
123
00:12:36,740 --> 00:12:41,220
ุงู„ุขู† ูˆุตู„ู†ุง ุฅู„ู‰ ู†ู‡ุงูŠุฉ ู‡ุฐุง ุงู„ู€ sectionุŒ ูŠุจู‚ู‰ ุจู†ุฑูˆุญ
124
00:12:41,220 --> 00:12:48,420
ู†ุงุฎุฏ exercises ุงู„ู„ูŠ ู‡ูˆ ุงู„ุณุจุนุŒ ุซู…ุงู†ูŠุฉุŒ ุงู„ู…ุณุงุฆู„ ู…ู†
125
00:12:48,420 --> 00:12:56,160
ูˆุงุญุฏ ู„ุบุงูŠุฉ ุณุชุฉุŒ ุฃุฏู†ู‰ ุซู„ุงุซ ู…ุณุงุฆู„ุŒ ู„ูƒู† ูƒู„ ุณุคุงู„ ููŠู‡
126
00:12:56,160 --> 00:13:04,880
ุญูˆุงู„ูŠ ุซู…ุงู† ู†ู‚ุงุท ุชู‚ุฑูŠุจุงู‹ ุฅูŠุด ูŠุนู†ูŠุŸ
127
00:13:07,720 --> 00:13:14,060
ุฃู†ุช ูู‡ู…ุช ุงู„ุฌุฒุก ุงู„ู†ุธุฑูŠ ุงู„ุฃูˆู„ุŸ ุฃู†ุง ูุถู‘ู„ุช ุญุฑููŠุงู‹ ุนู„ู‰
128
00:13:14,060 --> 00:13:17,920
ุงู„ุฌุฒุก ุงู„ู†ุธุฑูŠ ุงู„ู„ูŠ ุฎุฏู†ุงู‡ ุชุทุจูŠู‚ ู…ุจุงุดุฑ ู„ุง ู„ู ูˆู„ุง
129
00:13:17,920 --> 00:13:23,560
ุฌูˆุฑุงู† F of X ู‡ูŠ ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ุนู„ู‰ X ุชุฑุจูŠุน ุฒุงุฆุฏ
130
00:13:23,560 --> 00:13:28,780
ุฎู…ุณุฉ ูˆุงู„ู€ G of X ู‡ูŠ X ูˆุงู„ู€ H of X ู‡ูŠ ุงุซู†ูŠู† ุฌุฐุฑ ุงู„ู€ X
131
00:13:28,780 --> 00:13:30,020
ู†ุงู‚ุต ูˆุงุญุฏ ู„ูƒู„ ุชุฑุจูŠุน
132
00:13:36,410 --> 00:13:41,530
ุนู†ุฏู…ุง ุฃุฎุฐุช ุฃูˆู„ ุงุซู†ุชูŠู† ุชุงู„ูŠ ุนู†ุฏูŠ ู…ู‚ุฏุงุฑ ุซุงุจุช ูŠุจู‚ู‰
133
00:13:41,530 --> 00:13:45,350
ุงู„ุงุซู†ุชูŠู† ูŠ grow at the same rate ุนู†ุฏู…ุง ุฃุฎุฐุช ุงู„ุงุซู†ุชูŠู†
134
00:13:45,350 --> 00:13:49,150
ุงู„ุซุงู†ูŠุฉ ุชุงู„ูŠุฉ ู…ู‚ุฏุงุฑ ุซุงุจุช ูƒู…ุงู† ุซุงู†ูŠ ูŠุจู‚ู‰ ุงู„ุงุซู†ุชูŠู† ูŠ
135
00:13:49,150 --> 00:13:52,930
grow at the same rate ูŠุจู‚ู‰ ุจูˆุงุณุทุฉ ุงู„ู€ remark ุตุงุฑุช
136
00:13:52,930 --> 00:13:59,920
ุงู„ุฏุงู„ุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู‰ when seen by the above remarkู‡ุฐู‡ ูˆ
137
00:13:59,920 --> 00:14:04,660
ู‡ุฐู‡ ุงู„ุฏู„ูŠู„ ุชู†ุฌุฑูˆุง ููŠ ู†ูุณ ุงู„ูˆู‚ุช ูƒุฅุดุงุฑุฉ ู„ุงู†ู‡ุงุฆูŠุฉ.
138
00:14:04,840 --> 00:14:08,880
ุฅู„ูƒ ุงุนุชุฑุงุถ ุนู„ู‰ ู‡ุฐุงุŸ ุฌุฏุงู‹ุŒ ุงู„ุณุคุงู„ ู…ุง ู‚ุงู„ ู„ูƒุŒ ู‡ุฐู‡ F ูˆ
139
00:14:08,880 --> 00:14:12,020
X ูˆ ู‡ุฐู‡ H ูˆ ZุŸ ุจู‚ู‰ ุฃู†ุช ุฎุฏ ุงู„ู„ูŠ ุจุฏูƒ ุฅูŠุงู‡ุŒ ู…ุง ุนู†ุฏูŠุด
140
00:14:12,020 --> 00:14:16,460
ู…ุดูƒู„ุฉุŒ ุฅู† ุดุงุก ุงู„ู„ู‡ ุชุฃุฎุฐ ู‡ุฐู‡ุŒ ู‡ุฑุงุŒ ูˆ ุฃูŠู† ุฑุงุญุชุŸ ุฎุฏ
141
00:14:16,460 --> 00:14:21,330
ู‡ุฐู‡ F ูˆ X ูˆ ู‡ุฐู‡ H ูˆ ZุŒ ุดูˆ ุจุฃุซุฑ ูŠุนู†ูŠุŸ ุดูˆููˆุง ูŠุง ุณูŠุฏูŠุŒ
142
00:14:21,330 --> 00:14:25,870
ู„ูˆ ุฌู„ุจุชู… ุจุฏู„ ู‡ุฐู‡ ู…ู† ุฑุจุน ุจุตูŠุฑ ุฃุฑุจุนุฉุŒ ุจุฑุถู‡ ุจูŠู† ุตูุฑ
143
00:14:25,870 --> 00:14:30,470
ูˆ infinityุŒ ู…ุง ููŠู‡ุงุด ุฅุดูƒุงู„ูŠุฉุŒ ูˆู„ุง ุญุงุฌุฉุŒ ูŠุนู†ูŠ ู„ูŠุณ
144
00:14:30,470 --> 00:14:34,030
ุจุงู„ุถุฑูˆุฑุฉ ุงู„ุชุฑุชูŠุจุŒ ู„ุฃู† ุงู„ุนุจุฑุฉ ุจุงู„ู†ุชูŠุฌุฉ ูˆู„ูŠุณ
145
00:14:34,030 --> 00:14:36,770
ุจุงู„ุชุฑุชูŠุจุŒ ูƒู†ุชูˆุง ุจูŠูƒุชุจูˆุง ุงู„ุฃุณุฆู„ุฉุŒ ูุถู„ูˆุง
146
00:14:39,340 --> 00:14:44,220
ุฃู†ุช ุบุงูŠุจ ูˆ ุญุงุถุฑ ูˆู„ุง ุฅูŠู‡ุŸ ุงุญู†ุง ู‚ู„ู†ุง ุฅุฐุง ุจู†ู‚ุฏุฑ
147
00:14:44,220 --> 00:14:48,700
ู…ุจุงุดุฑุฉ ู…ุงุดูŠ ู„ูƒู† ุฃุญูŠุงู†ุงู‹ ู…ู…ูƒู† ุชู„ุงู‚ูŠ ุงู„ุตุนูˆุจุฉ ู†ุฑูˆุญ
148
00:14:48,700 --> 00:14:51,820
ู†ุฏุฎู„ ุฏู‡ ุงู„ู„ูŠ ููŠ ุงู„ู†ุตุจ ูˆ ุจู†ุดุชุบู„ ุงู„ุดุบู„ ุชุจุนู†ุง
149
00:14:54,900 --> 00:15:00,340
ู†ุญู† ู†ู‚ูˆู„ ู„ูƒ ุงุณู…ุน ูƒุฏู‡ุŒ ุจุชุนู…ู„ ู…ู‚ุงุฑู†ุฉ ุจูŠู† ุงู„ู€ two
150
00:15:00,340 --> 00:15:04,300
functionsุŒ ูŠุนู†ูŠ ุจุฏูƒ ุชุฎู„ู‚ ุงู„ุฏุงู„ุฉ ููŠ ุงู„ู…ุตุฏุฑ ู…ู† ุฎู„ุงู„
151
00:15:04,300 --> 00:15:09,180
ุดูƒู„ ุงู„ุฏุงู„ุชูŠู† ุงู„ู„ูŠ ุนู†ุฏูƒุŒ ู…ุด ุนุดูˆุงุฆูŠุงู‹ ูŠุนู†ูŠุŒ ูˆ ุดูˆูุช ุงุญู†ุง
152
00:15:09,180 --> 00:15:11,840
ู„ู…ุง ุฌูŠู†ุง ู‚ุงุฑู†ุงุŒ ู‚ู„ู†ุง ู…ู† ุงู„ู„ูŠ ุจูŠุชุญูƒู… ููŠ ุงู„ุฏุงู„ุฉ
153
00:15:11,840 --> 00:15:17,110
ุงู„ุฃูˆู„ู‰ุŸ ู‡ู„ ุงู„ุฎู…ุณุฉ ูˆุงู„ู„ู‡ ุงู„ู€ X ุชุฑุจูŠุนู‡ุงุŸ ู‚ู„ู†ุง ุงู„ู€ X
154
00:15:17,110 --> 00:15:20,610
ุชุฑุจูŠุนู‡ุง ู„ุฃู†ู‡ุง ุฃูƒุจุฑ ู„ู…ุง ุงู„ู€ X ุจุชุฑูˆุญ ู„ู„ู…ุงู„ุง ู†ู‡ุงูŠุฉุŒ
155
00:15:20,610 --> 00:15:23,210
ูŠุจู‚ู‰ ุจู†ุนุชุจุฑ ูƒุฃู† ุงู„ุฎู…ุณุฉ ู…ุด ู…ูˆู„ูˆุฏุฉ ุตุงุฑ ุงู„ุฌุฐุฑ
156
00:15:23,210 --> 00:15:27,110
ุงู„ุชุฑุจูŠุนูŠ ู„ู€ X ุชุฑุจูŠุน ุทู„ุนุช X ุฌูŠู†ุง ู†ูุฏู‡ุง ู„ู„ุงุซู†ุชูŠู† ู„ู…ุง
157
00:15:27,110 --> 00:15:30,710
ูุชูƒู†ุงู‡ุงุŒ ู…ู† ุงู„ุฌุฒุก ุงู„ุฃูƒุจุฑุŸ ุงู„ุฌุฒุก ุงู„ู„ูŠ ู‡ูˆ ุฃุฑุจุนุฉ XุŒ
158
00:15:30,710 --> 00:15:33,950
ุฃุฑุจุนุฉ ู‡ุฐุง ูƒู„ู‡ ุตู†ุฏูˆู‚ ู„ุง ุจูŠู‚ุฏู… ูˆู„ุง ุจูŠุฃุฎุฑ ู‡ู… ุฏูŠุŒ ูŠุจู‚ู‰
159
00:15:33,950 --> 00:15:40,330
ุตุงุฑุช ุงู„ู€ X ู‡ุฐู‡ ูŠุงู…ุงู…ูŠ ูŠุจู‚ู‰ ุตุงุฑุช ู‡ู†ุง X ูˆู‡ูŠ ู†ูุณ XุŒ ูŠุจู‚ู‰
160
00:15:40,330 --> 00:15:44,450
ุฏุฎู„ู†ุง ู‡ุฐุง ุงู„ู€ X ูˆ ุงุดุชุบู„ู†ุง ุนู„ูŠู‡ุง ูˆู‡ูƒุฐุง. ู‡ูˆ ุทุจุนุงู‹ ู‚ู„ูŠู„
161
00:15:44,450 --> 00:15:49,550
ู…ุง ู†ู„ุฌุฃ ู„ู‡ุงุŒ ู„ูƒู† ุฅู† ุญุฏุซุŒ ู…ู…ูƒู† ู†ู„ุฌุฃ ู„ู‡ ูˆุฎู„ุงุตู†ุง. ุทูŠุจุŒ
162
00:15:49,550 --> 00:15:53,950
ู„ุญุฏ ู‡ู†ุงุŒ stopุŒ ุงู†ุชู‡ูŠู†ุง ู…ู† ู‡ุฐุง ุงู„ู€ sectionุŒ ูˆุงู„ุขู†
163
00:15:53,950 --> 00:15:58,210
ุจุงู†ุชู‡ุงุฆู†ุง ู…ู† ู‡ุฐุง ุงู„ู€ sectionุŒ ูŠู†ุชู‡ูŠ ู‡ุฐุง ุงู„ู€ chapter.
164
00:16:00,000 --> 00:16:04,540
ุจู†ุฑูˆุญ ู„ู„ู€ chapter ุงู„ุฌุฏูŠุฏ ุงู„ู„ูŠ ู‡ูˆ techniques of
165
00:16:04,540 --> 00:16:11,760
integration ุงู„ุทุงู‚ุฉ ุงู„ู…ุฎุชู„ูุฉ ู„ู„ุชูƒุงู…ู„ ูŠุจู‚ู‰ chapter
166
00:16:11,760 --> 00:16:18,480
ุซู…ุงู†ูŠุฉ techniques of
167
00:16:18,480 --> 00:16:21,060
integration
168
00:16:26,040 --> 00:16:30,760
ูŠุจู‚ู‰ ุทุฑู‚ ุงู„ู…ุฎุชู„ูุฉ ู„ู…ูŠู† ู„ู„ุชูƒุงู…ู„ ุฃูˆ ุทุฑู‚ ุงู„ุนู…ู„ูŠุฉ
169
00:16:30,760 --> 00:16:36,880
ู„ุชูƒุงู…ู„ ุจุนุถ ุงู„ุฏูˆุงู„ ุงู„ู…ุฎุชู„ูุฉ ุจุฃู†ู†ุง ู†ุฌูŠ ู†ุฐูƒุฑ ููŠ
170
00:16:36,880 --> 00:16:41,520
ุงู„ุจุฏุงูŠุฉ ู‚ุจู„ ุฃู† ู†ุจุฏุฃ ู‡ุฐุง ุงู„ุดุทุฑ ุจู…ุง ุณุจู‚ ุฏุฑุงุณุชู‡ ู…ู†
171
00:16:41,520 --> 00:16:46,920
ุงู„ุชูƒุงู…ู„ุงุช ูŠุจู‚ู‰ ุจุชุฑูˆุญ ุฃู‚ูˆู„ ู„ู‡ some integral
172
00:16:46,920 --> 00:16:48,700
formulas
173
00:16:56,510 --> 00:17:00,530
ู‡ุฐุง ุงู„ุขู† ุจุฏู†ุง ู†ุฐูƒุฑ ุจุจุนุถ ุงู„ุชูƒุงู…ู„ุงุช ุงู„ู„ูŠ ุฎุฏู†ุงู‡ุง ููŠ
174
00:17:00,530 --> 00:17:05,150
ุงู„ุซุงู†ูˆูŠุฉ ุงู„ุนุงู…ุฉ ูˆููŠ Calculus A ูˆููŠ Calculus B ู„ุฃู†
175
00:17:05,150 --> 00:17:08,630
ู‡ุฐุง ุงู„ุฃุณุงุณ ุงู„ู„ูŠ ุจู†ุจู†ูŠ ุนู„ูŠู‡ ุฏุฑุงุณุชู†ุง ููŠ ูƒู„ ุงู„ู€
176
00:17:08,630 --> 00:17:13,290
chapter ู‡ุฐุง ูŠุจู‚ู‰ ุจู†ุง ุจู†ุจุฏุฃ ุจุงู„ุชูƒุงู…ู„ุงุช ุงู„ู…ุดู‡ูˆุฑุฉ
177
00:17:13,290 --> 00:17:17,990
ุงู„ู„ูŠ ู…ุฑุช ุนู„ูŠู†ุง ู†ุฌูŠ ู„ุฃูˆู„ ุชูƒุงู…ู„ ูƒุงู† ุชูƒุงู…ู„ constant
178
00:17:17,990 --> 00:17:24,290
ููŠ ุงู„ู€ DX ุจู†ู‚ูˆู„ ุงู„ู€ constant ุจู†ุทู„ุนู‡ ุจุฑุง ุงู„ุชูƒุงู…ู„ ูˆ ุชูƒุงู…ู„
179
00:17:24,290 --> 00:17:31,450
ุงู„ู€ dx ู‡ูŠ ุจู€ x ุฒุงุฆุฏ constant c ุจุนุฏ ู‡ูŠูƒ ู†ู…ุฑ ุงุซู†ูŠู† ุจุฏู†ุง
180
00:17:31,450 --> 00:17:38,670
ุชูƒุงู…ู„ ุงู„ู€ ax to the power n dx ุญูŠุซ ุฃู† ุนุฏุฏ ุญู‚ูŠู‚ูŠ
181
00:17:39,800 --> 00:17:44,940
ุจู†ู‚ูˆู„ ุงู„ู€ A ู…ู‚ุฏุงุฑ ุซุงุจุช ู…ุง ู„ู‡ ุฏุนูˆุฉ ูˆ Lexus N ุจู†ุถูŠู
182
00:17:44,940 --> 00:17:50,500
ู„ู„ุฃุณ ูˆุงุญุฏ ูˆ ุจู†ู‚ุณู… ุนู„ู‰ ุงู„ุฃุณ ุงู„ุฌุฏูŠุฏ ูˆ ุจู†ู‚ูˆู„ ุฒุงุฆุฏ
183
00:17:50,500 --> 00:17:56,560
constant C ู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญ ุจุดุฑุท ุฃู† ุงู„ู€ N ู…ู…ู†ูˆุน
184
00:17:56,560 --> 00:18:03,230
ูŠุชุณุงูˆูŠ -1 ุทุจ ู„ูˆ ุญุฏุซ ูˆ ุณุงูˆู‰ -1 ุณุงูˆู‰ -1 ุณุงูˆู‰ -1 ุณุงูˆู‰ -1 ุณุงูˆู‰
185
00:18:03,230 --> 00:18:10,630
ุณุงูˆู‰ ุณุงูˆู‰ ุณุงูˆู‰ ุณุงูˆู‰ ุณุงูˆู‰ ุณุงูˆู‰ ุณุงูˆู‰ ุณุงูˆู‰
186
00:18:10,630 --> 00:18:22,330
ุณุงูˆู‰
187
00:18:22,510 --> 00:18:28,490
ูŠุจู‚ู‰ ุตุงุฑ ู‡ู†ุง ุงู„ู€ Best ู‡ูˆ ุชูุงุถู„ ุงู„ู…ู‚ุงู… ุงู„ู€ X ุชูุงุถู„ู†ุง
188
00:18:28,490 --> 00:18:31,730
ุจูˆุงุญุฏ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ Best ู„ู…ุง ูƒุงู† ุงู„ู€ Best ุชูุงุถู„
189
00:18:31,730 --> 00:18:36,310
ุงู„ู…ู‚ุงู… ู‚ู„ู†ุง ู„ู† ุงู„ู…ู‚ุงู… ุฅุฐุง ุจู†ุงุก ุฃู†ุง ุนู„ูŠู‡ุง ุจุฑูˆุญ
190
00:18:36,310 --> 00:18:43,470
ู„ู„ู†ู‚ุทุฉ ุงู„ุฑุงุจุนุฉ ุชูƒุงู…ู„ F prime of X ุนู„ู‰ F of X ูƒู„ู‡
191
00:18:43,470 --> 00:18:48,510
DX ุฅุฐุง ูƒุงู† ุงู„ู€ Best ุชูุงุถู„ ุงู„ู…ู‚ุงู… ูู†ุชูŠุฌุฉ ุงู„ุชูƒุงู…ู„ ู‡ูŠ
192
00:18:48,510 --> 00:18:56,670
ู„ู† absolute value ู„ู„ู…ู‚ุงู… ุฒุงุฆุฏ constant C ู†ู‚ุทุฉ
193
00:18:56,670 --> 00:19:03,630
ุงู„ุฎุงู…ุณุฉ ุชูƒุงู…ู„ E ุฃุณ AX ููŠ DX ุงู„ู€ exponential
194
00:19:03,630 --> 00:19:08,030
function ุทุจุนุงู‹ ุจุงู„ุฃุตู„ ุฒูŠ ู…ุง ุฃู†ุช ุดุงูŠู ู…ู† ุงู„ุฏุฑุฌุฉ
195
00:19:08,030 --> 00:19:12,470
ุงู„ุฃูˆู„ู‰ ููŠ x ู„ูƒู† ู…ุถุทุฑ ููŠ ู…ูŠู† ู‡ูŠ constant ูŠุจู‚ู‰
196
00:19:12,470 --> 00:19:20,650
ุชูƒุงู…ู„ู‡ุง ูƒู…ุง ู‡ูŠ ู…ู‚ุณูˆู…ุฉ ุนู„ู‰ a ุฒุงุฆุฏ constant c ุณุชุฉ ู…ู†
197
00:19:20,650 --> 00:19:25,350
ุชูƒุงู…ู„ ุงู„ู€ x exponentially ุงู„ุซุงู†ูŠุฉ a to the power x
198
00:19:25,350 --> 00:19:32,680
dx ูˆูŠุณุงูˆูŠ ุงู„ู€ Exponential ูƒู…ุง ู‡ูŠ ู…ู‚ุณูˆู…ุฉ ุนู„ู‰ a
ู„ู† ุงู„ู€ A ุฒุงุฆุฏ constant C ุทุจุนุงู‹ ู‡ุฐุง ููŠ ุงู„ู€ section 7
199
00:19:32,680 --> 00:19:38,240
ุซู„ุงุซุฉ ูƒุงู„ูƒู„ุต B ูƒุงู„ูƒู„ุต B ูƒุงู„ูƒู„ุต B ู‡ุฐุง ุงู„ุงุซู†ุชูŠู†
200
00:19:38,240 --> 00:19:44,560
ูƒุงู„ูƒู„ุต A ูˆ ุซุงู†ูˆูŠุฉ ุนุงู…ุฉ ุทูŠุจ ู†ุฌูŠ ู†ู…ุฑุญ 7 ุจู†ู†ุชู‚ู„ ุงู„ุขู†
201
00:19:51,790 --> 00:20:00,990
ุฅู„ู‰ ุงู„ุฏูˆุงู„ ุงู„ู…ุซู„ุซูŠุฉ ุนู†ุฏูƒ ุชูƒุงู…ู„ ู„ู€ sin ax dx ุทุจุนุงู‹
202
00:20:00,990 --> 00:20:07,590
ุงู„ู€ ax ูƒู„ู‡ุง ุงู„ุฒุงูˆูŠุฉ ูˆุงู„ู€ a ูƒูˆู„ุณุชู† ูŠุจู‚ู‰ ุณุงู„ุจ ูˆุงุญุฏ ุนู„ู‰
203
00:20:07,590 --> 00:20:17,230
a cosine ax ุฒุงุฆุฏ ูƒูˆู„ุณุชู† c ุซู…ุงู†ูŠุฉ ุจุฏู†ุง ุชูƒุงู…ู„ ุจุฏู„ ุงู„ู€
204
00:20:17,230 --> 00:20:26,650
sign ุจู†ุฎู„ูŠู‡ cosine ax dx ูŠุจู‚ู‰ ูˆุงุญุฏ ุนู„ู‰ a sine ax
205
00:20:26,650 --> 00:20:37,210
ุฒุงุฆุฏ constant C ู†ู…ุฑุฉ ุชุณุนุฉ ู†ุชูƒุงู…ู„ ู„ู€ tan ุงู„ู€ X DX ุงู„ุชูŠ
206
00:20:37,210 --> 00:20:43,150
ู‡ูŠ ู†ุณุจุฉ ุงู„ู…ุซู„ุซูŠุฉ ุงู„ุซุงู„ุซุฉ ู†ุนู…ู„ tan ู‡ูŠ sin ุนู„ู‰
207
00:20:43,150 --> 00:20:49,190
cosine ุจุตูŠุฑ ุงู„ุจุณุท ู‡ูˆ ุชูุงุถู„ ุงู„ู…ู‚ุงู… ุจุณ ุจุฏู‡ ุดุฑู ุณุงู„ุจ
208
00:20:49,190 --> 00:20:55,930
ุญุณุจู†ุงู‡ุง ู‚ุจู„ ุฐู„ูƒ ู†ุงู‚ุต ู„ู† absolute value ู„ู€ cosine X
209
00:20:55,930 --> 00:21:03,460
ุฒุงุฆุฏ constant C ุฃูˆ ุงู„ู…ูƒุงูุฆุฉ ู„ู‡ุง ุงู„ู„ูŠ ู‡ูŠ ู„ู† absolute
210
00:21:03,460 --> 00:21:07,720
value ู„ู€ sec X ุฒุงุฆุฏ constant C
212
00:21:13,610 --> 00:21:20,430
ุจุฏู†ุง ุชูƒุงู…ู„ ู„ู€ cotan ุงู„ู€ X DX ูƒูˆุณุงูŠู† ุนู„ู‰ ุณุงูŠู† ุงู„ุจุณุท ุชูุงุถู„
213
00:21:20,430 --> 00:21:27,350
ุงู„ู…ู‚ุงู… ูŠุจู‚ู‰ ู„ู† absolute value ู„ู€ sin ุงู„ู€ X ุฒุงุฆุฏ
214
00:21:27,350 --> 00:21:37,350
constant C ุญุฏ ุนุดุฑ ูˆุตู„ู†ุง ู„ ุชูƒุงู…ู„ ู„ู€ sec ุงู„ู€ X DX ุทุจุนุงู‹
215
00:21:37,350 --> 00:21:42,210
ุถุฑุจู†ุง ููŠ sec ุฒุงุฆุฏ ุชุงู† ูˆุฌุณู…ู†ุง ุนู„ู‰ sec ุฒุงุฆุฏ ุชุงู† ุตุงุฑ
216
00:21:42,210 --> 00:21:48,070
ุงู„ุจุณุท ุชูุงุถู„ ุงู„ู…ู‚ุงู… ูŠุจู‚ู‰ ู„ู† absolute value ู„ู€ sec ุงู„ู€ X
217
00:21:48,070 --> 00:21:55,510
ุฒุงุฆุฏ ุชุงู† ุงู„ู€ X ุฒุงุฆุฏ ูƒูˆู„ุณุชู† C ุงู„ุซุงู†ูŠุฉ ุนุดุฑ ุชูƒุงู…ู„
218
00:21:55,510 --> 00:21:58,870
ู„ู€ cosecant ุงู„ู€ X DX
219
00:22:01,450 --> 00:22:08,610
ุฅู…ุง ุณุงู„ุจ ู„ู† absolute value ู„ู€ cosecant ุงู„ู€ X ุฒุงุฆุฏ
220
00:22:08,610 --> 00:22:16,870
cot ุงู„ู€ X ุฒุงุฆุฏ constant C ุฃูˆ ู„ู† ุจุงู„ู…ูˆุฌุจ absolute
221
00:22:16,870 --> 00:22:23,030
value ู„ู€ cosecant ุงู„ู€ X ู†ุงู‚ุต cot ุงู„ู€ X ุฒุงุฆุฏ
222
00:22:23,030 --> 00:22:27,670
constant C ุฅู…ุง ู‡ุฐู‡ ุงู„ุตูŠุบุฉ ุฃูˆ ู‡ุฐู‡ ุงู„ุตูŠุบุฉ ุงู„ุงุซู†ุชูŠู†
223
00:22:27,670 --> 00:22:34,550
are the same ุงู„ุซุงู„ุซุฉ ุนุดุฑ ุทู„ุน ู‡ู†ุง ูƒุงู…ู„ู†ุง ุงู„ุฏูˆุงู„
224
00:22:34,550 --> 00:22:41,710
ุงู„ู…ุซู„ุซูŠุฉ ุงู„ุณุชุฉ ูƒู„ู‡ุง ุชู…ุงู…ุŸ ู†ุฌูŠ ู„ุชูƒุงู…ู„ ู…ุถุฑูˆุจุงุชู‡ุงุŒ
225
00:22:41,710 --> 00:22:48,990
ุฅูŠุด ุชูƒุงู…ู„ ู…ุถุฑูˆุจุงุชู‡ุงุŸ ุชูƒุงู…ู„ ู„ู€ sec squared x dxุŒ
226
00:22:48,990 --> 00:22:54,750
ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฏูˆุงู„ุŸ ุจุชุงู† ุงู„ู€ X ุฒุงุฆุฏ constant C ุทูŠุจ
227
00:22:54,750 --> 00:23:03,370
ุงู„ุฑุงุจุนุฉ ุนุดุฑ ุชูƒุงู…ู„ ู„ู€ cosecant square X ููŠ DX ู„ูˆ ุจุณุงู„ุจ
228
00:23:03,370 --> 00:23:12,830
cot ุงู„ู€ X ุฒุงุฆุฏ ูƒูˆู„ุณุชู† C ุงู„ุฎุงู…ุณุฉ ุนุดุฑ ูŠุจู‚ู‰ ุชูƒุงู…ู„ ู„ู€ sec ุงู„ู€
229
00:23:12,830 --> 00:23:22,110
X ุชุงู† ุงู„ู€ X DX ูŠุณุงูˆูŠ sec ุงู„ู€ X ุฒุงุฆุฏ ูƒูˆู„ุณุชู† C ุงู„ุณุงุฏุณ
230
00:23:22,110 --> 00:23:32,500
ุนุดุฑ ุชูƒุงู…ู„ ู„ู€ cosecant ุงู„ู€ X cot ุงู„ู€ X DX ุจุณุงู„ุจ cos x
231
00:23:32,500 --> 00:23:41,190
ุฒุงุฆุฏ constant C ูŠุจู‚ู‰ ุฏูˆู„ ุชูƒุงู…ู„ ู…ู† ุงู„ุฏูˆุงู„ ุงู„ู…ุซู„ุซูŠุฉ
232
00:23:41,190 --> 00:23:50,550
ูˆุถุฑุจ ุงู„ุฏูˆุงู„ ุงู„ู…ุซู„ุซูŠุฉ ู†ุฐู‡ุจ ุงู„ุขู† ุฅู„ู‰ ุงู„ุฏูˆุงู„ ุงู„ุฒุงุฆุฏูŠุฉ
233
00:23:50,550 --> 00:24:00,530
ุชูƒุงู…ู„ ู„ู€ cosh AX DX ูŠุจู‚ู‰ ูˆุงุญุฏ ุนู„ู‰ a sinh AX ุฒุงุฆุฏ
234
00:24:00,530 --> 00:24:10,810
ูƒูˆู†ุณุชุงู† C ุจุงู„ู…ุซู„ ุชูƒุงู…ู„ ู„ู€ sinh AXDX ูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ A
235
00:24:10,810 --> 00:24:18,190
cosh AX ุฒุงุฆุฏ ูƒูˆู†ุณุชุงู† C ุงู„ุชุงุณุนุฉ ุนุดุฑ ุนู…ู„ู†ุงู‡ุง sinh ุนู„ู‰ cosh
236
00:24:18,190 --> 00:24:22,630
ูˆุตู„ู†ุง ุงู„ู…ู‚ุงู… ูˆ ุงู„ู€ cotanh ุฒูŠู‡ุง ูˆ ุงู„ู€ sech ุฎุฏู†ุงู‡ุง ู…ุซุงู„
237
00:24:22,630 --> 00:24:27,930
ูˆ ุงู„ู€ cosech ู‚ูˆู„ู†ุง ู„ูƒ exercise ู„ูƒ ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ุฐุง ูƒู„ู‡
238
00:24:27,930 --> 00:24:34,230
ู…ุนุงูƒ ุชู…ุงู… ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู…ูŠู†ุŸ ุฅู„ู‰ ุงู„ุชุงุณุนุฉ ุนุดุฑ ุงู„ุชุงุณุนุฉ ุนุดุฑ
239
00:24:34,230 --> 00:24:39,930
ุชูƒุงู…ู„ ู„ู…ูŠู†ุŸ ู„ู€ sech Square X
240
00:24:47,090 --> 00:24:55,650
20 ุชูƒุงู…ู„ ูŠุจู‚ู‰
241
00:24:55,650 --> 00:25:02,900
ุณุงู„ุจ tanh x ุฒุงุฆุฏ constant c ุงู„ุญุงุฏูŠุฉ ูˆุงู„ุนุดุฑูŠู†
242
00:25:02,900 --> 00:25:13,840
ุชูƒุงู…ู„ ู„ู€ sech ุงู„ู€ X tanh ุงู„ู€ X DX ูˆูŠุณุงูˆูŠ ุณุงู„ุจ sech ุงู„ู€ X
243
00:25:13,840 --> 00:25:22,040
ุฒุงุฆุฏ constant C ุงู„ุซุงู†ูŠุฉ ูˆุงู„ุนุดุฑูŠู† ุงู„ู„ูŠ ู‡ูˆ ุชูƒุงู…ู„ ู„ู€ cosech
244
00:25:22,040 --> 00:25:31,860
ุงู„ู€ X cotanh ุงู„ู€ X DX ุจุณุงู„ุจ cosech ุงู„ู€ X ุฒุงุฆุฏ ูƒูˆู†ุณุชุงู† C
245
00:25:31,860 --> 00:25:35,020
ุงู„ุซุงู„ุซุฉ ูˆุงู„ุนุดุฑูŠู†
246
00:25:37,700 --> 00:25:42,860
ุงู„ุขู† ุจุฏู†ุง ู†ุฑูˆุญ ู„ู„ู…ุนูƒูˆุณุงุช ู…ุนูƒูˆุณ ุงู„ุฏูˆุงู„ ุงู„ู…ุซู„ุซูŠุฉ ูˆ
247
00:25:42,860 --> 00:25:47,080
ู…ุนูƒูˆุณ ุงู„ุฏูˆุงู„ ุงู„ุฒุงุฆุฏูŠุฉ ู…ุนูƒูˆุณ ุงู„ุฏูˆุงู„ ุงู„ู…ุซู„ุซูŠุฉ ุนู†ุฏู†ุง
248
00:25:47,080 --> 00:25:53,620
ุซู„ุงุซ ุชูƒุงู…ู„ุงุช ุงู„ุชูƒุงู…ู„ ุงู„ุฃูˆู„ ูˆุงุญุฏ ุนู„ู‰ ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ
249
00:25:53,620 --> 00:26:01,720
ู„ู€ a ุชุฑุจูŠุน ู†ุงู‚ุต x ุชุฑุจูŠุน dx ุงู„ู„ูŠ ู‡ูŠ sin inverse
250
00:26:05,880 --> 00:26:13,380
ุงู„ุชูƒุงู…ู„ ุงู„ุฑุงุจุน ูˆุงู„ุนุดุฑูˆู† ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุชูƒุงู…ู„ ู„ู…ูŠู†ุŸ
251
00:26:13,380 --> 00:26:20,520
ู„ูˆุงุญุฏ A ุชุฑุจูŠุน ุฒุงุฆุฏ X ุชุฑุจูŠุน DX ุจุฏูˆู† ุฌุฐูˆุฑ ูŠุจู‚ู‰ ูŠู‚ูˆู„
252
00:26:20,520 --> 00:26:29,140
ุฅู† ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุนู„ู‰ A ุชุงู† inverse X ุนู„ู‰ A ุฒุงุฆุฏ
253
00:26:29,140 --> 00:26:37,120
constant C ุฎู…ุณุฉ ูˆุนุดุฑูŠู† ุจุฏู†ุง ุชูƒุงู…ู„ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู… ูˆุงุญุฏ
254
00:26:37,120 --> 00:26:43,620
ุนู„ู‰ X ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ X ุชุฑุจูŠุน ู†ุงู‚ุต A ุชุฑุจูŠุน ููŠ DX
255
00:26:43,620 --> 00:26:50,520
ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ูŠู… ูˆุงุญุฏ ุนู„ู‰ A ููŠ Sec inverse
256
00:26:50,520 --> 00:26:56,940
absolute value X ุนู„ูŠู‡ ุฒุงุฆุฏ constant C ู‡ุฏูˆู„
257
00:26:56,940 --> 00:27:02,360
ุงู„ุซู„ุงุซุฉ ุงู„ู„ูŠ ู‡ูŠ ุชุจุนุงุช ู…ุนูƒูˆุณ ุงู„ุฏูˆุงู„ ุงู„ู…ุซู„ุซูŠุฉุŒ ุซู„ุงุซุฉ
258
00:27:02,360 --> 00:27:08,360
ุชุงู†ูŠุงุช ู‡ู…ุง ู‡ู…ุงุŒ ุจุณ ุจุฅุดุงุฑุฉ ุณุงู„ุจุŒ ุชู…ุงู…ุŒ ุฅุฐุง ุจู†ุฑูˆุญ
259
00:27:08,360 --> 00:27:15,080
ู„ุณุชุฉ ูˆุนุดุฑูŠู† ูˆู…ุง ุฃุฏุฑุงูƒ ู…ุง ุณุชุฉ ูˆุนุดุฑูŠู†ุŒ ุชูƒุงู…ู„ ูˆุงุญุฏ
260
00:27:15,080 --> 00:27:22,650
ุนู„ู‰ ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠุŒ ุชุฑุจูŠุน X ุชุฑุจูŠุน DX ู‡ุฐู‡ ุจุณ ุจุฅุดุงุฑุฉ
261
00:27:22,650 --> 00:27:28,210
ู…ูˆุฌุจ ุจุฏู„ ุงู„ุณุงู„ุจุŒ ููŠ ุญุงู„ุฉ ุงู„ุณุงู„ุจ sign inverse ูˆ ููŠ
262
00:27:28,210 --> 00:27:36,280
ุญุงู„ุฉ ุงู„ู…ูˆุฌุจ ููŠ ุญุงู„ุฉ ุงู„ู…ุฌู…ูˆุนุดุฉ ุฏูŠุŸ Sin inverse ุชู…ุงู…
263
00:27:36,280 --> 00:27:45,360
ูŠุจู‚ู‰ Sin inverse X ุนู„ู‰ A ุฒุงุฆุฏ constant C ุณุจุนุฉ ูˆ
264
00:27:45,360 --> 00:27:53,640
ุนุดุฑูŠู† ุชูƒุงู…ู„ ู„ุฏูŠ X ุนู„ู‰ ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ X ุชุฑุจูŠุน
265
00:27:53,640 --> 00:28:04,040
ู†ุงู‚ุต A ุชุฑุจูŠุน ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฌูˆุด inverse X ุนู„ู‰ A
266
00:28:04,040 --> 00:28:11,420
ุฒุงุฆุฏ ูƒูˆู†ุณุชุงู† C ุซู…ุงู†ูŠุฉ ูˆ ุนุดุฑูŠู† ุซู…ุงู†ูŠุฉ ูˆ ุนุดุฑูŠู† ุจุฏู†ุง
267
00:28:11,420 --> 00:28:22,180
ุชูƒุงู…ู„ ู„ู…ุงู… ู„ูˆุงุญุฏ ุนู„ู‰ A ุชุฑุจูŠุน ู†ุงู‚ุต X ุชุฑุจูŠุน DX ู‚ูˆู„ ู‡ุฐุง
268
00:28:22,180 --> 00:28:31,000
ู„ู‡ ู‚ูŠู…ุชุงู† ุงู„ู‚ูŠู…ุฉ ุงู„ุฃูˆู„ู‰ ูˆุงุญุฏ ุนู„ู‰ A ุชุงู†ุด inverse x
269
00:28:31,000 --> 00:28:38,360
ุนู„ู‰ A ุฒุงุฆุฏ constant C ูˆุจุดุฑุท absolute value ู„ X ุฃู‚ู„
270
00:28:38,360 --> 00:28:49,140
ู…ู† A ุฃูˆ ูˆุงุญุฏ ุนู„ู‰ A cotangent ูˆุงุญุฏ ุนู„ู‰ A cotangent
271
00:28:50,020 --> 00:28:57,760
ุฅู†ูุฑุณ X ุนู„ู‰ A ุฒุงุฆุฏ constant C absolute value ู„ู„ X
272
00:28:57,760 --> 00:29:07,440
ุฃูƒุจุฑ ู…ู† ุงู„ A ุขุฎุฑ ุชูƒุงู…ู„ูŠู† ูŠุจู‚ู‰ ุงู„ุชูƒุงู…ู„ ุงู„ุชุงุณุน
273
00:29:07,440 --> 00:29:13,860
ูˆุงู„ุนุดุฑูˆู† ุจุฌูˆู„ ู…ูŠุงุชูŠ ุชูƒุงู…ู„ ูˆุงุญุฏ ุนู„ู‰ X ุงู„ุฌุฐุฑ
274
00:29:13,860 --> 00:29:19,990
ุงู„ุชุฑุจูŠุนูŠ ู„ A ุชุฑุจูŠุน ู†ุงู‚ุต X ุชุฑุจูŠุน DX ูŠุจู‚ู‰ ู‡ุฐุง
275
00:29:19,990 --> 00:29:29,610
ุณุงู„ุจ ูˆุงุญุฏ ุนู„ู‰ A ููŠ C inverse X ุนู„ู‰ A ุฒุงุฆุฏ constant
276
00:29:29,610 --> 00:29:37,910
C ุซู„ุงุซูŠู† ุชูƒุงู…ู„ ูˆุงุญุฏ ุนู„ู‰ X ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ุงู„ู„ูŠ A
277
00:29:37,910 --> 00:29:44,130
ุชุฑุจูŠุน ุฒุงุฆุฏ X ุชุฑุจูŠุน DX ูŠุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ ุนู„ู‰ A ูƒุณูŠุด
278
00:29:44,130 --> 00:29:50,790
inverse absolute value ู„ู„ X ุนู„ู‰ A ุฒุงุฆุฏ constant C
279
00:29:53,150 --> 00:29:57,490
ูŠุจู‚ู‰ ู‡ุฏูˆู„ ุงู„ุซู„ุงุซูŠู† ุฏู‡ ูƒุงู…ู„ ุงู„ู„ูŠ ุจุฏู‡ ู†ุจู†ูŠ ุนู„ูŠู‡ู… ูƒู„
280
00:29:57,490 --> 00:30:03,050
ุฏุฑุงุณุชู†ุง ููŠ ู‡ุฐุง ุงู„ chapter ุฅู† ุดุงุก ุงู„ู„ู‡ ูŠุนู†ูŠ ู…ุดุงู†
281
00:30:03,050 --> 00:30:07,650
ุชูู‡ู… ูƒู„ ุณุคุงู„ ูˆุงู„ู„ู‡ ูƒู„ ู…ุซุงู„ ู…ูˆุฌูˆุฏ ููŠ ู‡ุฐุง ุงู„ chapter
282
00:30:07,650 --> 00:30:15,330
ุจุฏูƒ ุชูƒูˆู† ู…ู„ู… ุจู‡ุฐู‡ ุงู„ุซู„ุงุซูŠู† ูˆู‡ุฐุง ู…ุฌู…ู„ ู…ุฏุฑุณุฉ ููŠ
283
00:30:15,330 --> 00:30:20,770
ุงู„ุซุงู†ูˆูŠุฉ ุงู„ุนุงู…ุฉ ูˆููŠ calculus A ูˆููŠ calculus B ุงู„ู„ูŠ
284
00:30:20,770 --> 00:30:27,830
ู‡ูˆ chapter 7 ุทูŠุจ ู‡ุฏูˆู„ ู‡ู… ุงู„ุฃุณุงุณูŠุงุช ุงู„ู„ูŠ ุจู†ุจู†ูŠ ุนู„ูŠู‡ู…
285
00:30:27,830 --> 00:30:33,110
ุฏุฑุงุณุชู†ุง ููŠ ู‡ุฐุง ุงู„ chapter ูˆุจุงู„ุชุงู„ูŠ ุจู†ู†ุชู‚ู„ ุฅู„ู‰ ุฃูˆู„
286
00:30:33,110 --> 00:30:37,770
ุทุฑูŠู‚ุฉ ู…ู† ุทุฑู‚ ุงู„ุชูƒุงู…ู„ ูˆ ู‡ุฐู‡ ุฃุฎุฐุชูˆู‡ุง ููŠ ุงู„ุซุงู†ูˆูŠุฉ
287
00:30:37,770 --> 00:30:42,480
ุงู„ุนุงู…ุฉ ู„ูƒู† ุฅู†ุชูˆุง ุฃุฎุฐุชูˆู‡ุง ูƒุนู†ูˆุงู† ูˆุณุคุงู„ูŠู† ุซู„ุงุซุฉ ุตุบุงุฑ
288
00:30:42,480 --> 00:30:48,500
ู„ูƒู† ุงุญู†ุง ู‡ู†ุงุฎุฏู‡ุง ุชูุตูŠู„ูŠุง ุฅู† ุดุงุก ุงู„ู„ู‡ ูŠุจู‚ู‰ ุฃูˆู„
289
00:30:48,500 --> 00:30:54,580
section ุฅู†ู†ุง ุดุจุงุจ section ุซู…ุงู†ูŠุฉ ูˆุงุญุฏ ุซู…ุงู†ูŠุฉ ูˆุงุญุฏ
290
00:30:54,580 --> 00:31:00,440
ุงุณู…ู‡ integration by
291
00:31:00,440 --> 00:31:01,120
parts
292
00:31:05,550 --> 00:31:09,450
ุจุงุจุง ูŠู‚ูˆู„ูˆู„ูƒูˆุง ุงู„ู…ุฏุฑุณูŠู† ููŠ ุงู„ุซุงู†ูˆูŠุฉ ุงู„ุชูƒุงู…ู„
293
00:31:09,450 --> 00:31:17,560
ุจุงู„ุฃุฌุฒุงุก ุฃูˆ ุจุงู„ุชุฌุฒูŠุก ุฃูŠุด ู…ุง ูŠู‚ูˆู„ูˆุง ูŠู‚ูˆู„ูˆุง ู„ูƒู† ุงุญู†ุง
294
00:31:17,560 --> 00:31:25,160
ุจุฏู†ุง ู†ูู‡ู… ุฃูŠุด ู…ุนู†ุงู‡ ูˆ ู„ู…ุงุฐุง ุณู…ูŠ integration by
295
00:31:25,160 --> 00:31:30,060
parts ูƒู„ ุงู„ุฌุฒุก ุงู„ู†ุธุฑูŠ ุชุจุน ุงู„ section ุจุฏูŠ ุงุฎุชุตุฑู‡ ููŠ
296
00:31:30,060 --> 00:31:36,980
ูƒู„ู…ุฉ ุตุบูŠุฑุฉ ุฌุฏุง ูŠุจู‚ู‰ ุจุนุฏูŠ ุจุฏูŠ ุงู‚ูˆู„ if ุงู„ U and ุงู„ V
297
00:31:36,980 --> 00:31:47,320
are differentiable functions of X then ุงู„ุชูƒุงู…ู„ ู„
298
00:31:47,320 --> 00:32:00,140
UDV ูŠุจู‚ู‰ U ููŠ V ู†ุงู‚ุต ุชูƒุงู…ู„ V ุฏุงู„ U ูŠุจู‚ู‰
299
00:32:00,140 --> 00:32:03,180
ู‡ุฐุง ุงู„ุชูƒุงู…ู„ ุชุจุน ุงู„ุฃุฌุฒุงุก
300
00:32:05,810 --> 00:32:11,270
ุจู†ุนุฑู ู„ู…ุงุฐุง ุณู…ูŠู†ุงู‡ุง ุชูƒุงู…ู„ ุจุงู„ุชุฌุฒูŠุก ุฃูˆ ุจุงู„ุฃุฌุฒุงุก ูˆูƒูŠู
301
00:32:11,270 --> 00:32:16,930
ุทุฑูŠู‚ุฉ ุงู„ุชุนุงู…ู„ ู…ุน ู‡ุฐุง ุงู„ู†ูˆุน ู…ู† ุงู„ุชูƒุงู…ู„ุงุช
302
00:32:25,060 --> 00:32:30,000
ุงู„ุขู† ู†ุฌูŠ ู„ู„ุณุคุงู„ ู‡ุฐุงุŒ ุจูŠุนุทูŠู†ูŠ ู…ุซู„ุฉุŒ ุงู„ู…ุซู„ุฉ ุจุชุจู‚ู‰
303
00:32:30,000 --> 00:32:36,540
ุฏุงู„ุฉ ููŠ ู…ูŠู†ุŸ ููŠ ุชูƒุงู…ู„ ุจุงู„ู†ุณุจุฉ ู„ุดุบู„ ุฏูŠ ุงูƒุณุŒ ุฏูŠ ูˆุงูŠุŒ
304
00:32:36,540 --> 00:32:42,160
ุฏูŠ ุซูŠุชุงุŒ ุฏูŠ ุฒุฏุŒ ุฅู„ู‰ ุขุฎุฑูŠู† ุงู„ู…ุซู„ุฉ ู‡ุฐู‡ ุจุฏูŠ ุฃู‚ูŠุณู‡ุง ุนู„ู‰
305
00:32:42,160 --> 00:32:45,360
ู‡ุฐู‡ ุงู„ู…ุซู„ุฉ ูŠุนู†ูŠ ุฃูŠุด ุฃู‚ูŠุณู‡ุง ุนู„ู‰ ู‡ุฐู‡ ุงู„ู…ุซู„ุฉุŸ ูŠุนู†ูŠ
306
00:32:45,360 --> 00:32:53,400
ุจุฏูŠ ุฃุฎุชุงุฑ ุฌุฒุก ูŠูƒูˆู† ูŠู…ุซู„ U ูˆุฌุฒุก ูŠู…ุซู„ ู…ู† DV ุทูŠุจ ุงู„
307
00:32:53,400 --> 00:32:58,480
U ู‡ุฐู‡ ุงู„ู„ูŠ ุงุฎุชุฑุชู‡ุง ู‡ู†ุง ู‡ูŠ ู…ุง ุชุบูŠุฑุชุดุŒ ู„ูƒู† ู‡ู†ุง ุฃูŠุด
308
00:32:58,480 --> 00:33:05,360
ุงู…ุชู„ุช ุงู„ UุŸ ุงุดุชู‚ุชู‡ุงุŒ DU ู‡ุฐู‡ ูƒุงู†ุช ุฏูŠ V ู…ุดุงู† ุฃุญุตู„ ุนู„ู‰
309
00:33:05,360 --> 00:33:10,960
V ู‡ุฐู‡ ู…ุนู†ุงุชู‡ ุจุฏูŠ ุฃูƒุงู…ู„ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ูŠุจู‚ู‰ ู‡ูŠ ุงู„ V ูˆู‡ูŠ
310
00:33:10,960 --> 00:33:16,220
ุงู„ V ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู†ู‡ ููŠ ุฌุฒุก ู…ู† ุงู„ู…ุณุฃู„ุฉ ุจุฏูŠ
311
00:33:16,220 --> 00:33:22,560
ุฃูุถู„ู‡ ุฃุดุชู‚ู‡ ูˆููŠ ุฌุฒุก ุจุฏูŠ ุงุฑูˆุญ ุฃูƒุงู…ู„ู‡ ูŠุนู†ูŠ ุจุฏู†ุง ู†ุฌุฒุก
312
00:33:22,560 --> 00:33:28,000
ุงู„ู…ุณุฃู„ุฉ ุฅู„ู‰ ุฌุฒุฆูŠู† ุฌุฒุก ุจุฏูŠ ุฃูƒู…ู„ู‡ ุจุนู…ู„ูŠุฉ ุงู„ุงุดุชู‚ุงู‚
313
00:33:28,000 --> 00:33:34,560
ูˆุฌุฒุก ุจุฏูŠ ุงุฑูˆุญ ู…ูŠู† ุฃูƒุงู…ู„ู‡ ูˆู…ู† ู‡ู†ุง ุณู…ูŠู†ุง ุชูƒุงู…ู„ ุจุงู„ุชุฌุฒุฆุฉ
314
00:33:34,560 --> 00:33:40,680
ุชูƒุงู…ู„ ุจุงู„ุชุฌุฒุฆุฉ ู‚ุงู„ ู„ูŠ U ููŠ V ู†ุงู‚ุต ุชูƒุงู…ู„ VW ูŠุนู†ูŠ
315
00:33:40,680 --> 00:33:46,400
ู„ุณุฉ ุจุงู„ุฒู…ู† ุชูƒุงู…ู„ ู‚ุฏ ูŠูƒูˆู† ูŠุญุชุงุฌ ู‡ุฐุง ุฅู„ู‰ ุชูƒุงู…ู„
316
00:33:46,400 --> 00:33:52,020
ุจุงู„ุฃุฌุฒุงุก ู…ู† ุฌุฏูŠุฏ ูˆู‚ุฏ ูŠุธู‡ุฑ ุฃุญุฏ ุงู„ุชูƒุงู…ู„ุงุช ุงู„ุซู„ุงุซูŠู†
317
00:33:52,020 --> 00:33:57,690
ุงู„ุชูŠ ุฃุดุฑู†ุง ุฅู„ูŠู‡ุง ู‚ุจู„ ู‚ู„ูŠู„ ู…ู…ูƒู† ู‡ุฐู‡ ูˆู…ู…ูƒู† ู‡ุฐู‡ุŒ ุทุจ
318
00:33:57,690 --> 00:34:02,010
ุงู„ุณุคุงู„ ู‡ูˆ ู„ู…ุง ูŠุฌูŠู†ูŠ ุงู„ุณุคุงู„ ู…ูŠู† ุงู„ู„ูŠ ุจุฏูŠ ุฃุฎุชุงุฑู‡ุง
319
00:34:02,010 --> 00:34:07,150
ุชูƒูˆู† ุงู„ U ูˆู…ูŠู† ุงู„ู„ูŠ ุจุฏูŠ ุฃุฎุชุงุฑู‡ุง DVุŸ ุงู‡ ุจู†ู‚ูˆู„ู‡
320
00:34:07,150 --> 00:34:12,790
ุจุณูŠุทุฉ ุชุฎุชุงุฑูŠ ุงู„ U ู‡ูŠ ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุชูุถู„ูŠู‡ุง ุณู‡ู„ ู…ุง ูŠูƒูˆู†ุด
321
00:34:12,790 --> 00:34:18,190
ุชูุงุถู„ู‡ุง ู…ูƒู„ูƒุฉ ุฃูˆ ูŠุทู„ุน ู†ุต ู…ุชุฑุŒ ู„ุฃุŒ ุจูŠูƒูˆู† ุดุบู„ู†ุง ู…ุด
322
00:34:18,190 --> 00:34:22,970
ู…ุธุจูˆุทุŒ ูŠุจู‚ู‰ ุจุฎุชุงุฑ ุงู„ U ุจุทุฑูŠู‚ุฉ ุฃู‚ุฏุฑ ุฃูุงุถู„ู‡ุง ูˆุจุฎุชุงุฑ
323
00:34:22,970 --> 00:34:29,390
ุงู„ DV ุจุทุฑูŠู‚ุฉ ุฃู‚ุฏุฑ ุฃูƒู…ู„ู‡ุงุŒ ุงู‡ ูŠุนู†ูŠ ุฅุฐุง ุงุฎุชุฑุช ุงู„ U
324
00:34:29,390 --> 00:34:34,450
ูƒู„ ุจุถุงู„ ููŠ ุงู„ู…ุซู„ุฉ ุจุฏูŠ ุฃูƒูˆู† ู…ูŠู†ุŸ ุฏูŠ V ู‡ุฐุง ุจุฏูƒ ุชู‚ุฏุฑ
325
00:34:34,450 --> 00:34:38,970
ุชูƒู…ู„ู‡ ุจุณู‡ูˆู„ุฉ ูˆู‡ุฐุง ุจุฏูƒ ุชู‚ุฏุฑ ุชูุถู„ู‡ ุจุณู‡ูˆู„ุฉ ุทูŠุจ ูŠู…ูƒู†
326
00:34:38,970 --> 00:34:43,350
ุฃูุถู„ ู‡ุฐุง ุจุณู‡ูˆู„ุฉ ูˆูŠู…ูƒู† ุฃูƒู…ู„ ู‡ุฐุง ุจุณู‡ูˆู„ุฉ ู„ูƒู† ู…ุง ุชู†ุญู„ุด
327
00:34:43,350 --> 00:34:49,070
ุงู„ู…ุซู„ุฉ ู…ุง ุชู†ุญู„ุด ู„ูŠู‡ุŸ ู„ุฃู† ุงู„ุงุฎุชูŠุงุฑ ูƒุงู† ุงุฎุชูŠุงุฑุง ุฎุงุทุฆ
328
00:34:49,070 --> 00:34:53,930
ูƒูŠู ูŠุนู†ูŠ ุงุฎุชูŠุงุฑ ุฎุงุทุฆุŸ ู‡ุฐุง ุงู„ U ุฏูŠ ู„ูˆ ุฌูŠุช ุงุดุชู‚ุชู‡ุง
329
00:34:53,930 --> 00:34:59,830
ุจุฏูŠู‡ุง ุชู†ุชู‡ูŠ ุชูƒู…ู„ ู…ุด ู‡ุชุฒูŠุฏ ูู…ุซู„ุง ู„ูˆ ู‚ู„ุช ู„ูƒ ุฎุฏ U
330
00:34:59,830 --> 00:35:05,270
ูŠุณุงูˆูŠ X ุณุงู„ุจ ูˆุงุญุฏ ุชุนุงู„ ูุงุถู„ู‡ุงุŒ ุฅูŠุด ุจูŠุทู„ุนุŸ X
331
00:35:05,270 --> 00:35:10,910
ุงู„ุณุงู„ุจ ุงุซู†ูŠู† ูŠุจู‚ู‰ ุฐุงู„ุจุฉ ู„ุฃ ูƒู…ุงู† ู…ุฑุฉ X ูˆุงู„ุณุงู„ุจ ุซู„ุงุซุฉ
332
00:35:10,910 --> 00:35:14,150
ุจุบุถ ุงู„ู†ุธุฑ ุนู† ุงู„ูƒูˆู† ุงู„ุตุญูŠุญ X ูˆุงู„ุณุงู„ุจ ุฃุฑุจุนุฉ ูŠุจู‚ู‰
333
00:35:14,150 --> 00:35:18,290
ู„ูŠูˆู… ุงู„ู‚ูŠุงู…ุฉ ู…ููŠุด ุจุชุฎู„ุตุด ุฅุฐุง ุงู„ุงุฎุชูŠุงุฑ ูƒุงู† ุงุฎุชูŠุงุฑุง
334
00:35:18,290 --> 00:35:24,290
ุฎุงุทุฆ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฎุชุงุฑู‡ุง ุจุญูŠุซ ุชู†ุชู‡ูŠ ุจุนุฏ ู…ุฑุฉ ู…ุฑุชูŠู† ุซู„ุงุซ
335
00:35:24,290 --> 00:35:30,010
ุฃุฑุจุน ู…ุฑุงุช ุชุจู‚ู‰ ุฎู„ุตุช ุทุจุนุง ุทุจ ุงูุชุฑุถ ุงุฎุชุฑุช ูˆุทู„ุนุช ู…ุนุงูƒ
336
00:35:30,010 --> 00:35:34,130
ุชูƒู„ูƒุนุช ุฃุฏุช ุชูƒู„ูƒุนุช ูˆู‡ุง ุฏูŠ ู…ุด ุนุงุฑููŠู† ู†ุทู„ุน ู…ู†ู‡ุง ูŠุจู‚ู‰
337
00:35:34,130 --> 00:35:38,210
ุจุฎุชูŠุงุฑ ุฎุงุทุฆ ุจุชุฑูˆุญ ุชุฌูŠุจ ุงู„ุฎูŠุงุฑุฉ ุจุชุงุนุชูƒ ูˆุจุชู„ุงู‚ูŠ ุงู„ู…ุซู„ุฉ
338
00:35:38,210 --> 00:35:44,630
ุชูƒุงู…ู„ู‡ุง ุงู†ุญู„ุช ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ูŠุจู‚ู‰ ุงู„ุงุฎุชูŠุงุฑ ู…ุด ู…ุฒุงุฌูŠุŒ
339
00:35:44,630 --> 00:35:50,310
ูˆุฅู†ู…ุง ุงู„ุงุฎุชูŠุงุฑ ุนุจุงุฑุฉ ุนู† ุฏุฑุงูŠุฉ ุนู„ู…ูŠุฉุŒ ุฏุฑุงูŠุฉ ุนู„ู…ูŠุฉ
340
00:35:50,310 --> 00:35:55,890
ุนู† ุจู†ุงู†ูŠุดุŒ ุนู† ู…ุดุชู‚ุงุช ุงู„ุฏูˆุงู„ ูˆุชูƒุงู…ู„ ุงู„ุฏูˆุงู„ุŒ ูˆุจุงู„ุชุงู„ูŠ
341
00:35:55,890 --> 00:36:00,850
ุจูŠุตูŠุฑ ุงู„ู‚ุตุฉ ู‡ุฐู‡ ุจุณูŠุทุฉ ุฌุฏุงุŒ ุฅุฐุง ุฃู†ุง ู„ู…ุง ุจุฏูŠ ุฃุนุทูŠูƒ
342
00:36:00,850 --> 00:36:04,730
ู…ุซุงู„ุŒ ุจุฏูŠ ุฃุนุทูŠูƒ ุซู„ุงุซุฉ ุฃู†ูˆุงุน ู…ู† ุงู„ู…ุซุงู„ุŒ ุฅู†ู‡ ู„ูˆ ุงู„ู„ูŠ
343
00:36:04,730 --> 00:36:09,780
ุจุฏูŠ ุฃุฎู„ูŠู‡ ุจุณูŠุทุŒ ุจุฏูˆุด ูˆู„ุง ู„ู ูˆู„ุง ุฏูˆุฑุงู† ุงู„ู†ูˆุน ุงู„ุซุงู†ูŠ
344
00:36:09,780 --> 00:36:15,040
ุจุฏูŠ ุฃุฎู„ูŠูƒ ุชู‡ุฑุด ู…ุฎูƒ ูˆุชุถุทุฑ ุชุนู…ู„ ุชุนูˆูŠุถุฉ ู‚ุจู„ ุงู„
345
00:36:15,040 --> 00:36:18,920
integration by parts ูˆุจุนุฏ ู…ุง ุชุนู…ู„ ุชุนูˆูŠุถุฉ ูŠุตูŠุฑ
346
00:36:18,920 --> 00:36:23,160
ู…ุณุงู„ุชูƒ ุณู‡ู„ุฉ ุจุงู„ integration by parts ูˆู‡ูƒุฐุง ุจุงู„ู†ุณุจุฉ
347
00:36:23,160 --> 00:36:29,140
ู„ู…ูŠู†ุŸ ู„ู„ุจุงู‚ูŠ ุฅุฐุง ู†ุจุฏุฃ ุงู„ุดุบู„ ุงู„ุนู…ู„ูŠ ุนู„ู‰ ู‡ุฐุง ุงู„ู‚ุงู†ูˆู†
348
00:36:29,140 --> 00:36:36,490
ุงูƒุชุจ ู„ูŠ ุฃูˆู„ ู…ุซุงู„ ุงุญุณุจ ู„ูŠ ุชูƒุงู…ู„ุงุช ุงู„ุชุงู„ูŠุฉ ูŠุจู‚ู‰ evaluate
349
00:36:36,490 --> 00:36:43,490
the following integrals ูŠุจู‚ู‰
350
00:36:43,490 --> 00:36:51,030
ุฃูˆู„ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุฃู…ุซู„ุฉ examples evaluate
351
00:36:51,030 --> 00:36:54,650
the
352
00:36:54,650 --> 00:37:00,370
following integrals
353
00:37:04,750 --> 00:37:11,030
ุฃุญุณุจ ู„ูƒู„ ู…ู† ุงู„ุชูƒุงู…ู„ุงุช ุงู„ุชุงู„ูŠุฉ ุฃูˆู„ ุชูƒุงู…ู„ ุชูƒุงู…ู„ x e
354
00:37:11,030 --> 00:37:17,090
ุฃุณ ุซู„ุงุซุฉ x ููŠ dx ู†ุฌูŠ
355
00:37:17,090 --> 00:37:22,770
ู„ู„ e ุฃุณ ุซู„ุงุซุฉ x ุณู‡ู„ ุชูุงุถู„ู‡ุง ูˆุณู‡ู„ ุชูƒุงู…ู„ู‡ุงุŒ ุฅุฐุง
356
00:37:22,770 --> 00:37:25,690
ู…ุง ุนู†ุฏูŠุด ู…ุดูƒู„ุฉุŒ ุญุชู‰ ุชูุงุถู„ู‡ุง ูˆุชูƒุงู…ู„ู‡ุง ู…ุด ู…ุดูƒู„ุฉ
357
00:37:25,690 --> 00:37:31,070
ุจุงู„ุฏุฑุฌุฉ ู„ู„ุฅูƒุณุŒ ุณู‡ู„ ุชูุงุถู„ู‡ุง ูˆูƒุฐู„ูƒ ุณู‡ู„ ุชูƒุงู…ู„ู‡ุงุŒ ุจุณ
358
00:37:31,070 --> 00:37:36,650
ู„ูˆ ูƒู…ู„ุช ุจุชุฎู„ุตุŒ ูŠุจู‚ู‰ ู…ุด ู‡ุชุฎู„ุต ุฃุจุฏุง ูŠุจู‚ู‰ automatic
359
00:37:36,650 --> 00:37:42,350
ุจุฏูŠ ุงุฎุฐู‡ุง ุงุดุชู‚ุงู‚ ู„ุฃู† ุงู„ุงุดุชู‚ุงู‚ ุจุนุฏ ู…ุฑุชูŠู† ุชุจู‚ู‰ ุฎู„ุตุชุŒ
360
00:37:42,350 --> 00:37:46,290
ู…ุธุจูˆุทุŸ ูŠุจู‚ู‰ ู…ู† ู‡ู†ุง ุจุฏูŠ ุงุฎุชูŠุงุฑ ุงู„ุชููƒูŠุฑ ุจู‡ุฐู‡
361
00:37:46,290 --> 00:37:51,530
ุงู„ุทุฑูŠู‚ุฉุŒ ุฅุฐุง ุจุฏูŠ ุงุฎุฐ ุงู„ U ุชุจุน ุงู„ู‚ุงู†ูˆู† ุชุณุงูˆูŠ X
362
00:37:51,530 --> 00:37:57,310
ูˆุงู„ุฏูŠ V ูƒู„ ุงู„ู„ูŠ ุจู‚ูŠุŒ ู…ูŠู† ุงู„ู„ูŠ ุจู‚ูŠุŸ ุงู„ู„ูŠ ู‡ูˆ E ุฃุณ
363
00:37:57,310 --> 00:38:06,570
ุซู„ุงุซุฉ X ุจุฏูŠ X ุทุจ ู†ุดุชู‚ ู„ูŠุด ู†ุดุชู‚ุŸ ู„ุฅู†ู‡ ุจุฏูŠ du ูŠุจู‚ู‰ ุฏูŠ
364
00:38:06,570 --> 00:38:09,970
ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ
365
00:38:09,970 --> 00:38:15,510
ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ ุฏูŠ
366
00:38:27,320 --> 00:38:34,540
ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ุชุณุงูˆูŠ ู‡ุฐู‡ U ูˆู‡ุฐู‡ V ูŠุจู‚ู‰ ุงู„ U ููŠ ุงู„ V
367
00:38:34,540 --> 00:38:41,260
ุจุฏูŠ ุฃุถุฑุจ ุงุซู†ูŠู† ููŠ ุจุนุถ ูŠุจู‚ู‰ ู„ูˆ ุถุฑุจุชู‡ู… ุจูŠุตูŠุฑ ุซู„ุซ X e
368
00:38:41,260 --> 00:38:46,880
ุฃุณ ุซู„ุงุซุฉ X ู‡ุฐุง ุงู„ุณุคุงู„ ุงุณุชุฎุฏู…ู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู‚ุงู†ูˆู† ุชุจุน
369
00:38:46,880 --> 00:38:53,470
integration by parts ู…ุฑุฉ ูˆุงุญุฏุฉ ูู‚ุท ู„ุง ุบูŠุฑ ุทูŠุจ ุจุฏู†ุง
370
00:38:53,470 --> 00:38:59,870
ู†ุฌูŠ ู„ู„ุณุคุงู„ ุงู„ุซุงู†ูŠ ุจุฏู†ุง ุชูƒุงู…ู„ X ุงู„ุณุงุจุนุฉ ููŠ ู„ู† ุงู„ X
371
00:38:59,870 --> 00:39:00,670
ููŠ DX
372
00:39:03,450 --> 00:39:10,390
ุทุจุนุง ุจุถุงุฌูŠ ู„ู† ุงู„ X ุจู†ุนุฑู ุฅู† ุชูƒุงู…ู„ู‡ุง ู„ู† ุงู„ X ุญุชู‰
373
00:39:10,390 --> 00:39:16,290
ุงู„ุขู† ู…ุง ุนุฑูู†ุงุด ู…ุธุจูˆุท ู„ูƒู† ู†ุดุชู‚ู‡ุง ุณู‡ู„ ุฌุฏุง ูˆุงุญุฏ ุนู„ู‰ X
374
00:39:16,290 --> 00:39:22,610
ุฅุฐุง ุจุฏูŠ ุงุฑูˆุญ ุฃุฎุชุงุฑ ุงู„ U ุชุณุงูˆูŠ ู„ู† ุงู„ X ูˆ ุฏูŠ V ูƒู„
375
00:39:22,610 --> 00:39:28,970
ุงู„ู„ูŠ ุจูŠุธู„ ู„ู‡ X ูˆ ุงู„ 7 ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ DX ู†ุดุชู‚ ูŠุจู‚ู‰
376
00:39:28,970 --> 00:39:35,990
du ุจูˆุงุญุฏ ุนู„ู‰ x dx ูˆุงู„ V ุจx ุฃุณ ุชู…ุงู†ูŠุฉ ุนู„ู‰ ุชู…ุงู†ูŠุฉ
377
00:39:35,990 --> 00:39:43,270
ู‡ุฐู‡ ุงู„ U ูˆ ู‡ุฐู‡ ุงู„ V ุฅุฐุง ุงู„ู†ุชูŠุฌุฉ ุชุณุงูˆูŠ U ููŠ V ูŠุจู‚ู‰
378
00:39:43,270 --> 00:39:52,790
ุซู…ุงู† X ุฃุณ ุชู…ุงู†ูŠุฉ ูู‰ ู„ู† ุงู„ X ู†ุงู‚ุต ุชูƒุงู…ู„ V ุฏุงู„ูŠ V ุจ X
379
00:39:52,790 --> 00:39:59,410
ุฃุณ ุชู…ุงู†ูŠุฉ ุนู„ู‰ ุชู…ุงู†ูŠุฉ ุฏุงู„ูŠ ูˆู„ูŠู‡ ูˆุงุญุฏ ุนู„ู‰ X ู…ู† DX
380
00:39:59,410 --> 00:40:07,430
ูŠุจู‚ู‰ ุซู…ุงู† X ุฃุณ ุชู…ุงู†ูŠุฉ ูู‰ ู„ู† ุงู„ X ู†ุงู‚ุต ู‡ุฐุง ุงู„ุซู…ุงู† ุจุฑุง
381
00:40:07,430 --> 00:40:12,810
ูˆู‡ูŠ ุชูƒุงู…ู„ ููŠ ุงุฎุชุตุงุฑุงุช ู…ุง ุจูŠู† ุงู„ุงุชู†ูŠู† ุจูŠุตูŠุฑ X ุฃุณ
382
00:40:12,810 --> 00:40:21,000
ุณุจุนุฉ ู…ู† ู„ DX ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุซู…ุงู† x ุฃุณ ุชู…ุงู†ูŠุฉ ู„ุฅู†
383
00:40:21,000 --> 00:40:27,080
ุงู„ x ู†ุงู‚ุต ุซู…ุงู† ุฎู„ูŠูƒ ุจุฑุง ูˆู‡ุฐู‡ ูƒุงู† ุซุงู†ูŠ ุชูƒุงู…ู„ ู…ู†
384
00:40:27,080 --> 00:40:32,260
ุงู„ุซู„ุงุซูŠู† ู„ุชูˆ ูŠุจู‚ู‰ ุจุถูŠู ู„ู„ุฃุณ ูˆุงุญุฏ ูˆุจู‚ุณู… ุนู„ู‰ ุงู„ุฃุณ
385
00:40:32,260 --> 00:40:39,300
ุงู„ุฌุฏูŠุฏ ูŠุจู‚ู‰ ู‡ู†ุง ููŠ x ุฃุณ ุชู…ุงู†ูŠุฉ ุนู„ู‰ ุชู…ุงู†ูŠุฉ ุฒุงุฆุฏ
386
00:40:39,300 --> 00:40:46,870
ูƒูˆู†ุณุชุงู†ุณูŠ ูŠุนู†ูŠ ูƒุงู† ูˆุงุญุฏ ุนู„ู‰ 64X ุฃูุณ 8 ุฒุงุฆุฏ constant
387
00:40:46,870 --> 00:40:58,800
C ุงู„ุณุคุงู„ ุงู„ุซุงู„ุซ ุจุฏู†ุง ุชูƒุงู…ู„ ู„ู…ูŠู† ู„ุฅู† ุงู„ X ููŠ DX ูŠุจู‚ู‰
388
00:40:58,800 --> 00:41:03,080
ู‡ุฐุง ุงู„ุฐูŠ ู„ู… ู†ุชุนุฑุถ ู„ู‡ ู‚ุจู„ ุฐู„ูƒ ููŠ ุงู„ chapter ุงู„ู…ุงุถูŠ
389
00:41:03,080 --> 00:41:07,060
ู„ุง ุงู„ lin ูˆู„ุง ุงู„ log ูƒู†ุง ุจู†ุดุชู‚ู‡ุง ุตุญ ุจุณ ุชูƒุงู…ู„
390
00:41:07,060 --> 00:41:13,460
ู…ุง ูƒู†ุงุด ู†ู‚ุฏุฑ ุนู„ูŠู‡ุง ู„ูƒู† ุงู„ุขู† ุฃู‚ุตุฏู†ุง ุจุณูŠุทุฉ ุฌุฏุง ูŠุจู‚ู‰
391
00:41:13,460 --> 00:41:18,280
ุฃู†ุง ุจุฏูŠ ุชูƒุงู…ู„ ู„ lin ุงู„ x ูŠุจู‚ู‰ ุฅุฌุจุงุฑูŠ ุจุฏูŠ ุฃุฎุฏ lin
392
00:41:18,280 --> 00:41:24,830
ุงู„ x ู‡ูŠ ุจูŠูˆู…ุด DV ู„ุฃู† ุฃู†ุง ุจุฏูŠ ูƒุงู…ู„ู‡ุง ุฃุตู„ุงู‹ ุชู…ุงู… ูŠุจู‚ู‰
393
00:41:24,830 --> 00:41:30,290
ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุจุฏูŠ ุฃุฎุฏ ุงู„ U ุชุณุงูˆูŠ ู„ู† ุงู„ X ูˆ DV ูƒู„ ุงู„ู„ูŠ
394
00:41:30,290 --> 00:41:37,750
ุจุถู„ ุฌุฏุด ุจุถู„ DX ุจุณ ู†ุดุชู‚ ู‡ุฐู‡ ูŠุจู‚ู‰ DU ุจูˆุงุญุฏ ุนู„ู‰ X DX
395
00:41:37,750 --> 00:41:45,690
ูˆู‡ุฐู‡ ุชูƒุงู…ู„ู‡ุง ุจ X ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ุชุณุงูˆูŠ U ููŠ ุงู„ V ูŠุจู‚ู‰
396
00:41:45,690 --> 00:41:54,070
X ู„ู† ุงู„ X ู†ุงู‚ุต ุชูƒุงู…ู„ V ู„ูŠู‡ ุจ X ุฏุงู„ูŠ ู„ูˆุงุญุฏ ุนู„ู‰ X
397
00:41:54,070 --> 00:42:01,010
DX ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ X ู„ู† ุงู„ X ู†ุงู‚ุต ุชูƒุงู…ู„
398
00:42:01,010 --> 00:42:09,110
ูˆุงุญุฏ ููŠ ุงู„ DX ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ X ู„ู† ุงู„ X ู†ุงู‚ุต X ุฒุงุฆุฏ
399
00:42:09,110 --> 00:42:17,290
constant C ุฅุฐุง ู…ู† ุงู„ุขู† ูุตุงุนุฏุงู‹ ุชูƒุงู…ู„ ู…ู†ุŸ ุชูƒุงู…ู„ ู„ู† ุงู„
400
00:42:17,290 --> 00:42:22,230
X ู‡ูˆ ุนุจุงุฑุฉ ุนู† X ู„ู† ุงู„ X ู†ุงู‚ุต X ูŠุจู‚ู‰ ู…ุณุฃู„ุชู†ุง ู…ู†
401
00:42:22,230 --> 00:42:27,010
ุงู„ุขู† ูุตุงุนุฏุงู‹ ุตุงุฑุช ุณู‡ู„ุฉ ุทุจ ู„ูˆ ูƒุงู†ุช log ุงู„ X ู„ู„ุฃุณุงุณ
402
00:42:27,010 --> 00:42:32,910
ุซู„ุงุซุฉ ู„ู† ุงู„ X ุนู„ู‰ ู„ู† ุซู„ุงุซุฉ ูˆุงุญุฏ ุนู„ู‰ ู„ู† ุซู„ุงุซุฉ ุจุฑุง
403
00:42:32,910 --> 00:42:34,710
ูˆุชูƒุงู…ู„ ู„ู† ุงู„ X ู‡ูŠูˆ
404
00:42:41,850 --> 00:42:59,710
ุณุคุงู„ ุงู„ุฑุงุจุน ุณุคุงู„ ุงู„ุฑุงุจุน ุณุคุงู„
405
00:42:59,710 --> 00:43:03,960
ุงู„ุฑุงุจุน ุณุคุงู„ ุงู„ุฑุงุจุน ุณุคุงู„ ุงู„ุฑุงุจุน ู…ู…ูƒู† ุฃุญุทู‡ุง ุจุตูŠุบุฉ
406
00:43:03,960 --> 00:43:10,860
ุฌุฏูŠุฏุฉ ุฌุฐุฑ ุงู„ X ุชุนู†ูŠ X ุฃุณ ู‚ุฏุงุด ู„ูˆ ุทู„ุนุชู‡ ููˆู‚ ูŠุจู‚ู‰
407
00:43:10,860 --> 00:43:18,650
ุจูŠุตูŠุฑ ูƒุฃู† ุงู„ู…ุณุฃู„ุฉ X ุฃุณ ุณุงู„ุจ ู†ุต ูุฅู† ุงู„ X ููŠ DX ุฃุธู† ู„ูˆ
408
00:43:18,650 --> 00:43:22,330
ุจุฏูŠ ุฃุฎุฏ ู„ุฅู† ุงู„ X ุชูƒุงู…ู„ ู…ุง ุนู†ุฏูŠุด ู…ุดูƒู„ุฉ ู„ุฅู†ู‡ุง ู…ูˆุฌูˆุฏุฉ
409
00:43:22,330 --> 00:43:27,790
ุนู†ุฏูŠ ู‡ูŠู‡ุง ููˆู‚ ุจุณ ู…ูƒู„ูƒุนุฉ ุดูˆูŠุฉ ู‡ูŠูƒุŒ ุชู…ุงู…ุŸ ู„ูƒู† ู„ูˆ ุจุฏูŠ
410
00:43:27,790 --> 00:43:32,750
ุฃุดุชู‚ู‡ุง ุณู‡ู„ ุฌุฏุงู‹ุŒ ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ู‡ุฐู‡ ุงู„ X ุฃุณ ุณุงู„ุจ ุงู„ู†ุต
411
00:43:32,750 --> 00:43:36,970
ุชุดุชู‚ู‡ุง ูˆุงู„ู„ู‡ ุชูƒุงู…ู„ู‡ุง ุนู„ู‰ ูƒู„ ุงู„ุฃู…ุฑุŒ ูŠุนู†ูŠ ุณู‡ู„ุฉุŒ ูŠุจู‚ู‰
412
00:43:36,970 --> 00:43:41,010
ู…ุฏุงู… ุงู„ุชู†ุชูŠู†ุฉ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงุดุชู‚ุงู‚ู‡ุง ุฃุณู‡ู„ ุจุฑูˆุญ ุจุงุฎุฏ U
413
00:43:41,010 --> 00:43:48,680
ุชุณุงูˆูŠ ู„ุฅู† ุงู„ X ุฅุฐุง ู„ูˆ ุฃุฎุฏุช ุงู„ U ุชุณุงูˆูŠ ู„ู† ุงู„ X ู‡ุฐุง
414
00:43:48,680 --> 00:43:56,700
ุจุฏูŠ ูŠุนุทูŠูƒ ุฃู† ุงู„ DU ูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ X DX ุงู„ุขู† ุงู„ DV
415
00:43:56,700 --> 00:44:02,700
ูƒู„ ุงู„ู„ูŠ ุจูŠุธู„ ุจูŠุธู„ ู‚ุฏุงุด X ุฃุณ ูˆ ู‡ู†ุง ุฏูŠ X ุฃุณ ู†ุต ู…ุน X
416
00:44:02,700 --> 00:44:08,880
ุจูŠุตูŠุฑ ูˆุงุญุฏ ุนู„ู‰ X ุฃุณ ู†ุต ู„ูˆ ุทู„ุนู†ุงู‡ุง ููˆู‚ ุจูŠุตูŠุฑ X ุฃุณ
417
00:44:08,880 --> 00:44:16,210
ู†ุงู‚ุต ู†ุต ููŠ ุงู„ู€ dx ูŠุจู‚ู‰ 2 ุฌุฐุฑ ุงู„ x ู„ุฃู† ุงู„ x
418
00:44:16,210 --> 00:44:23,030
ู†ุงู‚ุต 2 ุฃุถูŠู ู„ู„ุฃุณ ูˆุงุญุฏ ุจูŠุตูŠุฑ ุฃุณ ู†ุต ุนู„ู‰ ู†ุต ุฒุงุฆุฏ ูƒู†ุต
419
00:44:23,030 --> 00:44:31,450
ุชู† ุณูŠ ุฃูˆ 2 ุฌุฐุฑ ุงู„ x ู„ุฃู† ุงู„ x ู†ุงู‚ุต 4 ุฌุฐุฑ ุงู„ x ุฒุงุฆุฏ
420
00:44:31,450 --> 00:44:44,200
ูƒู†ุต ุชู† ุณูŠ ุจูŠู‚ูˆู„ ุงู„ุชูƒุงู…ู„ ู„ 3x ุชุฑุจูŠุน Tan inverse X VX
421
00:44:44,200 --> 00:44:51,800
ุชูุฑุถ
422
00:44:51,800 --> 00:44:57,660
V
423
00:44:57,660 --> 00:44:59,220
ูˆ ู„ุง ุชูุฑุถ DV
424
00:45:20,820 --> 00:45:25,820
ู„ุฃ ู…ุด ุตุญูŠุญ ู‡ุฐุง ุงู„ุฎุฑุงุจ ูƒู„ ุงู„ู‚ู†ุตุฉ ุงู„ู„ูŠ ุจู†ุฌู…ุนู‡ ุงู„ุขุฎุฑ
425
00:45:25,820 --> 00:45:28,760
ุจูŠู‚ูˆู„ ุงู„ู‚ู†ุตุฉ ุฃู†ุชูˆ ู‡ุชุนูˆุฏุด ุชูƒุงู„ูƒุฉ ู„ุฃู…ุง ู„ูƒุงู„ูƒุฉ
426
00:45:28,760 --> 00:45:34,760
ุนูŠู†ู‡ุงุŒ ู…ุงุดูŠ ูŠุง ุณูŠุฏูŠุŸ ุทูŠุจุŒ ู†ุฌูŠ ู„ุณุคุงู„ ู…ู† ู‡ุฐุง ุงู„ู‚ุจูŠู„ุŒ
427
00:45:34,760 --> 00:45:39,680
ูุจุงุฌูŠ ุจู‚ูˆู„ู‡ุŒ ุญุฏ ููŠูƒูˆุง ุจูŠุนุฑู ูŠูƒุงู…ู„ Tan inverse XุŸ
428
00:45:39,680 --> 00:45:46,040
ูˆู„ุง ูˆุงุญุฏุŒ ู…ุง ุนุฑูุด ู„ูƒู† ุงุดุชู‚ุงู‚ู‡ุง ุณู‡ู„ ูŠุจู‚ู‰ automatic
429
00:45:46,040 --> 00:45:52,580
ุจู‚ูˆู„ู‡ ุฎุฏู„ูŠ ุงู„ U ุชุณุงูˆูŠ Tan inverse X ูŠุจู‚ู‰ ุงู„ DV ู‡ุฐุง
430
00:45:52,580 --> 00:45:57,740
ุงู„ูƒู„ ุจูŠุนุฑู ูŠูƒุงู…ู„ู‡ุง ูƒู…ุงู† ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†ุŸ 3 X ุชุฑุจูŠุน
431
00:45:57,740 --> 00:46:05,490
ููŠ ุงู„ DX ูŠุจู‚ู‰ DU ูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ ูˆุงุญุฏ ุฒุงุฆุฏ X ุชุฑุจูŠุน ููŠ
432
00:46:05,490 --> 00:46:11,890
ุงู„ู€ DX ุฃุฎุฐู†ุง ุงุดุชู‚ุงู‚ู‡ุง ูˆุงู„ู€ V ุชุณุงูˆูŠ ู‚ุฏุงุด X ุชูƒุนูŠุจ ุนู„ู‰
433
00:46:11,890 --> 00:46:16,910
ุซู„ุงุซุฉ ู…ุน ุงู„ุซู„ุงุซุฉ ุงู„ู„ู‡ ูŠุณู‡ู„ ุนู„ูŠู‡ุง ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
434
00:46:16,910 --> 00:46:25,190
ูŠุณุงูˆูŠ U ููŠ V ูŠุจู‚ู‰ X ุชูƒุนูŠุจ Tan Inverse X ู†ุงู‚ุต ุชูƒุงู…ู„
435
00:46:25,190 --> 00:46:31,550
V ุงู„ู„ูŠ ู‡ูŠุจู‚ู‰ X ุชูƒุนูŠุจ ุฏูŠ ูŠูˆู… ูˆุงุญุฏ ุฒุงุฆุฏ X ุชุฑุจูŠุน ููŠ
436
00:46:31,550 --> 00:46:39,330
ุงู„ู€ DX ูˆุธู‡ุฑ ุนู„ู†ุง ุชูƒุงู…ู„ ุฌุฏูŠุฏ ุงู„ู„ูŠ ู‡ูˆ ู…ู† X ุชูƒุนูŠุจ ุนู„ู‰
437
00:46:39,330 --> 00:46:44,350
ูˆุงุญุฏ ุฒุงุฆุฏ X ุชุฑุจูŠุน ุจุฏู†ุง ู†ุดูˆู ูƒูŠู ุจุฏู†ุง ู†ุนู…ู„ ููŠ ู‡ุฐุง
438
00:46:44,350 --> 00:46:45,170
ุงู„ุณุคุงู„
439
00:46:52,210 --> 00:46:58,090
ู‚ุณู…ุฉ ู…ุทูˆู„ุฉุŒ ุฏุฑุฌุฉ ุงู„ุจุณุท ุฃูƒุจุฑ ู…ู† ุฏุฑุฌุฉ ุงู„ู…ู‚ุงู… ูŠุจู‚ู‰
440
00:46:58,090 --> 00:47:01,650
ู‚ู„ูŠู„ุฉ ุฌุจู„ ู‡ูŠูƒ ุฅุฐุง ุฏุฑุฌุฉ ุงู„ุจุณุท ุฌุช ุฏุฑุฌุฉ ุงู„ู…ู‚ุงู… ุฃูˆ
441
00:47:01,650 --> 00:47:05,770
ุฏุฑุฌุฉ ุงู„ุจุณุท ุฃูƒุจุฑ ู…ู† ุฏุฑุฌุฉ ุงู„ู…ู‚ุงู… ุจุฅู…ูƒุงู†ูƒ ุฃู† ุชู‚ุณู…
442
00:47:05,770 --> 00:47:13,170
ู‚ุณู…ุฉ ู…ุทูˆู„ุฉ ุจุฏูˆู† ุฃูŠ ู…ุดุงูƒู„ ุฅุฐุง ุจุชุฑูˆุญ ุชู‚ุณู… X ุชูƒุนูŠุจ ุนู„ู‰
443
00:47:13,170 --> 00:47:20,590
X ุชุฑุจูŠุน ุฒุงุฆุฏ 1 ุชู…ุงู…ุŸ ุจู‚ูˆู„ู‡ ุจุณูŠุทุฉ X ุชูƒุนูŠุจ ุนู„ู‰ X ุชุฑุจูŠุน
444
00:47:20,590 --> 00:47:27,350
ููŠู‡ุง ู‚ุฏุงุด X X ุชูƒุนูŠุจ ุฒุงุฆุฏ X ุฒุงุฆุฏ ุฎู„ูŠู‡ุง ู†ุงู‚ุต ูˆู‡ุฐุง
445
00:47:27,350 --> 00:47:32,770
ู†ุงู‚ุต ุจุฏู„ ุฅู†ู‡ ู‚ุฏุงุด ู†ุงู‚ุต X ูŠุจู‚ู‰ ุงู„ุจุงู‚ูŠ ู…ู† ุงู„ุฏุฑุฌุฉ
446
00:47:32,770 --> 00:47:39,350
ุงู„ุฃูˆู„ู‰ ูˆุงู„ู…ู‚ุณูˆู… ุนู„ูŠู‡ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ูŠุณุงูˆูŠ X
447
00:47:39,350 --> 00:47:46,050
ุชูƒุนูŠุจ Tan inverse X ู†ุงู‚ุต ุชูƒุงู…ู„ ุฎุงุฑุฌ ุงู„ู‚ุณู…ุฉ ุงู„ู„ูŠ ู‡ูˆ
448
00:47:46,050 --> 00:47:53,150
X ุงู„ุจุงู‚ูŠ ู†ุงู‚ุต X ุจุฏู†ุง ู†ุฌุณู…ู‡ ู„ุณู‡ ุนู„ู‰ ูˆุงุญุฏ ุฒุงุฆุฏ X
449
00:47:53,150 --> 00:48:00,570
ุชุฑุจูŠุน ูƒู„ู‡ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ DX ูŠุจู‚ู‰ ูŠุณุงูˆูŠ X ุชูƒุนูŠุจ Tan
450
00:48:00,570 --> 00:48:11,350
inverse X ู†ุงู‚ุตู‡ุง ุชูƒุงู…ู„ ู„ู„ X DX ุฒุงุฆุฏ ุชูƒุงู…ู„ ู„ู„ X
451
00:48:11,350 --> 00:48:18,980
ุนู„ู‰ ูˆุงุญุฏ ุฒุงุฆุฏ X ุชุฑุจูŠุน DX ูˆุฒุงุฆุฏ ุงู„ุชูƒุงู…ู„ ู„ูƒู„ ู…ู†ู‡ุง ูŠุจู‚ู‰
452
00:48:18,980 --> 00:48:26,320
ู‡ุฐุง X ุชูƒุนูŠุจ Tan inverse X ุฒูŠ ุจู‡ูˆ ู‡ุฐู‡ ุฅูŠุด ู†ุงู‚ุต X
453
00:48:26,320 --> 00:48:33,340
ุชุฑุจูŠุน ุนู„ู‰ ุงู„ุงุซู†ูŠู† ุทูŠุจ ู‡ุฐู‡ ุฅูŠู‡ุŸ ูุงุณุชูุงุฏูˆุง ู„ู„ู…ู‚ุงู…
454
00:48:33,340 --> 00:48:39,120
ุจุงุณุชุซู†ุงุก ุงุซู†ูŠู† ุจุณูŠุทุฉ ู†ุถุฑุจ ููŠ ุงุซู†ูŠู† ูˆ ุจู†ู‚ุณู… ุนู„ู‰
455
00:48:39,120 --> 00:48:43,640
ุงุซู†ูŠู† ูŠุจู‚ู‰ ูƒุงู†ูˆุง ุถุฑุจูŠู† ููŠ ูˆุงุญุฏ ุตุญูŠุญ ู„ุฃู†ู‡ ุบูŠุฑ
456
00:48:43,640 --> 00:48:50,580
ุงู„ู‚ูŠู…ุฉ ุฒุงุฆุฏ ู†ุต ู„ุงู† absolute value ู„ู„ู…ู‚ุงู… ู„ู…ุง ูƒุงู†
457
00:48:50,580 --> 00:48:55,120
ุงู„ู…ู‚ุงู… ุฏุงุฆู…ุงู‹ ูˆ ุฃุจุฏุงู‹ ู‚ูŠู…ุฉ ู…ูˆุฌุจุฉ ูŠุจุฏูˆ ุญุทูŠุช ุงู„
458
00:48:55,120 --> 00:49:00,960
absolute ูˆ ู„ุง ู…ุง ุญุทูŠุชุงุด ู…ุง ุนู†ุฏู‡ุงุด ู…ุดูƒู„ุฉ ูŠุนู†ูŠ ุจุนุฏ ู…ุง ุนู…ู„ู†ุง
459
00:49:00,960 --> 00:49:05,820
Integration by parts ุธู‡ุฑ ู„ู†ุง ุชูƒุงู…ู„ ุฌุฏูŠุฏ ู„ูƒ ุชุญุงูˆู„
460
00:49:05,820 --> 00:49:10,080
ุชุชุฎู„ุต ู…ู† ู‡ุฐุง ุงู„ุชูƒุงู…ู„ ุงู„ุฌุฏูŠุฏ ุจุฃูŠ ุทุฑูŠู‚ุฉ ู…ู† ุทุฑู
461
00:49:10,080 --> 00:49:14,580
ุงู„ุชูƒุงู…ู„ ุงู„ู„ูŠ ุงุชุนูˆุฏู†ุงู‡ุง ู‚ุจู„ ุฐู„ูƒ ู„ุญุฏ ู‡ู†ุง stop
462
00:49:14,580 --> 00:49:19,800
ูˆู†ุงุฒู„ู†ุง ููŠ ู†ูุณ ุงู„ section ูˆู†ุญุชุงุฌ ุฅู„ู‰ ุฃูƒุซุฑ ู…ู† ู†ุตู
463
00:49:19,800 --> 00:49:25,600
ุณุงุนุฉ ู„ุฅูƒู…ุงู„ ู‡ุฐุง ุงู„ section ุฅู† ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰ ููŠ
464
00:49:25,600 --> 00:49:28,300
ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ูŠูˆู… ุบุฏ