|
|
|
1 |
|
00:00:05,160 --> 00:00:07,800 |
|
ุทูุจ ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูุณูุงู
ุนูููู
ูุฑุญู
ุฉ ุงููู |
|
|
|
2 |
|
00:00:07,800 --> 00:00:10,660 |
|
ูุจุฑูุงุชู ุงูููู
ููุจุฏุฃ Chapter ุฌุฏูุฏ ููุญูู ุนู ุงู |
|
|
|
3 |
|
00:00:10,660 --> 00:00:14,960 |
|
deflection ูู ุงูู mechanical elements due to |
|
|
|
4 |
|
00:00:14,960 --> 00:00:19,540 |
|
applied loads ุทุจุนุง ุงูู loads ู
ู
ูู ุชููู ู
ุนุฑููุฉ ุจูููู |
|
|
|
5 |
|
00:00:19,540 --> 00:00:25,580 |
|
pure axial ุฃู pure bending ุฃู transverse ุฃู torsion |
|
|
|
6 |
|
00:00:25,580 --> 00:00:28,820 |
|
ุฃู ุฃู combination ู
ู ุงูู loading ูุฐู ูุชูุฌุฉ ุงู |
|
|
|
7 |
|
00:00:28,820 --> 00:00:36,220 |
|
loading ุจูุตูุฑ ุนูุฏู stresses ู deflections ูุฃู ููุดูู |
|
|
|
8 |
|
00:00:36,220 --> 00:00:41,160 |
|
ููู ูุญุณุจ ุงูู deflections ูู ุงูู mechanical members |
|
|
|
9 |
|
00:00:41,160 --> 00:00:44,980 |
|
ุฃูู ุดูุก ุฎููููู ุฃุนุฑู ุงููู ูู ุงูู elasticity ุงู |
|
|
|
10 |
|
00:00:44,980 --> 00:00:48,840 |
|
elasticity ูู ุฎุงุตูุฉ ููู
ุงุฏุฉ ุจุชู
ูููุง ู
ู ุงุณุชุฑุฌุงุน |
|
|
|
11 |
|
00:00:48,840 --> 00:00:53,600 |
|
ุดูููุง ุจุนุฏ ู
ุง ุฃุดูู ุงูุฃุญู
ุงู ุงูู elasticity ุจูุจูู |
|
|
|
12 |
|
00:00:53,600 --> 00:00:58,480 |
|
ุฎุงุตูุฉ ููู
ุงุฏุฉ ุงููู ูู ุฎุงุตูุฉ ุจุชู
ูููุง ู
ู ุงุณุชุฑุฌุงุน |
|
|
|
13 |
|
00:00:58,480 --> 00:01:03,860 |
|
ุดูููุง ุจุนุฏ ู
ุง ุฃุฑูุน ุงูุฃุญู
ุงู ุนููุง. ุงูู spring ุนุจุงุฑุฉ ุนู |
|
|
|
14 |
|
00:01:03,860 --> 00:01:09,360 |
|
mechanical element ุงููู ุฅุฐุง if I apply a force |
|
|
|
15 |
|
00:01:09,360 --> 00:01:13,840 |
|
ุนููู ุจูุตูุฑ ููู deformation ุงูู spring ุฅุฐุง ุฃูุง I |
|
|
|
16 |
|
00:01:13,840 --> 00:01:17,600 |
|
apply a force ุจูุณุงุนุฏูู ุงูู deformation ุฃู if it is |
|
|
|
17 |
|
00:01:17,600 --> 00:01:21,460 |
|
deformed ุจูุนุทููู ุงูู force ุฅุฐุง ุจุถุน ุฒูุจุฑู ููููู
ูู ุตุญ |
|
|
|
18 |
|
00:01:21,460 --> 00:01:28,160 |
|
ูุฐุง ูู if ุฒูุจุฑู ุงูู spring rate ุงูู general equation |
|
|
|
19 |
|
00:01:28,160 --> 00:01:30,780 |
|
ุงูู k ุจูุณุงูู ุงูู df by dy |
|
|
|
20 |
|
00:01:33,810 --> 00:01:44,990 |
|
ุงูู K ุจูุณุงูู |
|
|
|
21 |
|
00:01:44,990 --> 00:01:59,230 |
|
DF by DY ูุนูู ุงูู DF ุจูุณุงูู K of Y DY ูุนูู |
|
|
|
22 |
|
00:01:59,230 --> 00:02:02,710 |
|
ูู ุจุฏู ุฃุนู
ู Integral ู
ู Zero ูู F |
|
|
|
23 |
|
00:02:06,020 --> 00:02:20,160 |
|
ู
ู zero ูู Y ููููู ุนูุฏู F ุชูุงู
ู ูู |
|
|
|
24 |
|
00:02:20,160 --> 00:02:26,820 |
|
ุญุงูุฉ linear spring ุชููู ุงูู K constant ุชุทูุน ุจุฑุฉ |
|
|
|
25 |
|
00:02:26,820 --> 00:02:36,100 |
|
integration ููู k ุชูุงู
ู ู
ู zero ูู y dy ุงูู F ุจุชุณุงูู |
|
|
|
26 |
|
00:02:36,100 --> 00:02:44,360 |
|
ูุฐุง ุจุชููู ุชุณุงูู k ูู y ูุฐุง ูู ุญุงูุฉ linear spring |
|
|
|
27 |
|
00:02:57,360 --> 00:03:05,080 |
|
ูุนูู ุจุชููู ุนูุงูุฉ ุจูู ุงูู F ู ุงูู Y ู |
|
|
|
28 |
|
00:03:05,080 --> 00:03:13,500 |
|
ุงูู slope ูู ุฅูุดุ K ููููุฑ ุนู ุงูู slope ุฅูุดุ ุซุงุจุช ููู |
|
|
|
29 |
|
00:03:13,500 --> 00:03:17,540 |
|
ูู ูุงูุช non linear ุงูุนูุงูุฉ ุจูู ุงูู force |
|
|
|
30 |
|
00:03:28,670 --> 00:03:35,930 |
|
ุฅุฐุง ูุงูุช nonlinear ู
ุนูุงุชู ุงูู K ุงูู slope ุจุชุชุบูุฑ |
|
|
|
31 |
|
00:03:35,930 --> 00:03:41,630 |
|
ุตุญุ K ุจุชููู function of Y ููุง ููุงุฎุฏ ุงูุญุงูุฉ ุฅู ุงูู |
|
|
|
32 |
|
00:03:41,630 --> 00:03:45,270 |
|
slope is constant ูุนูู ุงูู spring is linear ูุนูู ุงูู |
|
|
|
33 |
|
00:03:45,270 --> 00:03:52,470 |
|
F ุจุชุณุงูู K ูู Y ููุงุฎุฏ |
|
|
|
34 |
|
00:03:52,470 --> 00:03:53,290 |
|
ุฃูู ุญุงูุฉ |
|
|
|
35 |
|
00:03:56,470 --> 00:03:58,730 |
|
ุงุญูุง ุงููุฏู ุฅููุง ูุญุงูู ูุชุนุงู
ู ู
ุน ุงูู mechanical |
|
|
|
36 |
|
00:03:58,730 --> 00:04:02,470 |
|
elements ูุฃููุง |
|
|
|
37 |
|
00:04:02,470 --> 00:04:07,670 |
|
ุฒูุจุฑู ูุฏู ูุนูู ุฅุฐุง ุนูุฏู mechanical element ุนูุฏู |
|
|
|
38 |
|
00:04:07,670 --> 00:04:14,370 |
|
ู
ุซูุง bar ุชุญุช |
|
|
|
39 |
|
00:04:14,370 --> 00:04:22,000 |
|
ุชุฃุซูุฑ force F ูุนูู under pure tension ููููู ุงูู |
|
|
|
40 |
|
00:04:22,000 --> 00:04:24,520 |
|
stress ู ุฃูุง ุทุจุนุง ูู ุงูู elastic region ุฃูุง ูู ุงูู |
|
|
|
41 |
|
00:04:24,520 --> 00:04:28,000 |
|
design specially ูู ุงูู elastic region ุงูู sigma |
|
|
|
42 |
|
00:04:28,000 --> 00:04:37,120 |
|
ูุชููู E ูู epsilon ุทุจุนุง ูุชูุฌุฉ ุงูู force ููุตูุฑ ูู |
|
|
|
43 |
|
00:04:37,120 --> 00:04:41,520 |
|
ุฅููุ ูู |
|
|
|
44 |
|
00:04:41,520 --> 00:04:49,720 |
|
deformation ุฅููุ Delta ุงูู sigma ุดู ูุณุงููุ F ุนูู A |
|
|
|
45 |
|
00:04:49,720 --> 00:04:50,180 |
|
ุตุญุ |
|
|
|
46 |
|
00:04:53,120 --> 00:05:04,160 |
|
ุจุชุณุงูู ุงูู epsilon ุงููู ูู ุงูู delta ุนูู L ูุญุณู |
|
|
|
47 |
|
00:05:04,160 --> 00:05:16,540 |
|
ุนูุฏู ุงูู F ุจุชุณุงูู A E ุนูู L ูู Delta ุฅุฐุง ุจุญุท ูุฐู ุฒู |
|
|
|
48 |
|
00:05:16,540 --> 00:05:20,820 |
|
ููู ู ูุฐูุฑ ุฒูุจุฑู ุงููู ูู ุงูู F |
|
|
|
49 |
|
00:05:24,120 --> 00:05:33,900 |
|
ุจุชุณุงูู K ูู Y ู
ุนูุงุชู |
|
|
|
50 |
|
00:05:33,900 --> 00:05:41,040 |
|
ุฅุฐุง ุนูุฏู bar under axial |
|
|
|
51 |
|
00:05:41,040 --> 00:05:49,460 |
|
loading ู
ุนูุงุชู ูู ุฒูุจุฑู ูู ุฒูุจุฑู ุงูู K ุชุจุนู ุงููู ูู |
|
|
|
52 |
|
00:05:49,460 --> 00:06:00,630 |
|
A ูู E ุนูู L ูู ุฒูุจุฑู ุงูู K ุจุชุงุนุชู A ูู E ุนูู L |
|
|
|
53 |
|
00:06:00,630 --> 00:06:06,350 |
|
ุทุจุนุง ูุงุถุญ ุงูู stiffness ูู ู
ุง ูุงู ู
ูุทุน ุฃูุจุฑ ูู ู
ุง |
|
|
|
54 |
|
00:06:06,350 --> 00:06:11,310 |
|
ูุงู stiff ุฃูุซุฑ ุจูููู ุงูุฒูุจุฑู ุตุญุ stiff ุฃูุซุฑ ูุนูู |
|
|
|
55 |
|
00:06:11,310 --> 00:06:16,710 |
|
ุนุดุงู ุฃุนู
ู ูู
ูุฉ ู
ู ุงูู deformation ู
ุญุชุงุฌ ููุฉ ุฃูุจุฑ |
|
|
|
56 |
|
00:06:16,710 --> 00:06:24,820 |
|
ููู ู
ุง ูููู ุฃุทูู ูู ู
ุง ูููู ุฃูู ูู
ุบุท ุฃุณูู ุตุญุ ู ุงูู |
|
|
|
57 |
|
00:06:24,820 --> 00:06:29,060 |
|
E ุงุญูุง ูู ุงูู material science ุญูููุง ููู
ูุนูู ุงูู E |
|
|
|
58 |
|
00:06:29,060 --> 00:06:34,360 |
|
ู
ู
ูู ุชุนุชุจุฑ ู
ุคุดุฑ ุนูู ุฒูุจุฑููุฉ ุจุชุงุนุฉ ุงูู
ุงุฏุฉ ูุฅูู ุงูู |
|
|
|
59 |
|
00:06:34,360 --> 00:06:38,900 |
|
K ุจุชุชูุงุณุจ ุชูุงุณุจุง ุทุฑุฏูุง ู
ุน ุงูู ุฅูุด ุงูู E ู
ุนูุงุชู ุงูู K ูู |
|
|
|
60 |
|
00:06:38,900 --> 00:06:43,840 |
|
ุญุงูุฉ mechanical element under axial loading ุจุชุณุงูู A |
|
|
|
61 |
|
00:06:43,840 --> 00:06:49,940 |
|
E ุนูู L ูู |
|
|
|
62 |
|
00:06:49,940 --> 00:06:50,440 |
|
ุญุงูุฉ |
|
|
|
63 |
|
00:06:55,730 --> 00:07:05,910 |
|
bar ู
ูุทุน ู
ุฏูุฑ ู
ุซุจุช |
|
|
|
64 |
|
00:07:05,910 --> 00:07:12,610 |
|
ููุทุฑู ุงูุซุงูู ูู ุนููู torque T ุญูุซ ูุตูุฑ ููู angle ู |
|
|
|
65 |
|
00:07:12,610 --> 00:07:19,870 |
|
twist theta ุตุญุ ุงูู theta ุจูุณุชูู TL |
|
|
|
66 |
|
00:07:22,010 --> 00:07:31,090 |
|
ุนูู ุฌ ุฌ ูุนูู ุงูู torque ูุชููู ุจุชุณุงูู ุฌ |
|
|
|
67 |
|
00:07:31,090 --> 00:07:44,630 |
|
ุฌ ุนูู L ูู ุงูู theta ุงูู |
|
|
|
68 |
|
00:07:44,630 --> 00:07:47,970 |
|
... ุงู ... ุงูู T ุนูุฏู ุงูู F |
|
|
|
69 |
|
00:07:51,800 --> 00:07:57,860 |
|
ุงูุขู ุงูู theta ูู angular displacement ูุฐู linear |
|
|
|
70 |
|
00:07:57,860 --> 00:08:03,800 |
|
displacement T ูู force ูุชุญุงูู ุชุนู
ู rotation ุตุญ |
|
|
|
71 |
|
00:08:03,800 --> 00:08:10,400 |
|
ููู
ุง ุชุนู
ู ุชู
ุงุซู ุจูู ุงูู
ุนุงุฏูุชูู ุจุชููู ุงูู K ูู ุญุงูุฉ |
|
|
|
72 |
|
00:08:10,400 --> 00:08:13,880 |
|
round bar under torsion |
|
|
|
73 |
|
00:08:17,780 --> 00:08:27,840 |
|
ุฌ ุฌ ุนูู ุงูู ูุนูู ูุฃูู ูุฐุง ุฒูุจุฑู ูู ูุนูุง ุฒูุจุฑู ููู |
|
|
|
74 |
|
00:08:27,840 --> 00:08:40,820 |
|
ุงูู k ุจุชุงุนุชู ุฌ ุฌ ุนูู ุงูู ูุฃู |
|
|
|
75 |
|
00:08:40,820 --> 00:08:43,020 |
|
ูู ุญุงูุฉ beams straight beams |
|
|
|
76 |
|
00:08:56,440 --> 00:09:09,800 |
|
straight beams ูุนููู |
|
|
|
77 |
|
00:09:09,800 --> 00:09:10,360 |
|
some loading |
|
|
|
78 |
|
00:09:17,240 --> 00:09:21,160 |
|
ูุชุตูุฑ ููู some bending ุตุญ ูุนูู ู
ู
ูู ูุทูุน ุงูู shear |
|
|
|
79 |
|
00:09:21,160 --> 00:09:26,120 |
|
diagram ู ุงูู bending moment diagram ุทุจุนุง ูุชูุฌุฉ ุงูู |
|
|
|
80 |
|
00:09:26,120 --> 00:09:34,640 |
|
loading ูุชุตูุฑ ุงูู deformation ุงูู deformation ุนูุฏ ุฃู |
|
|
|
81 |
|
00:09:34,640 --> 00:09:42,060 |
|
ููุทุฉ ููููู ููู ุนูุฏ ููู ููู ูููู ููู ู
ุฑูุฒ ุชูููุฑู ุตุญ |
|
|
|
82 |
|
00:09:44,080 --> 00:09:48,200 |
|
ูู ุนูุงูุฉ ุจูู ู
ุฑูุฒ ุงูุชูููุฑ ุนูุฏ ุฃู location ูุงุญุฏ ุนูู |
|
|
|
83 |
|
00:09:48,200 --> 00:09:56,500 |
|
ุฑู ุจุงุณู
ู M ุนูู E ูู I M ูู ุงูู bending moment at |
|
|
|
84 |
|
00:09:56,500 --> 00:10:00,060 |
|
the specified location ู ุงูู E ุงููู ูู ุงูู modulus |
|
|
|
85 |
|
00:10:00,060 --> 00:10:03,820 |
|
ูู ุงูุฃุณุงุณูู ู I ูู moment of inertia ููู
ูุทุน |
|
|
|
86 |
|
00:10:03,820 --> 00:10:11,320 |
|
ููู section ุทุจุนุง ุงููุงุญุฏ ุนูู ุฑู ู
ู ุงูู calculus course |
|
|
|
87 |
|
00:10:11,320 --> 00:10:19,290 |
|
ุงูู calculus ู
ุด ูุฎุด ูู ุงุดุชูุงูุฉ ุจุชุณุงูู ุงุดุชูุงููุง ู
ุด |
|
|
|
88 |
|
00:10:19,290 --> 00:10:30,790 |
|
ุตุนุจุฉ ุงููู ูู d square y ุนูู dx square ูู ูุงุญุฏ ุฒุงุฆุฏ |
|
|
|
89 |
|
00:10:30,790 --> 00:10:42,130 |
|
dy ุนูู dx ุงููู ุชุฑุจูุน ุงููู ุฃุณุทูุฉ ุนูู ุงุชููู ูุนูู |
|
|
|
90 |
|
00:10:42,130 --> 00:10:43,130 |
|
ุฅุฐุง ุนูุฏู ูุงู ุงูู beam |
|
|
|
91 |
|
00:10:47,220 --> 00:10:59,480 |
|
ูุตุงุฑ ููู deflection ุงูู |
|
|
|
92 |
|
00:10:59,480 --> 00:11:10,380 |
|
dy ุนูู dx ูู ุงูู slope ุงูู dy ุนูู dx ูู ุงูู slope ุนูุฏ |
|
|
|
93 |
|
00:11:10,380 --> 00:11:13,040 |
|
ุงูููุทุฉ ูุฐู ูู ุงูู y ุตุญ ูุฐู ุงูู y ุงููู ูู ุงูู |
|
|
|
94 |
|
00:11:13,040 --> 00:11:21,800 |
|
deflection ู ุงูู slope ุงููู ูู dy ุนูู dx ุทุจุนุง ูู ุงูู |
|
|
|
95 |
|
00:11:21,800 --> 00:11:27,340 |
|
beams ุจุชููู ุงูู dy ุนูู dx ู
ุง ุชูููุด ู
ุงูุญูุธุฉ ุงูู slope |
|
|
|
96 |
|
00:11:29,090 --> 00:11:33,790 |
|
ุจุชููู small ุตุบูุฑุฉ ูุนูู ุจุชููู ูุฑูุจุฉ ู
ู ุงูุตูุฑ ูุนูู ุงูู |
|
|
|
97 |
|
00:11:33,790 --> 00:11:40,310 |
|
dy ูู ุงูู beams ุนูู dx ุจุชููู ุฃุตุบุฑ ุจูุซูุฑ ู
ู ุงููุงุญุฏ |
|
|
|
98 |
|
00:11:40,310 --> 00:11:46,170 |
|
ุฃุตุบุฑ ุจูุซูุฑ ู
ู ุงููุงุญุฏ ูุนูู ูู ูุงูุช ู
ุซูุง ูุญูู ุงูู |
|
|
|
99 |
|
00:11:46,170 --> 00:11:51,850 |
|
slope ู
ุซูุง one degree ู
ุซูุง one degree ูุชููู dy ุนูู |
|
|
|
100 |
|
00:11:51,850 --> 00:11:55,110 |
|
ู
ุฆุชูู ู ุซู
ุงููู ุงููู ููุญุณููู dy ุนูู ู
ุฆุชูู ู ุซู
ุงููู |
|
|
|
101 |
|
00:11:55,110 --> 00:11:56,350 |
|
account ุชุทูุน |
|
|
|
102 |
|
00:12:16,830 --> 00:12:25,430 |
|
.017 ูุนูู ูู ุญุทูุช ูุงุญุฏ ูุฐุง ุฃุฎุฐ ุงูู term ูุฐุง ูุงุญุฏ |
|
|
|
103 |
|
00:12:25,430 --> 00:12:38,130 |
|
ุฒุงุฆุฏ .017 ุชุฑุจูุน ุงููู ูู ูุงุญุฏ ู ูุต ุงุญุณุจูุง ููู ุฃูุง |
|
|
|
104 |
|
00:12:38,130 --> 00:12:39,650 |
|
ุจุนูุถ ูู ูุฐุง ูู ุงูุจูุฑุฉ ุจุณ |
|
|
|
105 |
|
00:12:48,370 --> 00:13:01,210 |
|
ุชุทูุน one zero ุชู
ุงููุฉ ูุนูู ุชูุฑูุจุง ูุงุญุฏ ุชูุฑูุจุง ูุงุญุฏ |
|
|
|
106 |
|
00:13:01,210 --> 00:13:13,370 |
|
ูุงุญุฏ ุตูุฑ ุตูุฑ ุฃุฑุจุนุฉ ูู
ุงู ุตูุฑ ู
ุนูุงุชู ุจุชููู ูุนูุง ุงูู |
|
|
|
107 |
|
00:13:13,370 --> 00:13:17,910 |
|
dy ูููู ูุฐุง ุงูู term ุจูููู ุฃูู ุจูุซูุฑ ู
ู ูุงุญุฏ ู
ุนูุงุชู |
|
|
|
108 |
|
00:13:17,910 --> 00:13:22,450 |
|
ุจูููู ูุญูู ุฅู ูุงุญุฏ ุนูู ุฑู ุจุชุณุงูู ุชูุฑูุจุง ู ุจุฏูุฉ |
|
|
|
109 |
|
00:13:22,450 --> 00:13:31,150 |
|
ุนุงููุฉ ุจุชุณุงูู d square y ุนูู d x square ู
ุนูุงุชู ุงุชุนูุฏ |
|
|
|
110 |
|
00:13:31,150 --> 00:13:37,770 |
|
ุนู ูุงุญุฏ ุนูู ุฑู ุจูุตูุฑ ุจูุณุงูู d square y by dx |
|
|
|
111 |
|
00:13:37,770 --> 00:13:42,090 |
|
square ู
ุนูุงุชู ุฅุฐุง ุฃูุง ุนุงุฑู ุงูู bending moment |
|
|
|
112 |
|
00:13:45,350 --> 00:13:51,770 |
|
equation ูุนุงุฑู ุงูู I ุจูุฏุฑ ุฃุนู
ู integration ู
ุฑุชูู |
|
|
|
113 |
|
00:13:51,770 --> 00:13:57,810 |
|
ูุงุทูุน ุงูู equation ุฃูู ุดูุก ุงููู ูู ุงูู slope ุฃูู |
|
|
|
114 |
|
00:13:57,810 --> 00:14:00,090 |
|
ู
ุฑุฉ ุจูู ุฃุนู
ู integration ุฃูู ู
ุฑุฉ ุจุทูุน ููู
ุฉ ุงูู |
|
|
|
115 |
|
00:14:00,090 --> 00:14:02,910 |
|
deflection at any location as a function of X |
|
|
|
116 |
|
00:14:12,560 --> 00:14:20,460 |
|
ุทูุจ ุฎูููุง ูุดูู ู
ุซุงู ุนูุฏู |
|
|
|
117 |
|
00:14:20,460 --> 00:14:32,860 |
|
beam ุนูุฏู |
|
|
|
118 |
|
00:14:32,860 --> 00:14:35,500 |
|
beam ุนููู ุงูู load ู
ูุฒุน |
|
|
|
119 |
|
00:14:45,260 --> 00:15:04,540 |
|
ุงูู load ุงูู
ูุฒุน ุงููู ูู ุงูู W ุทูู |
|
|
|
120 |
|
00:15:04,540 --> 00:15:10,620 |
|
ุงูู beam 2 ุงูุด ุทุจุนุง ููููู ุฑุฏ ุงููุนู ุนูู ุงูุทุฑู |
|
|
|
121 |
|
00:15:10,620 --> 00:15:20,070 |
|
ูุฐุง WL ุนูู ุงุชููู ุตุญุ ููุงู ูุนูุฏู ููุง R ูุงุญุฏ ุงููู ูู |
|
|
|
122 |
|
00:15:20,070 --> 00:15:29,350 |
|
WL ุนูู ุงูุชุงูู ูููุง ุนูุฏู R ุงูุชุงูู ุจุชุณุงูู WL ุนูู ุงูุชุงูู |
|
|
|
123 |
|
00:15:29,350 --> 00:15:33,910 |
|
ููุฐุง ุงูุทูู L |
|
|
|
124 |
|
00:15:47,600 --> 00:15:53,720 |
|
ูู ุจุฏู ุฃุฑุณู
ุงู ... ุงูู shear force diagram ... ุงูู shear |
|
|
|
125 |
|
00:15:53,720 --> 00:15:54,060 |
|
diagram |
|
|
|
126 |
|
00:16:25,670 --> 00:16:33,130 |
|
ุจุจุฏุฃ ููุง ู WL ุนูู ุงุชููู ุตุญ ุงูู shear ูุนูู ู WL ุนูู |
|
|
|
127 |
|
00:16:33,130 --> 00:16:45,290 |
|
ุงุชููู ูุชุฑูุญ ุงูู area ูุฐู ุงููู ูู minus WL ุนูู |
|
|
|
128 |
|
00:16:45,290 --> 00:16:48,910 |
|
ุงุชููู ุตุญ ูุฐุง ุงูู shear diagram |
|
|
|
129 |
|
00:16:55,130 --> 00:17:03,030 |
|
ุงู ู
ุงุดู ูุนุฑู ุฃุนุทููููุง ุงูู moment ูุงุฏ ุจุชู
ุซู ุฅููุ ุงูู |
|
|
|
130 |
|
00:17:03,030 --> 00:17:10,830 |
|
slope ุตุญุ ูุชููู ... ูุชุจุฏุฃ ู
ู zero ุฒูุงุฏ ุงูู
ุณุงุญุฉ ูุฐูุ |
|
|
|
131 |
|
00:17:10,830 --> 00:17:18,430 |
|
ู
ุธุจูุทุ ููููู ุดูู ุงูู moment ุฏุง ูุง ุฌู
ุงุนุฉ ูู |
|
|
|
132 |
|
00:17:18,430 --> 00:17:20,730 |
|
ุฃุฎุฏุช at any location x ููุง |
|
|
|
133 |
|
00:17:28,340 --> 00:17:33,440 |
|
at any location x ูุงุฎุฏุช |
|
|
|
134 |
|
00:17:33,440 --> 00:17:38,120 |
|
free body ูููู |
|
|
|
135 |
|
00:17:38,120 --> 00:17:41,900 |
|
ุนูุฏ ููุง ูุงู |
|
|
|
136 |
|
00:17:41,900 --> 00:17:51,840 |
|
ุนูุฏ R ูุงุญุฏ so WL ุนูู ุงุชููู ููุง |
|
|
|
137 |
|
00:17:51,840 --> 00:17:56,820 |
|
ุงูู shear ูุฐู |
|
|
|
138 |
|
00:17:56,820 --> 00:18:10,880 |
|
x ุฃุฎุฐุช ูุณุจุฉ ูุนูู ูุฐู ุงูู V ุงูู V ุงูู V ุนูู WL ุนูู 2 |
|
|
|
139 |
|
00:18:10,880 --> 00:18:23,960 |
|
ูุฐู ุนูู ูุฐู ุจุชุณุงูู L ุนูู 2 ูุงูุต X ุนูู L ุนูู 2 ุตุญุ |
|
|
|
140 |
|
00:18:23,960 --> 00:18:25,640 |
|
ู
ุธุจูุทุ |
|
|
|
141 |
|
00:18:28,370 --> 00:18:41,890 |
|
ูุนูู ููููู ุฃูู ุงูู V ูุชููู ุณูู WL ุนูู 2 ูู 1 |
|
|
|
142 |
|
00:18:41,890 --> 00:18:52,510 |
|
ูุณู
ุช L ุนูู 2 ุนูู L ุนูู 2 ูุงูุต 2X ุนูู |
|
|
|
143 |
|
00:18:52,510 --> 00:18:54,350 |
|
L ุตุญุ |
|
|
|
144 |
|
00:18:56,600 --> 00:19:00,680 |
|
ุฎููููู ุฃุชุฃูุฏ ุจู
ุนุงุฏูุฉ ุตุญ ููุญุท X ุจุงูุณุงููุฉ ุตูุฑ ุชุทูุน |
|
|
|
145 |
|
00:19:00,680 --> 00:19:04,680 |
|
ุงูู V ูู ุงูุฃูู ุฃูุด WL ุนูู ุงุชููู ุฎููููู ุฃุญุท X |
|
|
|
146 |
|
00:19:04,680 --> 00:19:15,280 |
|
ุจุงูุณุงููุฉ ุงูู .. ูุนูู ูุชููู 1 ูุงูุต 2 ูุงูุต |
|
|
|
147 |
|
00:19:15,280 --> 00:19:17,720 |
|
1 ูุชููู minus WL ุนูู ุงุชููู ู
ุนูุงู ุงูู
ุนุงุฏูุฉ ุฃูุด |
|
|
|
148 |
|
00:19:17,720 --> 00:19:22,320 |
|
ุตุญูุญ ุงุญูุง |
|
|
|
149 |
|
00:19:22,320 --> 00:19:27,810 |
|
ูู ุนูุงูุฉ ุจูู ุงูู .. ุงูู shear ู ุงูู moment ู ููู ุนูุงูุฉ |
|
|
|
150 |
|
00:19:27,810 --> 00:19:32,490 |
|
ุจูู ุงูู V ู |
|
|
|
151 |
|
00:19:32,490 --> 00:19:43,330 |
|
ุงูู Q ู ููู ุนูุงูุฉ ุจูู moment ู ุงูู V ูุงุถุญ ุฃูู ุงูู V ุฃูุด |
|
|
|
152 |
|
00:19:43,330 --> 00:19:49,630 |
|
ุงูุณุงุนุฉ dM by |
|
|
|
153 |
|
00:19:49,630 --> 00:19:50,850 |
|
dX ุตุญุ |
|
|
|
154 |
|
00:19:54,280 --> 00:20:01,160 |
|
ูุฐุง ุฏุฑุฌุชู ุฃูู ู
ู ูุฐุง ูู
ุนูุงู ุงูู V ุจูุณุงูู dM by dX |
|
|
|
155 |
|
00:20:01,160 --> 00:20:05,500 |
|
ูุนูู ุงูู dM ุจุญุซ |
|
|
|
156 |
|
00:20:05,500 --> 00:20:17,200 |
|
ุณูู V dX ูู ุฏุนูุง ุงูุชูุงู
ู ู
ู ุตูุฑ ูู M ูููู ุชูุงู
ู ุงูู |
|
|
|
157 |
|
00:20:17,200 --> 00:20:21,460 |
|
V ุนูุฏ ุงูุตูุฑ ุจูุณุงูู WL ุนูู ุงุชููู |
|
|
|
158 |
|
00:20:25,780 --> 00:20:37,940 |
|
ูู X ุญูููู ู
ุนูุงุชู ุนูุฏู M ุจุณ ููุช ุณุงูู ุชูุงู
ู ุงูู V |
|
|
|
159 |
|
00:20:37,940 --> 00:20:50,790 |
|
ุงููู ูู WL ุนูู ุงุชููู ูู 1 ูุงูุต 2X ุนูู L dX |
|
|
|
160 |
|
00:20:50,790 --> 00:21:09,330 |
|
ูุญุฏูุฏ ุชูุงู
ู ู
ู WL ุนูู 2 ู
ู 0 ูู X ูุนูู |
|
|
|
161 |
|
00:21:09,330 --> 00:21:21,500 |
|
ุงุญูุง ูููู ุนูุฏู WL ุนูู ุงุชููู ูู X ูุงูุต X ุชุฑุจูุน ุนูู |
|
|
|
162 |
|
00:21:21,500 --> 00:21:29,700 |
|
L ู
ู ุตูุฑ ูู X ูู
ุนูุงุชู ูุชููู WL |
|
|
|
163 |
|
00:21:29,700 --> 00:21:40,200 |
|
ุนูู ุงุชููู ูู X ูุงูุต WX |
|
|
|
164 |
|
00:21:40,200 --> 00:21:49,730 |
|
ุชุฑุจูุน ุนูู ุงุชููู ููู ุงูู
ุนุงุฏูุฉ ุงููู ูู ู
ุทูุนูุงุ ุงูุขู |
|
|
|
165 |
|
00:21:49,730 --> 00:21:57,870 |
|
ุนุดุงู ุฃูุฏู ุงูู deflection ุงุญูุง ุญูููุง M ุนูู EI ูุณุงูู D |
|
|
|
166 |
|
00:21:57,870 --> 00:22:08,030 |
|
Square Y ุนูู DX Square ูุนูู ุงูู |
|
|
|
167 |
|
00:22:08,030 --> 00:22:12,110 |
|
M ุนูุฏู ุงููู ูู W |
|
|
|
168 |
|
00:22:13,610 --> 00:22:19,570 |
|
L ูุญุฏ |
|
|
|
169 |
|
00:22:19,570 --> 00:22:26,510 |
|
ุนูู EI ูู |
|
|
|
170 |
|
00:22:26,510 --> 00:22:31,910 |
|
WL |
|
|
|
171 |
|
00:22:31,910 --> 00:22:39,770 |
|
ุนูู ุงุชููู ูู X ูุงูุต WX ุชุฑุจูุน ุนูู ุงุชููู |
|
|
|
172 |
|
00:22:45,170 --> 00:22:49,730 |
|
ู
ุนูุงุชู dy by |
|
|
|
173 |
|
00:22:49,730 --> 00:22:54,150 |
|
dx ูุชููู |
|
|
|
174 |
|
00:22:54,150 --> 00:23:01,470 |
|
ุงูุชูุงู
ู ูุฐุง ูุชููู ุนูู E constant ู I constant |
|
|
|
175 |
|
00:23:01,470 --> 00:23:10,030 |
|
ูุชููู 1 ุนูู EI 1 |
|
|
|
176 |
|
00:23:10,030 --> 00:23:23,390 |
|
ุนูู EI ุงูุชูุงู
ู ู
ู ุตูุฑ ูู X ูู WL ุนูู ุงุชููู ูู X ูุงูุต |
|
|
|
177 |
|
00:23:23,390 --> 00:23:33,490 |
|
WX ุชุฑุจูุน ุนูู ุงุชููู DX ูุนูู ูุชููู ุทุจุนูุง ุฒุงุฆุฏ ุฃูุด |
|
|
|
178 |
|
00:23:33,490 --> 00:23:36,830 |
|
constant ู
ุง ุญุทููุชุด ุญุฏูุฏ ุงู integration |
|
|
|
179 |
|
00:23:41,500 --> 00:23:46,020 |
|
ุฅุฐุง ุนู
ูุช ุฒู ููู ู
ุง ุญุทููุชุด ุญุฏูุฏ ุงู integration ูุชููู |
|
|
|
180 |
|
00:23:46,020 --> 00:23:58,760 |
|
ูุนู
ู ุงุดุชูุงู 1 ุนูู EI ูู WL |
|
|
|
181 |
|
00:23:58,760 --> 00:24:16,160 |
|
X ุชุฑุจูุน ุนูู 4 ูุงูุต W X ุชูุนูุจ ุนูู 6 ุฒุงุฆุฏ C1 |
|
|
|
182 |
|
00:24:16,160 --> 00:24:23,500 |
|
ูุฐู dy by dx ุตุญุ ุนุดุงู |
|
|
|
183 |
|
00:24:23,500 --> 00:24:26,640 |
|
ุงุญุณุจ y deflection ุจุนู
ู ูู
ุงู ู
ุฑุฉ integration ุญุณูู |
|
|
|
184 |
|
00:24:26,640 --> 00:24:31,380 |
|
ุฏู ุงูู y ุจุงูุณุงููุฉ |
|
|
|
185 |
|
00:24:31,380 --> 00:24:35,220 |
|
1 |
|
|
|
186 |
|
00:24:35,220 --> 00:24:38,820 |
|
ุนูู EI ุชูุงู
ู |
|
|
|
187 |
|
00:24:40,480 --> 00:24:55,560 |
|
WL ุนูู 4 X ุชุฑุจูุน ูุงูุต W X ุชูุนูุจ ุนูู 6 ุฒุงุฆุฏ |
|
|
|
188 |
|
00:24:55,560 --> 00:25:02,420 |
|
C1 DX |
|
|
|
189 |
|
00:25:06,390 --> 00:25:13,370 |
|
ุจููู
ููุง ูุช ุฒุงุฆุฏ C2 ูุฃู ุฎูุงุต ุตุงุฑ ุฌุฒุก ู
ู dy by dx |
|
|
|
190 |
|
00:25:13,370 --> 00:25:19,810 |
|
ุชุญุณูู ุนูุฏู 1 |
|
|
|
191 |
|
00:25:19,810 --> 00:25:27,010 |
|
ุนูู ุฃู ุฎูููุง ูุทูุน ุงูู W ุจุฑุฉ 1 ุนูู EI ูู |
|
|
|
192 |
|
00:25:27,010 --> 00:25:33,410 |
|
ุทุจุนูุง ุงูู 1 ุนูู EI ุจุณ ุฏุงุฎู ุนูู ูุฐุง ุงูู term ูู |
|
|
|
193 |
|
00:25:38,020 --> 00:25:50,720 |
|
WL X ุชูุนูุจ ุนูู 12 ูุงูุต W X ูููุฉ 4 ุนูู 24 |
|
|
|
194 |
|
00:25:50,720 --> 00:25:55,240 |
|
ู 20 ุฒุงุฆุฏ |
|
|
|
195 |
|
00:25:55,240 --> 00:26:01,100 |
|
C1 X ุฒุงุฆุฏ C2 |
|
|
|
196 |
|
00:26:14,210 --> 00:26:22,390 |
|
ุทูุจ ุนุดุงู ุฃูุฌุฏ ุงูู C1 ู C2 ุฃูุด ุจุชุณุงูู ุงูู boundary |
|
|
|
197 |
|
00:26:22,390 --> 00:26:28,250 |
|
conditions boundary conditions ูุญูู at X |
|
|
|
198 |
|
00:26:28,250 --> 00:26:33,810 |
|
ุจูุณุงูู ุตูุฑ ุงูู Y ุจูุณุงูู ุตูุฑ ู ุฃูุง ุจุชูุนุฏ ูู ุงูู
ุนุงุฏูุฉ |
|
|
|
199 |
|
00:26:33,810 --> 00:26:41,390 |
|
ูุฐู ูุชููู ุฃูุฏู ุตูุฑ ุจุชุณุงูู ุตูุฑ |
|
|
|
200 |
|
00:26:41,390 --> 00:26:53,140 |
|
ุตูุฑ ุตูุฑ ุงูู C2 ุงูู C2 ุฃูุด ูุณุงููุ ุตูุฑ ุงูู X ุจุชุณุงูู |
|
|
|
201 |
|
00:26:53,140 --> 00:27:01,380 |
|
L ุจุฑุถู Y ุจุชุณุงูู ุฃูุดุ ุตูุฑุ ุตุญุ ุฅูู ุฃูุง ููุช ุนูุฏู ุตูุฑ |
|
|
|
202 |
|
00:27:01,380 --> 00:27:04,680 |
|
ุจุชุณุงูู |
|
|
|
203 |
|
00:27:04,680 --> 00:27:11,940 |
|
1 ุนูู EI ูู |
|
|
|
204 |
|
00:27:15,310 --> 00:27:25,290 |
|
WL 4 ุนูู 12 ูุงูุต WL |
|
|
|
205 |
|
00:27:25,290 --> 00:27:38,630 |
|
4 ุนูู 24 ุฒุงุฆุฏ C1 ูู L ุงูู C2 |
|
|
|
206 |
|
00:27:38,630 --> 00:27:39,450 |
|
ุญูููุง ุตูุฑ ุงุญูุง |
|
|
|
207 |
|
00:27:44,040 --> 00:27:51,220 |
|
ูุนูู C1 ูุชููู ุณุงูู ุทุจุนูุง ูุฐู 1 ุนูู 12 ู
ุนูุงุชู |
|
|
|
208 |
|
00:27:51,220 --> 00:27:55,460 |
|
2 ุนูู 24 2 ุนูู 24 ูุนูู |
|
|
|
209 |
|
00:27:55,460 --> 00:28:00,000 |
|
1 ุนูู 24 ูุนูู ูุชููู C1 ุจุงูุณุงูู minus |
|
|
|
210 |
|
00:28:00,000 --> 00:28:09,780 |
|
WL ุชูุนูุจ ุนูู 24 |
|
|
|
211 |
|
00:28:22,680 --> 00:28:28,220 |
|
C1 -WL ุชูุนูุจ ุนูู 24EI |
|
|
|
212 |
|
00:28:40,440 --> 00:28:51,740 |
|
in ุจุณูุทุฉ 1 ุนูู EI ููู ุฎูููุง |
|
|
|
213 |
|
00:28:51,740 --> 00:28:56,360 |
|
ูุงุฎุฏ 24 ุชุญุช ูุงุฎุฏ |
|
|
|
214 |
|
00:28:56,360 --> 00:29:01,200 |
|
W ูุงุฎุฏ |
|
|
|
215 |
|
00:29:01,200 --> 00:29:06,560 |
|
24 EI ููู |
|
|
|
216 |
|
00:29:08,840 --> 00:29:13,820 |
|
ูุนูู ุฃูุง ุฃูุฏุฑ ุฃุญุถุฑ ุจุงูุจุณุท ูู 24 ุนูู 24 ูุนูู ุชููู |
|
|
|
217 |
|
00:29:13,820 --> 00:29:20,180 |
|
ุฏู 2 ุงูู |
|
|
|
218 |
|
00:29:20,180 --> 00:29:26,380 |
|
X ุชูุนูุจ ูุงูุต |
|
|
|
219 |
|
00:29:26,380 --> 00:29:33,980 |
|
X ูููุฉ 4 ุฒุงุฆุฏ |
|
|
|
220 |
|
00:29:33,980 --> 00:29:35,680 |
|
ุงูู C1 ุงููู ูู minus |
|
|
|
221 |
|
00:29:40,070 --> 00:29:52,570 |
|
WL ุชูุนูุจ ุนูู 24 EI ูุนูู |
|
|
|
222 |
|
00:29:52,570 --> 00:30:07,580 |
|
ุงุฎุฏุช W ุนูู 24 EI ูู ุงูู
ุนุงุฏูุฉ 2 ุงูู X |
|
|
|
223 |
|
00:30:07,580 --> 00:30:16,720 |
|
ุชูุนูุจ ู
ุงููุต X ูููุฉ 4 ู
ุงููุต |
|
|
|
224 |
|
00:30:16,720 --> 00:30:25,680 |
|
ููุง |
|
|
|
225 |
|
00:30:25,680 --> 00:30:31,600 |
|
ูู X ูุฐู ุตุญ ู
ุงููุต ุงูู ุชูุนูุจ |
|
|
|
226 |
|
00:30:35,000 --> 00:30:41,180 |
|
ูู X ู
ุธุจูุท |
|
|
|
227 |
|
00:30:41,180 --> 00:30:53,420 |
|
ูุฐู ุงูู
ุนุงุฏูุฉ ูุฐู ุงูู Y ุงูู slope ููููู ุงูุณุงูู dy by |
|
|
|
228 |
|
00:30:53,420 --> 00:31:04,380 |
|
dx ุจุงูุณุงูู ูุชููู W ุนูู 24 EI |
|
|
|
229 |
|
00:31:06,420 --> 00:31:10,580 |
|
ูู 6 |
|
|
|
230 |
|
00:31:10,580 --> 00:31:24,460 |
|
ุงูู X ุชุฑุจูุน ูุงูุต 4 X ุชูุนูุจ ูุงูุต ุชูุนูุจ |
|
|
|
231 |
|
00:31:33,170 --> 00:31:39,710 |
|
ุทูุจ ุตุงุฑุช ุงูู
ุนุงุฏูุฉ ุฌุงูุฒุฉ ููู .. ููู deflection .. ููู |
|
|
|
232 |
|
00:31:39,710 --> 00:31:43,670 |
|
deflection ู ููู slope ู
ุนูุงุชู ูุงู ุฃูุฏู ุงูู |
|
|
|
233 |
|
00:31:43,670 --> 00:31:49,050 |
|
deflection ู ุงูู slope ูู ุฃู ููุทุฉ ูุฃู ููู ุงูู slope |
|
|
|
234 |
|
00:31:49,050 --> 00:31:54,910 |
|
.. ููู ุงูู deflection maximum ููู |
|
|
|
235 |
|
00:31:54,910 --> 00:32:02,160 |
|
ุจูููู ุงูู deflection maximumุ ูู ุงููุต ุตุญุ ูุนูู Y |
|
|
|
236 |
|
00:32:02,160 --> 00:32:14,620 |
|
maximum ูุญูู at X ุจุงูุณุงูู L ุนูู 2 ุจุชููู ุงูู Y is |
|
|
|
237 |
|
00:32:14,620 --> 00:32:20,680 |
|
max ุจุชููู maximum ุชุนูุฏ |
|
|
|
238 |
|
00:32:20,680 --> 00:32:27,020 |
|
ุนู X ู L ุจุงูุณุงูู ุจู maximum ุทุจุนูุง ุฏู ุงุฌุชู
ุงุน ุฏูู ุชู |
|
|
|
239 |
|
00:32:27,020 --> 00:32:30,000 |
|
check ุฃูุช ุฏุงูู
ุง ุงุฌุชู
ุงุน ู
ุนุงุฏูุงุช ุชู check ุนูููุง ุญุท X |
|
|
|
240 |
|
00:32:30,000 --> 00:32:30,720 |
|
ุจุงูุณุงูู ุตูุฑ |
|
|
|
241 |
|
00:32:40,280 --> 00:32:45,920 |
|
ูุงูุต 1 ูุงูุต 1 ูุงูุต ุตูุฑ ูุงูุต ุตูุฑ ูุงูุต ุตูุฑ ูุงูุต ุตูุฑ |
|
|
|
242 |
|
00:32:45,920 --> 00:32:52,840 |
|
ูุงูุต ุตูุฑ ูุงูุต ุตูุฑ ูุงูุต ุตูุฑูุนูู ููููู 6 ูู 4 1 ู |
|
|
|
243 |
|
00:32:52,840 --> 00:33:01,080 |
|
ูุต ูุงูุต ุซู
ู ุฑุจุน ูู ุซู
ู ูุงูุต ูุต 1 ูุงูุต 1 |
|
|
|
244 |
|
00:33:01,080 --> 00:33:11,880 |
|
ุจุชุทูุน ุจุงูุณุงููุฉ zero ููู |
|
|
|
245 |
|
00:33:11,880 --> 00:33:12,900 |
|
ู ุฎูุตูุง ุงูู
ุญุงุถุฑุฉ |
|
|