|
1 |
|
00:00:02,450 --> 00:00:04,930 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูุณูุงู
ุนูููู
ูุฑุญู
ุฉ ุงููู |
|
|
|
2 |
|
00:00:04,930 --> 00:00:08,350 |
|
ูุจุฑูุงุชู ูููู
ู ูู ู
ุงุฏุฉ ุชุตู
ูู
ุงูุฃุฏุงุก ุงูุดุจุทุฑ ุงูุฑุงุจุน |
|
|
|
3 |
|
00:00:08,350 --> 00:00:11,910 |
|
ุงูู deflection and stiffness ุงูู
ุญุงุถุฑุฉ ุงููู ูุงุชุช |
|
|
|
4 |
|
00:00:11,910 --> 00:00:15,350 |
|
ุญูููุง ุนู ุงูู strain energy ูู ุฃู ุฃู mechanical |
|
|
|
5 |
|
00:00:15,350 --> 00:00:17,390 |
|
member ู
ู
ูู ูููู ุชุนุฑุถ ูู different loading |
|
|
|
6 |
|
00:00:17,390 --> 00:00:22,270 |
|
conditions ูู loading condition ุจุชุนู
ู ุงูุฌุฒุก ุจุชุงุนู |
|
|
|
7 |
|
00:00:22,270 --> 00:00:25,930 |
|
ู
ู ุงูู strain energy ูุนูู ูู ุนูุฏู ุงูู strain energy |
|
|
|
8 |
|
00:00:25,930 --> 00:00:30,000 |
|
due to tension ุนุฑููุง ุงูู
ุนุงุฏูุฉ ุจุชุงุนุชูุง ุงูู strain |
|
|
|
9 |
|
00:00:30,000 --> 00:00:32,600 |
|
energy due to torsionุ strain energy due to direct |
|
|
|
10 |
|
00:00:32,600 --> 00:00:36,160 |
|
shearุ strain energy due to bendingุ strain energy |
|
|
|
11 |
|
00:00:36,160 --> 00:00:41,240 |
|
due to transverse shear ููุญู ุงูู exam ุงูููู
ุนุดุงู |
|
|
|
12 |
|
00:00:41,240 --> 00:00:42,600 |
|
ููุถุญ ุงุณุชุฎุฏุงู
ุงูู
ุนุงุฏูุฉ |
|
|
|
13 |
|
00:00:46,050 --> 00:00:49,790 |
|
a cantilever beam with a round cross section ุนูุฏู |
|
|
|
14 |
|
00:00:49,790 --> 00:00:54,730 |
|
cantilever ู
ูุทุน ู
ุถูุฑ has a concentrated load F at |
|
|
|
15 |
|
00:00:54,730 --> 00:00:57,670 |
|
the end find the strain energy in the beam ุงุญุณุจ ุงูู |
|
|
|
16 |
|
00:00:57,670 --> 00:01:09,210 |
|
strain energy ูู ุงูู beam ูุฅู ุนูุฏู ูู ุงูู beam ููู |
|
|
|
17 |
|
00:01:09,210 --> 00:01:14,690 |
|
force F ู ุงูู beam ุทููู L |
|
|
|
18 |
|
00:01:21,490 --> 00:01:26,110 |
|
ูุงุถุญ ููุง ูููู ุนูุฏู transfer shear ู bending ูุนูู |
|
|
|
19 |
|
00:01:26,110 --> 00:01:35,410 |
|
ูู ุฃุฎุฏุช ุนูู .. ุฃุฎุฏุช ุนูู ุจุนุฏ X ุฃุนู
ูุช |
|
|
|
20 |
|
00:01:35,410 --> 00:01:41,470 |
|
free beta diagram ูููู |
|
|
|
21 |
|
00:01:41,470 --> 00:01:53,020 |
|
ุฏู ุนูุฏู ุทุฑู F ู .. ู ููุง ุนูุฏู V ู
ุนุงูุณุฉ ููุง ู ููุง M |
|
|
|
22 |
|
00:01:53,020 --> 00:02:05,460 |
|
ู ูุฐู ุงูู
ุณุงูุฉ X ุงูู V ููู
ุชูุง ูุชููู ุณุงูุจ F ุฃูุง |
|
|
|
23 |
|
00:02:05,460 --> 00:02:09,360 |
|
ุญููุช ููู
ุชูุง ุงูู |
|
|
|
24 |
|
00:02:09,360 --> 00:02:21,360 |
|
M ููู
ุชูุง ูุชููู F X ูุนูู ุนูุฏู transers share stress |
|
|
|
25 |
|
00:02:22,680 --> 00:02:30,900 |
|
ู ูู ุนูุฏู bending ู
ุนูุงุชู |
|
|
|
26 |
|
00:02:30,900 --> 00:02:40,640 |
|
ูุชููู ุนูุฏู strain energy ุนูุฏ |
|
|
|
27 |
|
00:02:40,640 --> 00:02:48,200 |
|
ุงูู U ูุชููู U ุจุชุงุนุฉ ุงูู bending ุฒุงุฆุฏ U ุจุชุงุนุฉ ุงูู |
|
|
|
28 |
|
00:02:48,200 --> 00:02:57,930 |
|
transverse shear ุงูู U ุจุชุงุนุฉ ุงูู bending ุชูุงู
ู |
|
|
|
29 |
|
00:02:57,930 --> 00:03:12,670 |
|
M square ุนูู 2EI DX ูุนูู ูุชููู ุงูุชูุงู
ู ุงููู ูู F |
|
|
|
30 |
|
00:03:12,670 --> 00:03:18,010 |
|
square X square DX |
|
|
|
31 |
|
00:03:20,170 --> 00:03:25,010 |
|
ุนูู EI ุทุจุนุง |
|
|
|
32 |
|
00:03:25,010 --> 00:03:31,170 |
|
ู
ู Zero ุฅูู L ุงูู |
|
|
|
33 |
|
00:03:31,170 --> 00:03:36,830 |
|
F ูุงูู E ูุงูู I ุซูุงุจุช ูุนูู ููููู ุนูุฏู ููุทูุน ุจุฑุง ุจูุตูุฑ |
|
|
|
34 |
|
00:03:36,830 --> 00:03:44,970 |
|
ุนูุฏู F square ุนูู 6EI |
|
|
|
35 |
|
00:03:44,970 --> 00:03:59,600 |
|
ูู X ุชูุนูุจ ู
ู ุตูุฑ ุฅูู L ูุนูู ูููู after ุจูู ุงูู ุชูุนูุจ |
|
|
|
36 |
|
00:03:59,600 --> 00:04:09,220 |
|
ุนูู ุณุชุฉ EI ุงูู |
|
|
|
37 |
|
00:04:09,220 --> 00:04:14,460 |
|
I ูู ุญุงูุฉ round ุจู ุชุณุงูู ุจุงู ุนูู ุฃุฑุจุน D ุฃุณ ุฃุฑุจุนุฉ |
|
|
|
38 |
|
00:04:14,460 --> 00:04:17,880 |
|
ุฏู ุฃุณ ุฃุฑุจุนุฉ ุตุญุ |
|
|
|
39 |
|
00:04:22,200 --> 00:04:30,200 |
|
ูุนูู ูุชููู ุชุณุงูู 64 F square L ุชูุนูุจ |
|
|
|
40 |
|
00:04:30,200 --> 00:04:45,500 |
|
ุนูู ุณุชุฉ ุจุงู D ุฃุณ ุฃุฑุจุนุฉ ูุนูู |
|
|
|
41 |
|
00:04:45,500 --> 00:04:57,520 |
|
ูุชููู 32 F square L ุชูุนูุจ ุนูู 3 E ุจุงู D ุฃุณ ุฃุฑุจุนุฉ ูุฐุง ุจุงููุณุจุฉ ููุจูุฌู ุจุงููุณุจุฉ ููู transfer |
|
|
|
42 |
|
00:04:57,520 --> 00:05:04,220 |
|
share U |
|
|
|
43 |
|
00:05:04,220 --> 00:05:08,320 |
|
transfer |
|
|
|
44 |
|
00:05:08,320 --> 00:05:12,040 |
|
share |
|
|
|
45 |
|
00:05:12,040 --> 00:05:28,680 |
|
ุจุณ ูุชููู ุงูุชูุงู
ู ู
ู ุตูุฑ ุฅูู L ููู C V2 ุนูู 2 AG DX |
|
|
|
46 |
|
00:05:28,680 --> 00:05:34,580 |
|
ุทุจุนุง ุงูู V ุจุชุณุงูู F ู Constant ุชุทูุน ุจุฑุง ููู |
|
|
|
47 |
|
00:05:34,580 --> 00:05:46,070 |
|
Constant ุจุณ ูุนูู ุฏู C F2 ุนูู 2 AG ูู L ุจุนุฏ ู
ุง ุฃุนู
ู |
|
|
|
48 |
|
00:05:46,070 --> 00:05:55,150 |
|
integration ุงูู A ุงูุด ุจุชุณุงูู ุจุงู ุนูู ุฃุฑุจุน ุฏู ุชุฑุจูุน |
|
|
|
49 |
|
00:05:55,150 --> 00:06:01,590 |
|
ูุนูู ู ุงูู C ู
ู ุงูู table 1.11 |
|
|
|
50 |
|
00:06:01,590 --> 00:06:05,610 |
|
point ุงุญุฏ ุนุดุฑ ูุนูู ุฃูุง ูุชููู ุจุชุณุงูู ุงูู U trans |
|
|
|
51 |
|
00:06:05,610 --> 00:06:13,210 |
|
share 1.11 F square ุงูู |
|
|
|
52 |
|
00:06:18,450 --> 00:06:25,410 |
|
ุนูู ุฃู ูู 2 ูุฐุง ุนูู |
|
|
|
53 |
|
00:06:25,410 --> 00:06:34,890 |
|
ุจุงู D square ูู G ู
ุนูุงุชู total strain ูู ู
ุฌู
ูุนูู
|
|
|
|
54 |
|
00:06:34,890 --> 00:06:42,250 |
|
total U ูุชููู U bending ุฒุงุฆุฏ U transverse shear |
|
|
|
55 |
|
00:06:42,250 --> 00:06:50,020 |
|
ูุนูู ูุชููู ุจุชุณุงูู 32 F square L ุชูุนูุจ |
|
|
|
56 |
|
00:06:50,020 --> 00:07:02,740 |
|
ุนูู 3 E ุจุงู D ุฃุณ ุฃุฑุจุนุฉ ุฒุงุฆุฏ 2.2 F |
|
|
|
57 |
|
00:07:02,740 --> 00:07:12,840 |
|
square L ุนูู ุจุงู D ุชุฑุจูุน G ูุนูู |
|
|
|
58 |
|
00:07:12,840 --> 00:07:13,540 |
|
ู
ู
ูู ุฃุฎุฏ |
|
|
|
59 |
|
00:07:18,650 --> 00:07:24,450 |
|
F ุชุฑุจูุน ูู |
|
|
|
60 |
|
00:07:24,450 --> 00:07:40,250 |
|
ุงูู L ุนูู ุจุงู D ุชุฑุจูุน ู
ุดุชุฑู ููููู 32 ุงูู |
|
|
|
61 |
|
00:07:40,250 --> 00:07:40,970 |
|
ุชุฑุจูุน |
|
|
|
62 |
|
00:07:44,180 --> 00:08:01,900 |
|
ุนูู 3 E D ุชุฑุจูุน ุฒุงุฆุฏ 2.2 ุนูู G ูุง |
|
|
|
63 |
|
00:08:01,900 --> 00:08:06,140 |
|
ุฏู ุงูู astrology ุงููู ุฌุงู ูู ุงูู .. ูู ุงูู .. ูู ุงูู |
|
|
|
64 |
|
00:08:06,140 --> 00:08:06,300 |
|
beam |
|
|
|
65 |
|
00:08:15,090 --> 00:08:35,070 |
|
ูููู
ู ุงูู
ูุถูุน ุงูุฌุฏูุฏ ูุฃู |
|
|
|
66 |
|
00:08:35,070 --> 00:08:41,130 |
|
ููุญูู ุนู Castigliano theorem ุฃูู |
|
|
|
67 |
|
00:08:41,130 --> 00:08:46,470 |
|
ุดูุก Castigliano theorem applies to forces ุงููู ุจุชุฃุซุฑ |
|
|
|
68 |
|
00:08:46,470 --> 00:08:51,050 |
|
ุนูู elastic systems subject to small displacement |
|
|
|
69 |
|
00:08:51,050 --> 00:08:54,590 |
|
ูุนูู ุงููู ุจูุตูุฑ ุงูู deformation ูููุง ุฃุตุบุฑ ูุชูุฑ |
|
|
|
70 |
|
00:08:54,590 --> 00:08:57,630 |
|
displacement |
|
|
|
71 |
|
00:08:57,630 --> 00:09:07,290 |
|
ุงูู ู
ูุงุถุฑุฉ ูุฃู ููุฉ ู ูู ุงุชุฌุงู ุงูููุฉ ุจุชุณุงูู ุงูู |
|
|
|
72 |
|
00:09:07,290 --> 00:09:09,250 |
|
partial derivative ููู total synergy ุจุงููุณุจุฉ ููุฐู |
|
|
|
73 |
|
00:09:09,250 --> 00:09:14,230 |
|
ุงูููุฉ ูุนูู ุนุดุงู ุฃูุฌุฏ ูู ุญุงูุฉ ุงูู cantilever |
|
|
|
74 |
|
00:09:19,350 --> 00:09:24,170 |
|
ุงูู displacement ุงูููุทุฉ ูุฐู ุดููู |
|
|
|
75 |
|
00:09:24,170 --> 00:09:32,550 |
|
ุฒู ูุฏู ุตุญุ ูุฐู ุงุณู
ูุง Y ู
ุซูุง Y ุจุชุณุงูู dU by |
|
|
|
76 |
|
00:09:32,550 --> 00:09:45,390 |
|
dF dU by dF ููุดุ ูู ุงุนุชุจุฑ ุฃู ุงูุดุบู ุนุจุงุฑุฉ ุนู force |
|
|
|
77 |
|
00:09:45,390 --> 00:09:51,000 |
|
ูู ู
ุณุงูุฉ ุตุญุ ู ูุฐู ุงูู force ุฃุซุฑุช ูู ุงูู
ุซุงู ูุนูู ุฃููุง |
|
|
|
78 |
|
00:09:51,000 --> 00:09:58,780 |
|
force ูู Y ุจุชุนุทููู ุงูุดุ ุดุบู ูุงู .. ูู ู
ุนุงุฏูุฉ ูู ุชู |
|
|
|
79 |
|
00:09:58,780 --> 00:10:02,700 |
|
.. ุงู ูุนูู ุงูู theorem Castigliano theorem ุดูุก ุชูุฑูุจู |
|
|
|
80 |
|
00:10:02,700 --> 00:10:06,040 |
|
ุจุชุญูู ูู ุญุงูุฉ small displacement ุงูููุงู
ูุฐุง ุชูุฑูุจุง |
|
|
|
81 |
|
00:10:06,040 --> 00:10:10,340 |
|
ุตุญูุญ ุฃู ุฏูููุฉ ูุญุฏ ู
ุง ุจูู ูุงูุดุบู ุจูุณุงูู force ูู |
|
|
|
82 |
|
00:10:10,340 --> 00:10:13,320 |
|
displacement ู ุฃูุง displacement ุฃู deformity |
|
|
|
83 |
|
00:10:13,320 --> 00:10:21,360 |
|
ุจุชุณุงูู dU ุนูู .. ุนูู dF ูุฏููุง ูุงูุช ูู ุญุงูุฉ linear |
|
|
|
84 |
|
00:10:21,360 --> 00:10:25,260 |
|
displacement ูู ุญุงูุฉ rotational displacement ุงูู |
|
|
|
85 |
|
00:10:25,260 --> 00:10:33,900 |
|
rotation angle ฮธ ุจุชุณุงูู dU ุนูู dM ููุดูู |
|
|
|
86 |
|
00:10:33,900 --> 00:10:39,500 |
|
ุงูู
ุซุงู ูุฐุง ุงูุณุงุจู ุฏู ูุงูุช ููู ูุฑูุฉ ุงููู ูู ุงูู
ุซุงู |
|
|
|
87 |
|
00:10:39,500 --> 00:10:44,860 |
|
ุงูุณุงุจู is a carbon steel bar ten inch long ูุนูู |
|
|
|
88 |
|
00:10:44,860 --> 00:10:45,840 |
|
ุงูู ูู ุนูุฏูุง |
|
|
|
89 |
|
00:10:57,630 --> 00:11:02,730 |
|
ูุฐู ุงูู F ููุฐู |
|
|
|
90 |
|
00:11:02,730 --> 00:11:07,090 |
|
ุงูู L ูุงูู |
|
|
|
91 |
|
00:11:07,090 --> 00:11:13,970 |
|
L ุนุดุฑุฉ ุฅูุด ู ุงูู
ูุทุน |
|
|
|
92 |
|
00:11:13,970 --> 00:11:21,090 |
|
ุงูู
ุฏูุฑ ูุงุญุฏ ุฅูุด ู ุงูู |
|
|
|
93 |
|
00:11:21,090 --> 00:11:22,590 |
|
force F ู
ูุฉ ุจุงููุฏ |
|
|
|
94 |
|
00:11:33,530 --> 00:11:38,330 |
|
Find maximum deflection using Castiglianoโs theorem |
|
|
|
95 |
|
00:11:38,330 --> 00:11:41,970 |
|
including that due to shear ุงุญูุง ุณุงุจูุง ุญูููุง ุฃู U |
|
|
|
96 |
|
00:11:41,970 --> 00:11:52,270 |
|
U ูููุง ุจุชุณุงูู dU due to bending ุงููู ูู 32F2 |
|
|
|
97 |
|
00:11:52,270 --> 00:11:56,610 |
|
L ุชูุนูุจ |
|
|
|
98 |
|
00:11:58,270 --> 00:12:07,270 |
|
ุนูู 3 E ุจุงู D ุฃุณ ุฃุฑุจุนุฉ ุฒุงุฆุฏ 2. |
|
|
|
99 |
|
00:12:07,270 --> 00:12:20,490 |
|
2 F square L ุนูู ุจุงู D square ูู G ุงูู .. ุงูู |
|
|
|
100 |
|
00:12:20,490 --> 00:12:24,790 |
|
deflection ุนูุฏ ุงูู force F ุงูู .. ุงูู .. ููู Y .. Y |
|
|
|
101 |
|
00:12:24,790 --> 00:12:35,630 |
|
ูุชููู ุจุชุณุงูู dU by dF dU by dF ูุนูู ููุดุชุบู ุฃููุง |
|
|
|
102 |
|
00:12:35,630 --> 00:12:41,790 |
|
ุจุงููุณุจุฉ ููู F ูุชููู 2 F ูุชุตูุฑ 64 F |
|
|
|
103 |
|
00:12:41,790 --> 00:12:43,150 |
|
L ุชูุนูุจ |
|
|
|
104 |
|
00:12:45,250 --> 00:12:57,370 |
|
ุนูู 3 E by D ุฃุณ ุฃุฑุจุนุฉ ุฒุงุฆุฏ 4.4 |
|
|
|
105 |
|
00:12:57,370 --> 00:13:05,930 |
|
4 F L ุนูู by D square G |
|
|
|
106 |
|
00:13:07,590 --> 00:13:12,790 |
|
ูุฃ ุงุญูุง ููุนูุถ ุนู ุงูู .. ุงูู .. ุงูู values ูุชููู ุฏู 64 |
|
|
|
107 |
|
00:13:12,790 --> 00:13:25,110 |
|
ุงูู F ู
ูุฉ ูู ุงูู L ุนุดุฑุฉ ุงูู E ุงูู E 30 ร 10 |
|
|
|
108 |
|
00:13:25,110 --> 00:13:28,230 |
|
ุงูู |
|
|
|
109 |
|
00:13:28,230 --> 00:13:32,830 |
|
E 30 ร 10^6 ูู carbon state 30 ร 10^6ุ ูุนู
30 ร 10^6 |
|
|
|
110 |
|
00:13:33,880 --> 00:13:38,920 |
|
mega pound per square inch ุตุญ 30 ร 10^6 ูู ุจุงู ู ุงูู D ูุงุญุฏ ูุงุญุฏ ู ุฃุตูุง ุฃุฑุจุนุฉ ุฒุงุฆุฏ 4. |
|
|
|
111 |
|
00:13:38,920 --> 00:13:48,300 |
|
4 4 ูู ู
ูุฉ ูู ุนุดุฑุฉ ุนูู ุจุงู ูู ูุงุญุฏ |
|
|
|
112 |
|
00:13:48,300 --> 00:13:58,160 |
|
ุชุฑุจูุน ูู G 11.5 ร 10^6 ุงุญุณุจูุง ูู term |
|
|
|
113 |
|
00:13:58,160 --> 00:14:08,330 |
|
ูุญุงููุง ูุฐุง ุงูู term 2. |
|
|
|
114 |
|
00:14:08,330 --> 00:14:14,970 |
|
6 ู 20 ู ุงูุชุงูู ุงูู term ุงูุชุงูู ูุฐุง |
|
|
|
115 |
|
00:14:14,970 --> 00:14:27,290 |
|
1. |
|
|
|
116 |
|
00:14:49,240 --> 00:15:02,460 |
|
1. ุงููู ุนุดุฑ ุณุงูุจ ุงูุดุ 4 ูุนูู |
|
|
|
117 |
|
00:15:02,460 --> 00:15:13,660 |
|
ูุชููู ูุนูู |
|
|
|
118 |
|
00:15:13,660 --> 00:15:18,320 |
|
ูุชููู 10^-3 ููุด ุบูุท ูู 12. |
|
|
|
119 |
|
00:15:18,320 --> 00:15:27,400 |
|
1 ูุนุดุฑุฉ ุฃุณ ุณุงูุจ ุชูุงุชุฉ |
|
|
|
120 |
|
00:15:27,400 --> 00:15:32,060 |
|
ุจูุทูุน 2.83 ูู ุนุดุฑุฉ ุฃุณ ุณุงูุจ |
|
|
|
121 |
|
00:15:32,060 --> 00:15:38,740 |
|
ุชูุงุชุฉ 2 ูุงุฏ |
|
|
|
122 |
|
00:15:38,740 --> 00:15:45,760 |
|
ุนุดุฑุฉ ุฃุณ ุณุงูุจ 5 ุจุงูุณุงูุจ ู
ุธุจูุทุ |
|
|
|
123 |
|
00:15:48,560 --> 00:15:55,360 |
|
ูู ูู
ุจูุทูุน ุงูุฌูุงุจ ุนุดุฑ |
|
|
|
124 |
|
00:15:55,360 --> 00:16:03,180 |
|
ุงูุณุงูุจ ุชูุงุชุฉ ุฅูุด |
|
|
|
125 |
|
00:16:03,180 --> 00:16:06,240 |
|
ุทุจุนุง |
|
|
|
126 |
|
00:16:06,240 --> 00:16:14,710 |
|
ูู ุฃูู
ูุช ุงูู shear ูุนูู ุงุนุชุจุฑุช ูุฐุง ู
ุด ู
ูุฌูุฏ ูุนูู ูุฐุง |
|
|
|
127 |
|
00:16:14,710 --> 00:16:19,870 |
|
ุญููุช ูุฑูุจ ู
ู ุงูู zero ูุนูู ุฃูุง ุญููุช ุฃูู ุจูุทูุน 2. |
|
|
|
128 |
|
00:16:19,870 --> 00:16:27,180 |
|
26 ร 10^-3 ุงูู error ููููู |
|
|
|
129 |
|
00:16:27,180 --> 00:16:32,320 |
|
ุงููุฑู ุจูู ูุฐู ู ูุฐู ุงูุญููููุฉ ุตุญ ุงููู ูู ูุฐู ุงูู |
|
|
|
130 |
|
00:16:32,320 --> 00:16:39,240 |
|
error percentage error ููููู 12.1 |
|
|
|
131 |
|
00:16:39,240 --> 00:16:46,440 |
|
ูู ุนุดุฑุฉ ุฃุณ ุณุงูุจ 5 ุนูู 2.38 |
|
|
|
132 |
|
00:16:46,440 --> 00:16:49,780 |
|
ูู ุนุดุฑุฉ ุฃุณ ุณุงูุจ 3 ร 100 |
|
|
|
133 |
|
00:17:08,530 --> 00:17:14,350 |
|
ุจุชุทูุน 4 ูู ุงูู
ูุฉ 5 ูู ุงูู
ูุฉ 5 ูู ุงูู
ูุฉ |
|
|
|
134 |
|
00:17:14,350 --> 00:17:19,210 |
|
ูุนูู ุจุชุทูุน |
|
|
|
135 |
|
00:17:19,210 --> 00:17:23,690 |
|
ุฅุฐุง ุฃูู
ูุช ุงูู transfer shear ูุณุจุฉ 4 ุชููู 5 |
|
|
|
136 |
|
00:17:23,690 --> 00:17:28,970 |
|
ูู ุงูู
ูุฉ ูุนูู ุชุฃุซูุฑ ุงูุดูุก ูุนูู ู
ุนุธู
ุงูุชุฃุซูุฑ ุฌุงู ู
ู |
|
|
|
137 |
|
00:17:28,970 --> 00:17:35,770 |
|
ุงูู bending ูุงุถุญ |
|
|
|
138 |
|
00:17:35,770 --> 00:17:43,600 |
|
ุฃู ููุญูู ุงูุดุบู ุนุจุงุฑุฉ ุนู force ูู ู
ุณุงูุฉ ููู ุฅุฐุง ุจุฏู |
|
|
|
139 |
|
00:17:43,600 --> 00:17:51,020 |
|
ุฃุญุณุจ ุงูู deflection ุนูุฏ ููุทุฉ ู
ุด ุนูุฏูุง force ู
ุนูุงุชู |
|
|
|
140 |
|
00:17:51,020 --> 00:17:55,420 |
|
ุฃูุง ู
ู
ูู ุฃุฎุฏุน ุฃู ุฃุณุชุฎุฏู
ุงููุธุฑูุฉ ููุณูุง ุฃุญุท ู
ุคูุชุง |
|
|
|
141 |
|
00:17:55,420 --> 00:17:59,880 |
|
ุนูุฏ ุงูููุทุฉ ุงููู ุฃูุง ุจุฏู ุฃุญุณุจ ุนูุฏูุง ุงู force |
|
|
|
142 |
|
00:17:59,880 --> 00:18:07,540 |
|
deflection ูุงุญุณุจ ุงู strain energy ุจุนุฏูู ุฃุนู
ู ุงู |
|
|
|
143 |
|
00:18:07,540 --> 00:18:09,780 |
|
derivative ูู energy ุนุดุงู ุฃุญุณุจ ุงุณุชุฎุฏุงู
ูุงุณุชูุฌูุงูู |
|
|
|
144 |
|
00:18:09,780 --> 00:18:13,480 |
|
ุนุดุงู ุงู deflection ุนูู that point ูุจุนุฏูู ุฃุญุท ุงู |
|
|
|
145 |
|
00:18:13,480 --> 00:18:18,800 |
|
force ุงููู ุฃูุง ุญุงุทุทูุง ุดููุงู ุจุญุท ููู
ุชูุง zero ุจุญุท |
|
|
|
146 |
|
00:18:18,800 --> 00:18:26,020 |
|
ููู
ุชูุง zero ุงูุขู |
|
|
|
147 |
|
00:18:26,020 --> 00:18:33,020 |
|
ุงุญูุง ุญูููุง ุณุงุจููุง ุฃู ุงู deflection ุงูู D ูู ุงูู |
|
|
|
148 |
|
00:18:33,020 --> 00:18:35,260 |
|
partial derivative ููู strain energy with respect |
|
|
|
149 |
|
00:18:35,260 --> 00:18:40,560 |
|
to the force ุทุจุนูุง ุงูู deflection ูุฐู at the |
|
|
|
150 |
|
00:18:40,560 --> 00:18:42,660 |
|
location of the force ูู ุงู direction ุจุชุงุน ุงู |
|
|
|
151 |
|
00:18:42,660 --> 00:18:51,440 |
|
force ูุชููู ุงู deflection ุงููู |
|
|
|
152 |
|
00:18:51,440 --> 00:18:57,000 |
|
ูู D by DFI ูุฐู ุทุจุนูุง ูู ุญุงูุฉ ุงู bending ู
ุซููุง M |
|
|
|
153 |
|
00:18:57,000 --> 00:19:02,000 |
|
square ุนูู ุงุซููู EI ุจุฑูุญ ุฃุฏุฎู ุงู partial ุชูุฑูุจูุง ูู |
|
|
|
154 |
|
00:19:02,000 --> 00:19:06,100 |
|
ุงูุฏุงุฎู ูุตุจุญ ุฏู ุจุง ุฏู ุงู ุงู ูุงู
ุณููุงุฑ ุนูู ุงุซููู ุงู |
|
|
|
155 |
|
00:19:06,100 --> 00:19:13,020 |
|
ุงู ุฏู ุงูุณ ู
ุนูุงุชู ูุฃุดุชู ุงูู M ูุชุตุจุญ ุงุซููู ุงู
ุจุงุฑุดุงู |
|
|
|
156 |
|
00:19:13,020 --> 00:19:16,760 |
|
ุฏู ุงู
ุจุง ุฏู ุงู ุงู ุนูู ุงุซููู ุงู ุงู ุฏู ุงูุณ ุงุซููู ู
ุน |
|
|
|
157 |
|
00:19:16,760 --> 00:19:20,300 |
|
ุงุซููู ูุตุจุญ ูุงุญุฏุฉ ุฏููู ุงู
ูู ุฏู ุงู
ุจุง ุฏู ุงู ุงู ุฏู |
|
|
|
158 |
|
00:19:20,300 --> 00:19:23,600 |
|
ุงูุณ ุทุจุนูุง ุงูุนู
ููุฉ ูุฐู ุจุชุณูู .. ุจุชุณูู ุงู integration |
|
|
|
159 |
|
00:19:23,600 --> 00:19:28,620 |
|
ุจุฏู ู
ุง ุฃุฑุจุน ูููู expression ุตุงุนุฏ ู
ุซููุง ุจูููู ุฃูุง |
|
|
|
160 |
|
00:19:28,620 --> 00:19:33,980 |
|
ูุฒูุชู ุฏุฑุฌุฉ .. ูุฒูุชู ุฏุฑุฌุฉ ูุงู integration ุจูููู |
|
|
|
161 |
|
00:19:33,980 --> 00:19:34,680 |
|
ุฃุณูู |
|
|
|
162 |
|
00:19:38,530 --> 00:19:42,410 |
|
ุทุจุนูุง we apply the same principle ูู ุญุงูุฉ ุงู |
|
|
|
163 |
|
00:19:42,410 --> 00:19:45,670 |
|
tension ู ุงู compression ู ุงู torsion ู ุงู bending |
|
|
|
164 |
|
00:19:45,670 --> 00:19:49,770 |
|
ู
ุซููุง ูู ุญุงูุฉ ุงู tension compression ุงู delta I |
|
|
|
165 |
|
00:19:49,770 --> 00:19:53,350 |
|
ุจูุณุงูู DU by DFI ุจูุณุงูู ุงู integral ุงููู ูุงุญุฏ ุนูู |
|
|
|
166 |
|
00:19:53,350 --> 00:20:00,440 |
|
AE ูู F DF by DFI ูู DX ูุดูู ู
ุซุงู .. using |
|
|
|
167 |
|
00:20:00,440 --> 00:20:06,900 |
|
Castigliano's method determine deflections of points |
|
|
|
168 |
|
00:20:06,900 --> 00:20:11,500 |
|
A and B due to the force F applied at the end of |
|
|
|
169 |
|
00:20:11,500 --> 00:20:16,160 |
|
the step shaft .. in step shaft we apply a force F |
|
|
|
170 |
|
00:20:16,160 --> 00:20:22,470 |
|
ุนูุฏ ุงูููุทุฉ A the second area moments for sections a |
|
|
|
171 |
|
00:20:22,470 --> 00:20:28,530 |
|
,b and b,c,r,i,1,2,i,1 ูุนูู ุงู I ูู section a,b,i |
|
|
|
172 |
|
00:20:28,530 --> 00:20:33,510 |
|
,1 ู ุงู I ูู section ู
ู b ู c 2,i,1 ุจุนุฏูู ูุฌุฏ |
|
|
|
173 |
|
00:20:33,510 --> 00:20:37,850 |
|
deflection ุนูุฏ a ูู ุงูุฃูู ุจุนุฏูู ูุฌุฏ deflection ุนูุฏ |
|
|
|
174 |
|
00:20:37,850 --> 00:20:45,030 |
|
b ูู |
|
|
|
175 |
|
00:20:45,030 --> 00:20:45,390 |
|
ุงู b |
|
|
|
176 |
|
00:20:58,960 --> 00:21:04,480 |
|
ูุฐู ุงู force F ุทุจุนูุง |
|
|
|
177 |
|
00:21:04,480 --> 00:21:09,860 |
|
ูุฐู ุฃูู |
|
|
|
178 |
|
00:21:09,860 --> 00:21:14,880 |
|
ุนูู ุงุซููู ูุฐู |
|
|
|
179 |
|
00:21:14,880 --> 00:21:22,540 |
|
ุฃูู ุนูู ุงุซููู ูู |
|
|
|
180 |
|
00:21:22,540 --> 00:21:24,040 |
|
ุฃุฎุฐุช at any location X |
|
|
|
181 |
|
00:21:31,240 --> 00:21:47,840 |
|
ุจุญููุง ุนูุฏู ูุงู ุงู force F ููู ุญูููู ุจุญููุง |
|
|
|
182 |
|
00:21:47,840 --> 00:21:58,400 |
|
ุนูุฏู ููู shear force ููู |
|
|
|
183 |
|
00:21:58,400 --> 00:21:59,260 |
|
ุญูููู ุฅูุดุ |
|
|
|
184 |
|
00:22:03,130 --> 00:22:09,990 |
|
ุจููุฏุฌ ุจููุช ูุงุฏ |
|
|
|
185 |
|
00:22:09,990 --> 00:22:15,790 |
|
ุงูู
ุณุงูุฉ X |
|
|
|
186 |
|
00:22:15,790 --> 00:22:27,750 |
|
ูุชููู ุงู V ุจูุณุงูู ุงู F ู ุงู M F |
|
|
|
187 |
|
00:22:27,750 --> 00:22:28,130 |
|
X |
|
|
|
188 |
|
00:22:41,090 --> 00:22:48,610 |
|
ุทูุจ ุงู deflection ุญูููู |
|
|
|
189 |
|
00:22:48,610 --> 00:22:54,410 |
|
ูุงุญุฏ due to bending ู ูุงุญุฏ due to transverse shear |
|
|
|
190 |
|
00:22:54,410 --> 00:22:57,150 |
|
ูู ุญุงูุฉ ุงู bending |
|
|
|
191 |
|
00:23:09,400 --> 00:23:17,540 |
|
ุงูู Delta ุนูุฏ F ุนูุฏ A ุจูุณุงูู |
|
|
|
192 |
|
00:23:17,540 --> 00:23:20,780 |
|
ุชูุงู
ู |
|
|
|
193 |
|
00:23:20,780 --> 00:23:25,660 |
|
ูุงุญุฏ |
|
|
|
194 |
|
00:23:25,660 --> 00:23:37,160 |
|
ุทุจุนูุง ุงููุญุธุฉ ุงู I ุจุชุฎุชูู ูุนูู ุนูุฏ A B C ูุงุญุฏ |
|
|
|
195 |
|
00:23:37,160 --> 00:23:53,800 |
|
ุนููE I ูุงุญุฏ ูู ุงู M DM by DX DX |
|
|
|
196 |
|
00:23:53,800 --> 00:24:05,760 |
|
ุตุญ ุฏู DM by DF ุทุจุนูุง |
|
|
|
197 |
|
00:24:05,760 --> 00:24:14,920 |
|
ู
ู ุตูุฑ ู L ุนูู 2 ุฒุงุฆุฏ ุงูุชูุงู
ู |
|
|
|
198 |
|
00:24:14,920 --> 00:24:28,820 |
|
ู
ู L ุนูู 2 ู L ุนูู 2 ู 1 ู
ู L ุนูู 2 ู L ูุงุญุฏ |
|
|
|
199 |
|
00:24:28,820 --> 00:24:37,490 |
|
ุนูู E ููู ุงุซูููุ ููู ุงุซูููุ I ูุงุญุฏ ุงุซููู I ูุงุญุฏ ูู |
|
|
|
200 |
|
00:24:37,490 --> 00:24:47,130 |
|
ุงู M DM by DF ูุฐุง due to bending due to transverse |
|
|
|
201 |
|
00:24:47,130 --> 00:24:52,730 |
|
shear ุงูุญูู |
|
|
|
202 |
|
00:24:52,730 --> 00:24:56,690 |
|
ู
ุด ูุฃุนู
ู ุงููู ูู ูุชููู |
|
|
|
203 |
|
00:24:56,690 --> 00:25:04,390 |
|
ุชุณุงูู ุฒุงุฆุฏ ุชูุงู
ู |
|
|
|
204 |
|
00:25:13,580 --> 00:25:19,620 |
|
C ุนูู AG ูู |
|
|
|
205 |
|
00:25:19,620 --> 00:25:30,580 |
|
V ุฏู V by ุฏู F ุตุญ ุฏู |
|
|
|
206 |
|
00:25:30,580 --> 00:25:42,690 |
|
X ู
ู ุตูุฑ ูุนูู A ูุงุญุฏ ุตูุฑ ูL ุนูู ุงุซููู ุฒุงุฏ ุงูุชูุงู
ู |
|
|
|
207 |
|
00:25:42,690 --> 00:26:02,190 |
|
ู
ู L ุนูู 2 ู L ู C ุนูู A2 G ูู V DV by DF DX ูู |
|
|
|
208 |
|
00:26:02,190 --> 00:26:16,870 |
|
ุฎูููุง ูุทูุน DV by DF ูุงุญุฏ ุตุญ ู DM by |
|
|
|
209 |
|
00:26:16,870 --> 00:26:23,770 |
|
DF ุณู X ูุนูู |
|
|
|
210 |
|
00:26:23,770 --> 00:26:29,150 |
|
ููุณูุฑ ุงูุชูุงู
ู ุนูุฏู |
|
|
|
211 |
|
00:26:29,150 --> 00:26:36,190 |
|
ู
ู |
|
|
|
212 |
|
00:26:36,190 --> 00:26:38,330 |
|
ุตูุฑ ูุงุญุฏ |
|
|
|
213 |
|
00:26:39,900 --> 00:26:49,660 |
|
ุนูู E I ูุงุญุฏ ุชูุงู
ู ุตูุฑ ู L ุนูู ุงุซููู ุงูุฃู
ุฑ ุงููู ูู |
|
|
|
214 |
|
00:26:49,660 --> 00:27:02,360 |
|
ุฅูุด Fx ูู X DX ุฒุงุฆุฏ |
|
|
|
215 |
|
00:27:02,360 --> 00:27:14,320 |
|
ุชูุงู
ู ูุงุญุฏ ุนูู ุงุซููู EI ูุงุญุฏ ุชูุงู
ู ู
ู L ุนูู ุงุซููู ู |
|
|
|
216 |
|
00:27:14,320 --> 00:27:24,740 |
|
L ู F X ุชุฑุจูุน ุตุญุ DX ุฒุงุฆุฏ |
|
|
|
217 |
|
00:27:24,740 --> 00:27:33,520 |
|
ุฎูููุง ูุฏู ุนูุงูุฉ ุจูู A ูุงุญุฏ ู A ุงุซููู A ูุงุญุฏ ู ุงุซููู |
|
|
|
218 |
|
00:27:33,520 --> 00:27:43,240 |
|
ุงุญูุง ุญูููุง ุงู ุงู ุงุซููู ุงู ุงุซููู ูุณุงูู ุงุซููู ุงู ูุงุญุฏ |
|
|
|
219 |
|
00:27:43,240 --> 00:27:49,000 |
|
ู
ุธุจูุท ุงููู |
|
|
|
220 |
|
00:27:49,000 --> 00:27:53,020 |
|
ูู ุจูุณุงูู |
|
|
|
221 |
|
00:27:53,020 --> 00:27:58,220 |
|
ุจุงู ุนูู ุฃุฑุจุนุฉ ูุณุชูู ุฏู |
|
|
|
222 |
|
00:28:00,920 --> 00:28:13,140 |
|
ููุต ุฃุฑุจุนุฉ ูุฐู ุงู I ูุงุญุฏ ููุญูู ุฏู ูุงุญุฏ ููุต ุฃุฑุจุนุฉ ุฃู |
|
|
|
223 |
|
00:28:13,140 --> 00:28:22,140 |
|
ุฏู ุงุซููู ููุต ุฃุฑุจุนุฉ ุฏู ุงุซููู ููุต ุฃุฑุจุนุฉ ุจุชุณุงูู ุงุซููู |
|
|
|
224 |
|
00:28:22,140 --> 00:28:30,400 |
|
ูู ุจุงู ุนูู ุฃุฑุจุนุฉ ูุณุชูู ุฏู ูุงุญุฏ ููุต ุฃุฑุจุนุฉ |
|
|
|
225 |
|
00:28:33,120 --> 00:28:39,160 |
|
ู
ุธุจูุทุ ู
ุนูุงุชู ุฏู ุงุซููู ุฎูููุง |
|
|
|
226 |
|
00:28:39,160 --> 00:28:43,480 |
|
ูุญูู ุจุงู ุฏู |
|
|
|
227 |
|
00:28:43,480 --> 00:28:55,800 |
|
ุงุซููู ุฃู ุฎูููุง ูุญูู ุฏู ุงุซููู ุฃูุตู ุฃุฑุจุนุฉ ุจุชุณุงูู |
|
|
|
228 |
|
00:28:55,800 --> 00:29:07,100 |
|
ุงุซููู ุฏู ูุงุญุฏ ุฃูุตู ุฃุฑุจุนุฉ ุตุญุ ูุนูู ุฏู ุงุซููู ุจูุณุงูู |
|
|
|
229 |
|
00:29:07,100 --> 00:29:15,560 |
|
ุงุซููู ุฃุตู ุฑุจุน ุฏู ูุงุญุฏ ุตุญุ |
|
|
|
230 |
|
00:29:15,560 --> 00:29:19,900 |
|
ุทูุจ ุง ูุงุญุฏ ุจูุณุงูู |
|
|
|
231 |
|
00:29:19,900 --> 00:29:28,820 |
|
ุจุงู ุฏู ูุงุญุฏ ุชุฑุจูุน ุนูู ุฃุฑุจุนุฉ ุงุซููู ุจูุณุงูู ุจุงู ุนูู |
|
|
|
232 |
|
00:29:28,820 --> 00:29:34,450 |
|
ุฃุฑุจุนุฉ ุฏู ุงุซููู ุชุฑุจูุน |
|
|
|
233 |
|
00:29:34,450 --> 00:29:41,610 |
|
ุงููู ูู ุงุซููู ุชุฑุจูุน ุงููู ูู ุนุจุงุฑุฉ ุนู ุงุซููู ุฃุตู ูุตู |
|
|
|
234 |
|
00:29:41,610 --> 00:29:54,270 |
|
ุฏู ูุงุญุฏ ุชุฑุจูุน ูุนูู ูุชููู ุงูุณุงูู ุงุซููู ุฃุตู ูุตู ูู ุจุงู |
|
|
|
235 |
|
00:29:54,270 --> 00:30:02,470 |
|
ุนูู ุฃุฑุจุนุฉ ุฏู ูุงุญุฏ ุชุฑุจูุน ูุนูู ุฅูู ุงุซููู ู
ุด ุณุงูู ุฌุฒุฑ |
|
|
|
236 |
|
00:30:02,470 --> 00:30:10,390 |
|
ุงุซููู ูู ุงูู ูุงุญุฏ ุตุญ ุฌุฒุฑ ุงุซููู ูู ุงูู ูุงุญุฏ ู
ุนูุงุชู |
|
|
|
237 |
|
00:30:10,390 --> 00:30:17,210 |
|
ูุนูู ูุชุตูุฑ ุฒุงุฆุฏ ุชูุงู
ู ู
ู ุตูุฑ ูุฃูู ุนูู ุงุซููู |
|
|
|
238 |
|
00:30:26,780 --> 00:30:35,160 |
|
ุงูู V ุงููู ูู F ู ุฏู V ู ุฏู F ุจูุณุงูู ูุงุญุฏ ูุชููู ูุฃุทูุน C |
|
|
|
239 |
|
00:30:35,160 --> 00:30:44,880 |
|
C ุงููุงุญุฏ ุจููุช ูุงุญุฏ ุนุดุฑ ุนูู A ูุงุญุฏ G |
|
|
|
240 |
|
00:30:44,880 --> 00:30:47,980 |
|
ูู |
|
|
|
241 |
|
00:30:47,980 --> 00:30:55,660 |
|
ุชูุงู
ู F DX ุตุญุ ูู F ุชูุงู
ู |
|
|
|
242 |
|
00:30:58,480 --> 00:31:09,440 |
|
DX ู
ู ุตูุฑ ู L ุนูู ุงุซููู ุฒุงุฆุฏ ูุง |
|
|
|
243 |
|
00:31:09,440 --> 00:31:17,540 |
|
V ูุงู ุฏู V ุจูู ุฏู F ุจูุณุงูู ูุงุญุฏ ุฒุงุฆุฏ |
|
|
|
244 |
|
00:31:17,540 --> 00:31:22,660 |
|
C ุนูู |
|
|
|
245 |
|
00:31:22,660 --> 00:31:25,900 |
|
A ุงุซููู G |
|
|
|
246 |
|
00:31:30,130 --> 00:31:41,970 |
|
ุฒุงุฏ ูุงุญุฏ ุจููุช ูุงุญุฏ ุนุดุฑ F ุชูุงู
ู ู
ู L ุนูู 2 ู L ู DX |
|
|
|
247 |
|
00:31:59,070 --> 00:32:07,530 |
|
ู
ุนูุงุชู ุงูู delta ุนูุฏ A ููููู |
|
|
|
248 |
|
00:32:07,530 --> 00:32:17,990 |
|
ุชูุงู
ู X ุชุฑุจูุน ุงููู ูู X ุชูุนูุจ ุนูู 3 ูุนูู 1 ุนูู |
|
|
|
249 |
|
00:32:17,990 --> 00:32:24,630 |
|
3 EI 1 ูู |
|
|
|
250 |
|
00:32:24,630 --> 00:32:38,050 |
|
X ุชูุนูุจ ู
ู ุตูุฑ ู L ุนูู ุงุซููู ุฒุงุฆุฏ ูุงุญุฏ ุนูู ุณุชุฉ E I |
|
|
|
251 |
|
00:32:38,050 --> 00:32:50,570 |
|
ูุงุญุฏ ูู X ุชูุนูุจ ู
ู L ุนูู ุงุซููู ู L ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
252 |
|
00:32:52,330 --> 00:33:00,650 |
|
ุจููุช ูุงุญุฏ ุนุดุฑ FL ุนูู |
|
|
|
253 |
|
00:33:00,650 --> 00:33:14,190 |
|
ุงุซููู A ูุงุญุฏ G ุฒุงุฆุฏ |
|
|
|
254 |
|
00:33:14,190 --> 00:33:28,350 |
|
ูุงุญุฏ ุจููุช ูุงุญุฏ ุนุดุฑ F L ุนูู ุงุซููู A ุงุซููู G ุงุซููู ูู |
|
|
|
255 |
|
00:33:28,350 --> 00:33:42,030 |
|
ุฌุฒุฑ ุงุซููู A ูุงุญุฏ G ูุฐู |
|
|
|
256 |
|
00:33:42,030 --> 00:33:42,870 |
|
F ุตุญุ |
|
|
|
257 |
|
00:33:50,040 --> 00:34:03,420 |
|
ู
ุงุดู ูุนูู ูุชููู ุชุณุงูู F L ุชูุนูุจ ุนูู |
|
|
|
258 |
|
00:34:03,420 --> 00:34:08,120 |
|
ุฃุฑุจุน ูุนุดุฑูู EI |
|
|
|
259 |
|
00:34:08,120 --> 00:34:12,240 |
|
ูุงุญุฏ |
|
|
|
260 |
|
00:34:12,240 --> 00:34:18,960 |
|
ุฒุงุฆุฏ |
|
|
|
261 |
|
00:34:21,570 --> 00:34:29,270 |
|
F ุนูู ุณุชุฉ ุง ุงู ูุงุญุฏ ูู |
|
|
|
262 |
|
00:34:29,270 --> 00:34:39,450 |
|
ุงู ุชูุนูุจ ูุงูุต ุงู ุชูุนูุจ ุนูู ุซู
ุงููุฉ ุฒุงุฆุฏ |
|
|
|
263 |
|
00:34:39,450 --> 00:34:54,720 |
|
ููุงุฎุฏ ูุงุญุฏ ูุงุญุฏ ุนุดุฑ FL ุนูู ุงุซููู A ูุงุญุฏ G ูู ูุงุญุฏ ุฒุงุฏ |
|
|
|
264 |
|
00:34:54,720 --> 00:35:01,500 |
|
ูุงุญุฏ ุนูู ุฌุฒุฑ ุงุซููู ูุนูู |
|
|
|
265 |
|
00:35:01,500 --> 00:35:11,300 |
|
ูุฐุง ูุชููู ุฅูุด ุณุจุนุฉ ุนูู ุซู
ุงููุฉ ูุนูู ูุชููู ุซู
ุงููุฉ |
|
|
|
266 |
|
00:35:11,300 --> 00:35:15,960 |
|
ุจุณุชุฉ ุณุจุนุฉ ุซู
ุงููุฉ ูุฃุฑุจุนูู ูุนูู ูุชููู ุชุณุงูู ูุฐุง |
|
|
|
267 |
|
00:35:15,960 --> 00:35:27,540 |
|
ุงุซููู F ุงูุชูุนูุจ ุนูู ุซู
ุงููุฉ ูุฃุฑุจุนูู EI1 ุฒุงุฆุฏ 7F |
|
|
|
268 |
|
00:35:27,540 --> 00:35:37,500 |
|
ุงูุชูุนูุจ ุนูู 48EI1 |
|
|
|
269 |
|
00:35:37,500 --> 00:35:47,720 |
|
ุฒุงุฆุฏ ูุฐุง ุงู term ูุนูู ุฑุญ ูููู ุงุซููู ุฒูุงุฏุฉ ุณุจุนุฉ ุชุณุนุฉ |
|
|
|
270 |
|
00:35:47,720 --> 00:35:57,080 |
|
ุชุณุนุฉ ุงู ุงู ุชูุนูุจ ุชุณุนุฉ ุงู ุงู ุชูุนูุจ ุนูู ุซู
ุงููุฉ |
|
|
|
271 |
|
00:35:57,080 --> 00:36:09,790 |
|
ูุฃุฑุจุนูู E I ูุงุญุฏ ุฒุงุฆุฏ ูุงุญุฏ ุจููุช ูุงุญุฏ ุนุดุฑ FL ุนูู ุงุซููู |
|
|
|
272 |
|
00:36:09,790 --> 00:36:19,310 |
|
A ูุงุญุฏ G ูู ูุงุญุฏ ุฒุงุฆุฏ ูุงุญุฏ ุนูู ุฌุฒุฑ ุงุซููู ุฃูุง |
|
|
|
273 |
|
00:36:19,310 --> 00:36:24,770 |
|
ู
ุฑุฉ ุงุชุญูุช ู
ุง ูู
ูุชุด ุงู shear ูุฃู ุจุฏู deflection ุนูุฏ |
|
|
|
274 |
|
00:36:24,770 --> 00:36:30,510 |
|
ููุทุฉ B ุจุฏู deflection ุนูุฏ ููุทุฉ B |
|
|
|
275 |
|
00:36:32,530 --> 00:36:41,810 |
|
ุนูุฏ B ูููุด force ุจุฑูุญ ุจุญุท force ุชุฎูููุฉ ุจุณู
ููุง |
|
|
|
276 |
|
00:36:41,810 --> 00:36:45,730 |
|
Q ุจุณู
ููุง |
|
|
|
277 |
|
00:36:45,730 --> 00:36:50,850 |
|
ุฅูุดุ Q ุนุดุงู ุงุญูุง ุจุณ ูุฃุฎุฐ ุงูููุฑุฉ ุฎุงููุฉ ุฃูุง ูู |
|
|
|
278 |
|
00:36:50,850 --> 00:36:58,010 |
|
ุงูู
ุณุฃูุฉ ูู ุงูุฌุฒุก ุงูุซุงูู ุจุฏู ุฃุนู
ู ุงูู
ุงู ููุดูุฑ ุจุฏู |
|
|
|
279 |
|
00:36:58,010 --> 00:37:01,130 |
|
ุฃุนู
ู ุงูู
ุงู ููุดูุฑ ูุฃู |
|
|
|
280 |
|
00:37:05,340 --> 00:37:10,640 |
|
ูู ุงูู
ุณุงูุฉ ู
ู a from a to b ุฃูุง ุฏู ุญุงุณูุจ |
|
|
|
281 |
|
00:37:10,640 --> 00:37:15,180 |
|
diffraction ุญุงููุง ุนูุฏ b ูู ุฃุฎุฐุช ุงู free body diagram ูู |
|
|
|
282 |
|
00:37:15,180 --> 00:37:18,980 |
|
|
|
|
|
283 |
|
00:37:18,980 --> 00:37:28,220 |
|
ูุฐู ูุชููู ุงู v ุจ s w f ูุฐู a ู b ุงู v ุจ s w f |
|
|
|
284 |
|
00:37:28,220 --> 00:37:30,900 |
|
ู ุงู dv ุจ q df ุจ s w 1 ู ุงู m ุจ s w x ู ุงู dm |
|
|
|
285 |
|
00:37:30,900 --> 00:37:40,670 |
|
by df ุจ s w x ุทูุจ ู
ู B ู C ูุงุฎุฏ |
|
|
|
286 |
|
00:37:40,670 --> 00:37:44,470 |
|
ุงู free body diagram ูุญุฏ ููุง ูุดูู ุงู free body |
|
|
|
287 |
|
00:37:44,470 --> 00:37:53,490 |
|
diagram ูุฐุง |
|
|
|
288 |
|
00:37:53,490 --> 00:38:04,650 |
|
ุงูู
ุณุงูุฉ ุนูุฏ ููุง F ุนูุฏ ููุง Q ู ุงูู
ุณุงูุฉ ุฏู ุนุดุฑ X |
|
|
|
289 |
|
00:38:06,320 --> 00:38:12,340 |
|
ูุฐู ุงูู
ุณุงูุฉ ุงู ุนูู ุงุซููู ู
ุนูุงุชู ูู ุงูุง ุญุงุณุณ ุงู |
|
|
|
290 |
|
00:38:12,340 --> 00:38:20,060 |
|
ุนูุฏู F ุฒุงุฏ Q ุตุญุ |
|
|
|
291 |
|
00:38:20,060 --> 00:38:28,640 |
|
F ุฒุงุฏ Q ูุนูุฏู moment ูุชููู |
|
|
|
292 |
|
00:38:28,640 --> 00:38:32,860 |
|
MBC |
|
|
|
293 |
|
00:38:35,420 --> 00:38:49,740 |
|
ุจ s w F ูู X ุฒุงุฆุฏ Q ูู X minus L ุนูู 2 ุตุญุ ู |
|
|
|
294 |
|
00:38:49,740 --> 00:39:05,600 |
|
ุงู V ุจู C ุจ s w F ุฒุงุฆุฏ Q ุงูุขู ุงู D M ุจู C ุจุนุฏ ุฏู Q |
|
|
|
295 |
|
00:39:05,600 --> 00:39:09,740 |
|
ุงูุขู ุงูุง ุจุฏูุด ุฏู ุนูุฏ D ู
ุนูุงุชู ุฏู partial ุจุงููุณุจุงูู |
|
|
|
296 |
|
00:39:09,740 --> 00:39:21,740 |
|
ุฏู Q ูุชููู ูุฐู ุณูุฑ ูุชููู ุดู ุชุณุงููุ X ูุชููู |
|
|
|
297 |
|
00:39:21,740 --> 00:39:24,100 |
|
ุชุณุงูู ุฅูู ุนุดุงูุ X |
|
|
|
298 |
|
00:39:28,930 --> 00:39:35,290 |
|
dvbc by dq ุณุงูู |
|
|
|
299 |
|
00:39:35,290 --> 00:39:44,750 |
|
ูุงุญุฏ ุงู |
|
|
|
300 |
|
00:39:44,750 --> 00:39:52,670 |
|
ุตุญูุญ ูุฐู x ุงู x minus |
|
|
|
301 |
|
00:39:52,670 --> 00:39:55,510 |
|
L ุนูู ุงุซููู ุตุญูุญ |
|
|
|
302 |
|
00:39:57,510 --> 00:40:05,810 |
|
ูุฃู ุนุดุงู ูุฏู deflection ุจุฏู |
|
|
|
303 |
|
00:40:05,810 --> 00:40:12,030 |
|
ุฃุญูู ูู ุงูุญุงูุฉ ุฏู ุฎูููุง ููุชุณููู ูุนูู ููุชุณููู ุฃู |
|
|
|
304 |
|
00:40:12,030 --> 00:40:18,290 |
|
ุชุณุฑูุน ุงูุญู ุฎูููุง ููู
ู .. ููู
ู ุงููู ูู ุงู transverse |
|
|
|
305 |
|
00:40:18,290 --> 00:40:25,130 |
|
shear ู
ุนูุงุชู ุจูุตูุฑ ุนูุฏู ุงู delta ุนูุฏู ูุฐุง ุงูุณุงูู |
|
|
|
306 |
|
00:40:26,840 --> 00:40:34,940 |
|
du ุจูุณุงูู ุงููู ูู ุชูุงู
ู ูุงุญุฏ |
|
|
|
307 |
|
00:40:34,940 --> 00:40:40,920 |
|
ุนูู ei ุงู |
|
|
|
308 |
|
00:40:40,920 --> 00:40:52,900 |
|
M ุฏู M ุจุฏู Q ุฏู X ููุณุงูู ุฃูู |
|
|
|
309 |
|
00:40:52,900 --> 00:40:57,060 |
|
ุงูุดูุก ุงููู ุณูููู ุฏู integration ุนูู ู
ุฑุชูู ุนุดุงู ุงู |
|
|
|
310 |
|
00:40:57,060 --> 00:41:01,280 |
|
cross section ู
ุฎุชูู ูุนุดุงู ุงูู
ุนุงุฏูุฉ ุชุฎุชูู ุจูู a,b |
|
|
|
311 |
|
00:41:01,280 --> 00:41:07,820 |
|
ูb,c ูุงูุช ุญุงูู ุนูุฏู ุชูุงู
ู ู
ู ุตูุฑ ู L ุนูู ุงุซููู |
|
|
|
312 |
|
00:41:07,820 --> 00:41:16,540 |
|
ูุงุญุฏ ู E I ูุงุญุฏ ุงู M ู
ู A ู B ุทุจุนุง ูุงุฏู ุงู M ู
ู A |
|
|
|
313 |
|
00:41:16,540 --> 00:41:21,680 |
|
ู B ุงุญูุง |
|
|
|
314 |
|
00:41:21,680 --> 00:41:25,980 |
|
ุทุจุนุง ููุง ุฎูููุง ูุธุจุทูุง ููุง ุนูุฏู M,A,B |
|
|
|
315 |
|
00:41:29,550 --> 00:41:42,990 |
|
ู
ุนูุงุชู DMAB by DQ ุฃุดูู ุงูุณุงููุฉุ Zero ุตุญุ |
|
|
|
316 |
|
00:41:42,990 --> 00:41:54,170 |
|
ูู MAB ุงููู ูู FX ูู DMAB by DQ ูู ุฅูู ุฅูุดุ ูู |
|
|
|
317 |
|
00:41:54,170 --> 00:42:02,440 |
|
ุงูุตูุฑ DX ูุงูุง ุงุชูุงุฏู ุฎูุงุต integration ู
ุงููู ุตูุฑ ุฒุงุฏ |
|
|
|
318 |
|
00:42:02,440 --> 00:42:19,920 |
|
ุชูุงู
ู ู
ู L ุนูู 2 ู L ู 1 ุนูู E 2EI 1 ูู ุงู MBC |
|
|
|
319 |
|
00:42:19,920 --> 00:42:21,520 |
|
ุงููู ูู FX |
|
|
|
320 |
|
00:42:28,570 --> 00:42:36,970 |
|
ุฒุงุฏ Q ูู X minus L ุนูู 2 ูู |
|
|
|
321 |
|
00:42:36,970 --> 00:42:44,090 |
|
DMBC by DQ ุงููู ูู X minus L ุนูู 2 ุงููู ุนูุฏู ุจุญูู |
|
|
|
322 |
|
00:42:44,090 --> 00:42:49,930 |
|
ููุง ุงู ุญุท Zero ุน ุทูู ู
ุงุชุนู
ูุด integration ูุณูุจูู |
|
|
|
323 |
|
00:42:49,930 --> 00:42:54,770 |
|
ุนูุฏู ููุง ุชูุงู
ู ู
ู L ุนูู 2 ูL |
|
|
|
324 |
|
00:42:56,490 --> 00:43:13,770 |
|
ููู Fx ูู X minus L ุนูู 2 ุนูู 2 E I 1 ูุนูู |
|
|
|
325 |
|
00:43:13,770 --> 00:43:26,940 |
|
ุญุณููุง ุฏู F ุนูู 2 E I 1ุชูุงู
ู ู
ู L ุนูู 2 ู L ู X |
|
|
|
326 |
|
00:43:26,940 --> 00:43:40,780 |
|
ุชุฑุจูุน minus L ุนูู 2 X DX ูุนูู ูุชููู F ุนูู 2EI 1 ูู |
|
|
|
327 |
|
00:43:40,780 --> 00:43:52,660 |
|
X ุชูุนูุจ ุนูู 3 minus L ุนูู 4 X ุชุฑุจูุน ู
ู L ุนูู 2ูุฃ L |
|
|
|
328 |
|
00:43:52,660 --> 00:43:59,860 |
|
ู ุจุชูู
ู ู ุจุชูุฏูู dash ุงู deflection ููู ู ููุง |
|
|
|
329 |
|
00:43:59,860 --> 00:44:01,260 |
|
ุฎูุตูุง ุงูู
ุญุงุถุฑุฉ .. ุงุญุทูููุง ุงูุนุงููุฉ |
|
|