abdullah's picture
Add files using upload-large-folder tool
8ac0b2e verified
raw
history blame
30.5 kB
1
00:00:02,310 --> 00:00:05,090
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ุณู„ุงู… ุนู„ูŠูƒู… ูˆู…ุฑุญุจุง
2
00:00:05,090 --> 00:00:09,870
ูˆุจุฑูƒุงุชู‡ ู‡ู†ูƒู…ู„ ููŠ ู…ุงุฏุฉ ุชุตู…ูŠู… ุงู„ุขู„ุงุช ูˆุงุญุฏ ุงู„ู…ุฑุฉ ุงู„ูุงุชุช
3
00:00:09,870 --> 00:00:14,250
ุจุฏู†ุง ู†ุญูƒูŠ ุนู† Castigliano theorem ูƒูŠู ู†ุณุชุฎุฏู… ุงู„ุญุณุงุจ
4
00:00:14,250 --> 00:00:21,230
ุงู„ู€ deflections ุญู„ูŠู†ุง ู…ุซุงู„ ุงู„ูŠูˆู… ู‡ู†ูƒู…ู„ ู‡ู†ุณุชุฎุฏู… ุจุฑุถู‡
5
00:00:21,230 --> 00:00:24,730
Castigliano theorem ุนุดุงู† ุญุณุงุจุงุช ุงู„ู€ deflections ููŠ
6
00:00:24,730 --> 00:00:33,120
ุงู„ู€ curved beams ู„ุฃู† ุฃู†ุง ุนู†ุฏูŠ ู‡ู†ุง ุจูŠู†ุฉ Curve beam
7
00:00:33,120 --> 00:00:43,000
ุนู„ู‰ ุดูƒู„ ุฏุงุฆุฑุฉ ูˆููŠู‡ ุจุชุฃุซุฑ force ุทุงู†ุฏู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„
8
00:00:43,000 --> 00:00:49,140
radius ุจุชุงุน ุงู„ู€ centroidal axis R ูƒุงุจูŠุชุงู„ ูˆู„ุฃู†ู‡ care
9
00:00:49,140 --> 00:00:54,120
ุจูŠู‡ ุงู„ู€ neutral axis ู…ุด ู‡ูŠู†ุทุจู‚ ุนู„ู‰ ุงู„ู€ central axis
10
00:00:54,120 --> 00:00:58,760
ูŠุนู†ูŠ ู‡ูŠูƒูˆู† ู„ุฌูˆู‡ ุดูˆูŠุฉ ูˆููŠ some eccentricity E ุจูŠู†
11
00:00:58,760 --> 00:01:04,760
ุงู„ู€ neutral axis ูˆุงู„ู€ central axis ู„ูˆ ุฃุฎุฏุช ุนู…ู„ุฉ cut
12
00:01:04,760 --> 00:01:12,010
ุนู„ู‰ ุฃูŠ ุฒุงูˆูŠุฉ ฮธ ุฃุฎุฏุช ุงู„ู€ free body diagram ุงู„ุฌุฒุก
13
00:01:12,010 --> 00:01:16,850
ู‡ุฐุง ุฃูˆ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ุงุญู†ุง ู‡ู†ุง ู…ุงุฎุฏูŠู† ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ
14
00:01:16,850 --> 00:01:21,630
ู‡ุฐุง ุงู„ู€ free body diagram ู‡ูŠูƒูˆู† ููŠู‡ ุนู†ุฏูŠ ุทุจุนุง ููŠู‡
15
00:01:21,630 --> 00:01:29,370
force F ุงู‡ ูŠุนู†ูŠ ุงู„ู€ force ู‡ุฐูŠ F ุฎู„ูŠู†ูŠ ุขุฎุฏ ุงู„ุฌุฒุก
16
00:01:29,370 --> 00:01:33,050
ูŠุนู†ูŠ
17
00:01:33,050 --> 00:01:37,570
ู„ูˆ ุฃุฎุฏุช ู‡ูˆ
18
00:01:37,570 --> 00:01:38,330
ุฌุงูŠุจ ุฒู‡ูŠุงุฌ
19
00:01:48,520 --> 00:01:56,220
ูˆู‡ุงูŠ F ุฎุฏุช at any angle ฮธ ู„ูˆ
20
00:01:56,220 --> 00:02:08,440
ุฎุฏุช ู‡ุฐุง ุงู„ุนู†ุตุฑ ูˆุทู„ุนุชู‡ ุจุฑุง ุนู†ุฏูŠ
21
00:02:08,440 --> 00:02:14,380
ู‡ุงูŠ ู‡ู†ุง F ู‡ุชูƒูˆู†
22
00:02:14,380 --> 00:02:15,160
ุนูƒุณู‡ุง F
23
00:02:18,910 --> 00:02:23,990
ูˆุงู„ูุฑุตุฉ ููŠู‡ุง ุชุญุงูˆู„ ุชุนู…ู„ moment ุจุนูƒุณ ุนู‚ุงุฑุจ ุงู„ุณุงุนุฉ
24
00:02:23,990 --> 00:02:37,350
ู‡ุชูƒูˆู† ููŠ moment ู…ุนุงูƒุณุฉ ุจุงุชุฌุงู‡ ุนู‚ุงุฑุจ ุงู„ุณุงุนุฉ ุงู„ู„ู
25
00:02:37,350 --> 00:02:43,330
ู‡ุฐุง ู…ู…ูƒู† ุฃุญู„ู„ู‡ ู„ู€ two components ูˆุงุญุฏุฉ ุจุงุชุฌุงู‡ ู‡ุฐุง F
26
00:02:43,330 --> 00:02:47,130
radial ุฃูˆ
27
00:02:47,130 --> 00:02:55,400
ุจุงุชุฌุงู‡ ุงู„ุนู…ูˆุฏูŠ ูู€ ฮธ ู„ูˆ ุฃุฎุฏุช ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ
28
00:02:55,400 --> 00:03:10,260
ู‡ุชูƒูˆู†
29
00:03:10,260 --> 00:03:16,580
ู‡ุฐูŠ ุนูƒุณ ู‡ุฐูŠ ุงู„ู€ M ู‡ุชูƒูˆู† ู‡ุฐูŠ ุงู„ู€ M ูˆุงู„ู€
30
00:03:16,580 --> 00:03:28,340
F ู‡ุชูƒูˆู† ุงู„ุนูƒุณ ูˆูุนู„ู‡ุง ู‡ูŠูƒูˆู† Fr Fฮธ
31
00:03:28,340 --> 00:03:36,500
ุฒูŠ ู…ุง ุฃู†ุชู… ุดุงูŠููŠู† ุงู„ุขู†
32
00:03:36,500 --> 00:03:41,260
ุทุจุนุง ุนู†ุฏูŠ ุงู„ู€ section ุฏู‡ ุจุฃุซุฑ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
33
00:03:41,260 --> 00:03:48,520
moment M ูˆุงู„ู€ radial component Fr ูˆู‡ูˆ axial component
34
00:03:48,520 --> 00:03:53,960
Fฮธ ู…ุนู†ุงุชู‡ ู‡ุฏูˆู„ ูƒู„ู‡ู… ุจูŠุนู…ู„ูˆุง strain energy
35
00:03:53,960 --> 00:03:58,460
ุจูŠุนู…ู„ูˆู‡ุง strain energy ููŠ ุงู„ู€ curved beam ูŠุนู†ูŠ
36
00:03:58,460 --> 00:04:00,400
ู…ุนู†ุงุชู‡ ููŠ ุนู†ุฏูƒ strain energy due to bending moment
37
00:04:00,400 --> 00:04:07,050
M ููŠ strain energy due to axial force Fฮธ ูˆููŠ
38
00:04:07,050 --> 00:04:12,130
strain energy due to transverse force FR ูˆููŠ bending
39
00:04:12,130 --> 00:04:16,890
moment due to Fฮธ ูŠุนู†ูŠ ุงู„ุขู† ุฃู†ุง ุฌุงูŠุจ ุงู„ู€ forces
40
00:04:16,890 --> 00:04:20,910
ูˆุงู„ู€ moments ุนู†ุฏ ุงู„ู€ centroidal axis ู„ูƒู† ุฃู†ุง ุนู†ุฏ ุงู„ู€
41
00:04:20,910 --> 00:04:25,190
neutral axis ู„ุฌูˆู‡ ุดูˆูŠุฉ ูˆุฃู†ุง ุจู‚ูˆู„ Fฮธ ู‡ุชุนู…ู„
42
00:04:25,190 --> 00:04:30,210
bending moment ูŠุนู†ูŠ ููŠ combined effect moment ู…ุน
43
00:04:30,210 --> 00:04:31,530
axial force ู‡ูŠูƒูˆู†
44
00:04:37,900 --> 00:04:41,480
ุงู„ุขู† ุฃูˆู„ ุดูŠุก ู†ุญูƒูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ strain energy due to
45
00:04:41,480 --> 00:04:46,500
ุฅู† ุงุญู†ุง ุนู†ุฏู†ุง ุฃุฑุจุน ุฃุฑุจุน strain energy components
46
00:04:46,500 --> 00:04:49,500
ุงุญู†ุง ุญูƒูŠู†ุง ุฃูˆู„ ุดูŠุก ุนู†ุฏู†ุง ุงู„ู€ bending moment ูŠุนู†ูŠ
47
00:04:49,500 --> 00:04:52,220
ุงู„ู€ strain energy due to bending moment ุงู„ู„ูŠ ู‡ูŠ
48
00:04:52,220 --> 00:04:54,380
ู‡ุชูƒูˆู† ุชูƒุงู…ู„ U
49
00:05:05,250 --> 00:05:14,190
due to bending ู‡ุชูƒูˆู† ุชูƒุงู…ู„ Mยฒ dx
50
00:05:14,190 --> 00:05:17,350
ู†ุนู…
51
00:05:17,350 --> 00:05:25,990
dx ุนู„ู‰ 2EI
52
00:05:25,990 --> 00:05:31,710
ุฅุฐุง ูุงูƒุฑูŠู† ู…ุธุจูˆุท ุฃู†ุง
53
00:05:31,710 --> 00:05:38,480
ุนู†ุฏ ุงู„ู€ dx ู„ูˆ ุฃุฎุฏุช ุงู„ู€Dฮธ ู‡ุฐู‡
54
00:05:38,480 --> 00:05:51,580
ู‡ูŠ ุงู„ู€DX ุตุญ ุงู„ู€DX ุณุชุด ุชุณุงูˆูŠ R Dฮธ ูˆุงู„ู€I
55
00:05:51,580 --> 00:05:56,920
ุฅุฐุง ู†ุฑุฌุน ู„ุฌูˆู‡ ููŠ ุงู„ู€ chapter ุชู„ุงุชุฉ ููŠ ุงู„ู€ curve
56
00:05:56,920 --> 00:05:57,300
beams
57
00:07:03,760 --> 00:07:12,940
ููŠ ุงู„ู€ curved beams ุงุญู†ุง ุงุนุทูŠู†ุง ู…ุนุงุฏู„ุฉ ุชู‚ุฑูŠุจุง ู„ู„ู€
58
00:07:12,940 --> 00:07:17,640
eccentricity ุงู„ู€ E ุงู„ู„ูŠ ู‡ูŠ ุจุณ ุจูŠู† ุงู„ู€ neutral axis ูˆ
59
00:07:17,640 --> 00:07:23,620
ุงู„ู€ centroidal axis E ุชู‚ุฑูŠุจุง
60
00:07:23,620 --> 00:07:36,410
ุจู€ ุชุณุงูˆูŠ I ุนู„ู‰ RC ููŠ A ุจู€ ุชุณุงูˆูŠ I ุงู„ู€ R ุงู„ุตูŠู† ููŠ
61
00:07:36,410 --> 00:07:44,130
ุงู„ุญุงู„ุฉ ู‡ุฏูˆู„ R capital ุตุญุŸ ููŠ A ู…ุนู†ุงุชู‡ ุงู„ู€ I ู‡ุชูƒูˆู†
62
00:07:44,130 --> 00:07:48,250
ุชุณุงูˆูŠ ERA
63
00:07:48,250 --> 00:07:58,670
ู…ุนู†ุงุชู‡ ู‡ุฐู‡ ู‡ุชุตูŠุฑ ุชูƒุงู…ู„ M square R D ฮธ ุนู„ู‰ ุงุชู†ูŠู†
64
00:07:58,670 --> 00:08:07,290
E ุงู„ู€ I ุงู„ู„ูŠ ู‡ูŠ E R A ูŠุนู†ูŠ ู‡ุชุฑูˆุญ R ู…ุน R ู‡ุชุตูŠุฑ ุชูƒุงู…ู„
65
00:08:07,290 --> 00:08:15,390
M Square D ฮธ ุนู„ู‰ ุงุชู†ูŠู† E E A
66
00:08:28,050 --> 00:08:32,350
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ูˆุงู„ู€
67
00:08:32,350 --> 00:08:36,190
ุงูŠู‡ ุงุญู†ุง ุญูƒูŠู†ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ R minus RN ุงู„ู€
68
00:08:36,190 --> 00:08:40,510
eccentricity ู‡ุฐุง
69
00:08:40,510 --> 00:08:45,530
ุจุงู„ู†ุณุจุฉ ู„ู„ู€ bending ุนู†ุฏูŠ ุงู„ู€ strain energy due to axial
70
00:08:45,530 --> 00:08:53,570
force ุนู†ุฏูŠ
71
00:08:53,570 --> 00:08:54,730
ูŠุง ุนุฒูŠุฒูŠ ุซุงู†ูˆูŠุฉ ุชูƒุงู…ู„
72
00:08:58,090 --> 00:09:08,050
mยฒ dฮธ ุนู„ู‰ ุงุชู†ูŠู† a e a ูˆ ุงู„ู€ u ฮธ ุงู„ู€ u ุช ุฃูƒุณ ุงู„ู€ force
73
00:09:08,050 --> 00:09:25,770
ู‡ุชูƒูˆู† ุชูƒุงู…ู„ f ฮธ square dx ุนู„ู‰ ุงุชู†ูŠู† e a ุจุธู‡ุฑ ุทูŠุจ
74
00:09:27,230 --> 00:09:39,370
ูŠุนู†ูŠ ู‡ุชูƒูˆู† ุงู„ุชูƒุงู…ู„ FยฒฮธRdฮธ2Ea
75
00:09:39,370 --> 00:09:44,930
ู„ุบุงูŠุฉ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู€ component ุงู„ุซุงู„ุซุฉ
76
00:09:48,650 --> 00:09:53,810
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ .. ุงู„ู€ combined effect ุจูŠู† ุงู„ู€ moment ูˆ
77
00:09:53,810 --> 00:09:58,450
ุงู„ู€ axial force Fฮธ ุทุจุนุง ููŠ ุงู„ูƒุชุงุจ ุญุงุทุท ู…ุฑุฌุน
78
00:09:58,450 --> 00:10:00,650
ุชุฑุฌุน ุนู„ู‰ ูƒุชุงุจ ู…ุนูŠู† ุนุดุงู† ุชุดูˆู ุงู„ู€ derivation ุชุงุนุชู‡ุง
79
00:10:00,650 --> 00:10:06,230
ุฅุฐุง ุจุฏูƒู… ุญุงุทุท ู†ุฌู…ุฉ ุชุฑุฌุน ู„ู‡ุง ุงู„ุขู† ุงู„ู€ U ุจุชุงุนุฉ
80
00:10:06,230 --> 00:10:16,410
ู†ุณู…ูŠู‡ุง U ุชู„ุงุชุฉ ู‡ุฐู‡ .. ู‡ุฐู‡ U1 ูˆู‡ุฐุง U2 U3 ุงู„ู„ูŠ ู‡ูŠ
81
00:10:16,410 --> 00:10:20,590
ู‡ุชูƒูˆู† ู„ุณู‡ minus ุทุจ ู‡ุฐุง ุงู„ู€ minus ู„ูŠู‡ ุฌุงูŠุฉ ุงู„ู€ minusุŸ
82
00:10:21,980 --> 00:10:31,440
ู„ุฃู† ุงู„ู€ M ุชุนู…ู„ moment ููŠ ู‡ุฐุง ุงู„ุงุชุฌุงู‡ ุงู„ู€ Fฮธ ู‡ูŠ ุงู„ู€
83
00:10:31,440 --> 00:10:35,560
neutral axis ุชุนู…ู„ moment ู…ุนุงูƒุณุฉ ุนุดุงู† ู†ูู‡ู… ุจุนูƒุณูˆุง
84
00:10:35,560 --> 00:10:39,660
ุจุนุถ ูˆุงุญุฏุฉ ุจุชุญุงูˆู„ ุชุฒูˆู‘ุฏ ุงู„ุฒุงูˆูŠุฉ ูˆูˆุงุญุฏุฉ ุจุชุญุงูˆู„ ุชู‚ู„ู„
85
00:10:39,660 --> 00:10:49,380
ุงู„ุฒุงูˆูŠุฉ ูู‡ุชูƒูˆู† minus ุชูƒุงู…ู„ M Fฮธ Dฮธ
86
00:10:51,040 --> 00:11:00,960
ุนู„ู‰ a e a ุงู„ู€ component ุงู„ุฑุงุจุน ุฏูŠ ุงู„ู€ transverse ุงู„ู€
87
00:11:00,960 --> 00:11:12,480
force ุงู„ู„ูŠ ู‡ูŠ F radial ุงู„ู€ U ุฃุฑุจุนุฉ ู‡ุชูƒูˆู† ุชูƒุงู…ู„ C F R
88
00:11:12,480 --> 00:11:17,120
square DX ุนู„ู‰
89
00:11:18,830 --> 00:11:26,570
ูˆุจุฑุถู‡ 2 A G ูŠุนู†ูŠ
90
00:11:26,570 --> 00:11:37,830
ู‡ุชูƒูˆู† ุชูƒุงู…ู„ C F R Square ููŠ R D ฮธ ุนู„ู‰ ุงุชู†ูŠู† A
91
00:11:37,830 --> 00:11:39,550
G
92
00:11:42,500 --> 00:11:46,260
ุงู„ู€ Total Strain Energy ู‡ุชูƒูˆู† ู…ุฌู…ูˆุนู‡ู… U ุงู„ูƒู„ูŠุฉ ู‡ุชูƒูˆู† U
93
00:11:46,260 --> 00:11:54,400
ูˆุงุญุฏ ุฒุงุฆุฏ U ุงุชู†ูŠู† ุฒุงุฆุฏ U ุชู„ุงุชุฉ ุฒุงุฆุฏ U ุฃุฑุจุนุฉ ุงู„ู„ูŠ ู‡ูŠ
94
00:11:54,400 --> 00:12:00,270
ุงู„ุฃุฑุจุน components ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ due to bending ูˆู‡ุฐู‡
95
00:12:00,270 --> 00:12:04,670
due to axial load ูˆู‡ุฐู‡ due to combined effect ุจูŠู†
96
00:12:04,670 --> 00:12:11,690
F ฮธ ูˆ M ูˆู‡ุฐู‡ due to transverse load ุงู„ุขู† ุงู„ู€
97
00:12:11,690 --> 00:12:19,790
deflection ุนู†ุฏ ู†ู‚ุทุฉ ุชุฃุซูŠุฑ force F ู‡ูŠูƒูˆู† ุงู„ู€ partial
98
00:12:19,790 --> 00:12:21,990
derivative ุฏูŠ U by ุฏูŠ F
99
00:12:24,950 --> 00:12:30,570
ุงู„ุขู† ู„ู…ุง ู†ุนู…ู„ ุงู„ู€ partial derivative ู„ู„ู€ U ู‡ู†ุฏุฎู„ ุงู„ู€
100
00:12:30,570 --> 00:12:34,990
partial derivative ุฌูˆุง ูƒู„ ุงู†ุชุฌุฑุงู„ ุตุญุŸ ูŠุนู†ูŠ ู‡ุชูƒูˆู† ู„ู…ุง
101
00:12:34,990 --> 00:12:39,750
ู†ุฏุฎู„ู‡ุง ุนู„ู‰ ุงู„ุฃูˆู„ ู‡ุชูƒูˆู† ุนู†ุฏ 2 A E ู‡ุฐู‡ constant
102
00:12:39,750 --> 00:12:46,490
ู‡ุชูƒูˆู† 2 M ููŠ DM by DF ูŠุนู†ูŠ ู‡ุชูƒูˆู† ุนู†ุฏูƒ ุชูƒุงู…ู„ M
103
00:12:46,490 --> 00:12:52,350
ุนู„ู‰ AE E ููŠ D M by D F D ฮธ ุฒุงุฆุฏ ุงู„ู€ term ุงู„ุซุงู†ูŠ
104
00:12:52,350 --> 00:12:56,750
ู‡ุชูƒูˆู† 2 F ฮธ D F ฮธ by D ฮธ ูˆ 2
105
00:12:56,750 --> 00:13:02,270
ู…ุน 2 ููŠ ุงู„ู…ู‚ุงู… ุจูŠุตูŠุฑ F ฮธ R ุนู„ู‰ A E ููŠ D F
106
00:13:02,270 --> 00:13:08,950
ฮธ by D F D ฮธ ู†ุงู‚ุต ุงู„ู€ derivative ู„ู€ 2
107
00:13:08,950 --> 00:13:14,150
ู‡ุฐูˆู„ ู…ุน ุจุนุถ ู†ุงู‚ุต 1 ุนู„ู‰ A E E D M F ฮธ
108
00:13:14,150 --> 00:13:20,670
by D F D ฮธ ุฒุงุฆุฏ ู‡ุชูƒูˆู† CFR R ูƒุงุจูŠุชุงู„ ุนู„ู‰ A
109
00:13:20,670 --> 00:13:27,010
G D F R by D F D ฮธ ุงู„ุขู† ู†ุฑูˆุญ ุนู„ู‰ ุงู„ู€
110
00:13:27,010 --> 00:13:29,810
free body diagram ุงู„ู€ moment ุงูŠุด ุจู€ ุชุณุงูˆูŠ ู‚ูŠู…ุฉ ุงู„ู€
111
00:13:29,810 --> 00:13:37,090
moment ุงู„ู€ moment ุจู€ ุชุณุงูˆูŠ ู‡ุงูŠ
112
00:13:37,090 --> 00:13:37,910
ุงู„ู…ุณุงูุฉ ู‡ุงุฏุฉ
113
00:13:44,930 --> 00:13:49,430
ู…ุนู†ุงุชู‡ ุงู„ู€ M ุจู€ ุชุณุงูˆูŠ
114
00:13:49,430 --> 00:14:02,050
F R Sin ฮธ ู…ู†ู‡ุง ุจู€ ู†ุญุตู„ DM by DF ุงู„ู„ูŠ ู‡ูŠ ู‡ุชูƒูˆู† R
115
00:14:02,050 --> 00:14:04,030
Sin ฮธ
116
00:14:06,680 --> 00:14:12,640
ูˆุงู„ู€ Fฮธ ู…ุง ู‡ูŠ ุงู„ู€ Fฮธ ูˆุงู„ู€ F R components ู…ู† F
117
00:14:15,510 --> 00:14:26,170
ู‡ุชูƒูˆู† ุชุณุงูˆูŠ F Sin ฮธ ูŠุนู†ูŠ ุงู„ู€ DF ฮธ by DF ุจู€ ุชุณุงูˆูŠ Sin
118
00:14:26,170 --> 00:14:38,430
ฮธ ูˆุงู„ู€ F R ุจู€ ุชุณุงูˆูŠ F Cos ฮธ ูŠุนู†ูŠ ุงู„ู€ DF R by DF ุจู€ ุชุณุงูˆูŠ
119
00:14:38,430 --> 00:14:39,990
Cos ฮธ
120
00:14:42,290 --> 00:14:48,910
ุนู†ุฏูŠ ุงู„ู€ term ุงู„ุฑุงุจุน ุงู„ู„ูŠ ู‡ูˆ M Fฮธ
121
00:14:48,910 --> 00:14:54,170
ุดูˆ ุจู€ ุชุณุงูˆูŠุŸ ู‡ุงูŠ ุงู„ู€ M ู‡ุชุณุงูˆูŠ F square
122
00:15:01,120 --> 00:15:14,680
Sin Square ฮธ ู…ุนู†ุงุชู‡ D ู„ู€ M F ฮธ By DF ู‡ุชูƒูˆู†
123
00:15:14,680 --> 00:15:22,700
ุจู€ ุชุณุงูˆูŠ 2 F R Sin Square ฮธ
124
00:15:31,600 --> 00:15:40,060
ุงู„ุขู† ุฃู†ุง ุญุงุฌุฉ ุฃุนูˆู‘ุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ู‡ุฃุนูˆุถ ุนู† M ูˆ DM
125
00:15:40,060 --> 00:15:55,700
by DF ู‡ุฃุนูˆู‘ุถ ุนู† Fฮธ ูˆ DFฮธ by DF ูˆ DMFฮธ by DF ูˆ FR ูˆ
126
00:15:55,700 --> 00:16:01,160
DFR by DF ู‡ุฃุนูˆู‘ุถู‡ู… ููŠ ุงู„ู…ุนุงุฏู„ุฉ ูˆุฃุนู…ู„ ุชุจุณูŠุท ู„ู‡ุง
127
00:16:04,170 --> 00:16:06,510
ูˆุฃุทู„ุน ุงู„ู€ constants ุจุฑุง ุจูŠุตูŠุฑ ู…ุนุฏู„ ุงู„ู€ deflection
128
00:16:06,510 --> 00:16:13,280
ุนู†ุฏ F ุจู€ ุชุณุงูˆูŠ ุทุจุนุง ฮธ ฮธ ููŠ ุงู„ุญุงู„ ู‡ุชุทูŠุฑ ู…ู† Zero ู„ู€
129
00:16:13,280 --> 00:16:17,760
ฯ€ ุนู„ู‰ 180 ุฏุฑุฌุฉ ู‡ุชูƒูˆู† ุงู„ู€ term ุงู„ุฃูˆู„ ุจุชุงุน ุงู„ู€ bending
130
00:16:17,760 --> 00:16:22,600
ุงู„ู„ูŠ ู‡ูˆ F R square ุนู„ู‰ A E E integral ู…ู† ุตูุฑ ู„ู€ ฯ€
131
00:16:22,600 --> 00:16:26,640
ู„ู€ sine square ฮธ d ฮธ ุฒูŠ ุงู„ู€ term ุงู„ุซุงู†ูŠ ุจุชุงุน
132
00:16:26,640 --> 00:16:29,900
axial force ุงู„ู„ูŠ ู‡ูˆ FR ุนู„ู‰ AE ุชูƒุงู…ู„ ู…ู† ุตูุฑ ู„ู€ ฯ€
133
00:16:29,900 --> 00:16:33,020
sine square ฮธ d ฮธ ุงู„ู€ term ุงู„ุซุงู„ุซ ุงู„ู„ูŠ ู‡ูˆ
134
00:16:33,020 --> 00:16:35,920
combined effect ุจูŠู† ุงู„ู€ bending ูˆ axial force
135
00:16:37,630 --> 00:16:43,750
-2FRKPT ุนู„ู‰ AE ุชูƒุงู…ู„ ฯ€ SinยฒฮธDฮธ ุงู„ุชุฑู…
136
00:16:43,750 --> 00:16:48,270
ุงู„ุฑุงุจุน ู‡ูˆ transverse component ุฒุงุฆุฏ CFR ุนู„ู‰ AG
137
00:16:48,270 --> 00:16:54,530
ุชูƒุงู…ู„ ฯ€ CosยฒฮธDฮธ ุทุจุนุง ู‡ุฐู‡ ุจุชุนู…ู„ ุงู„ู€
138
00:16:54,530 --> 00:17:00,450
integrals ู„ู„ู€ Sinยฒ ุชุนุฑููˆุง ุฃุณูˆุฃู‡ุง ูˆุงู„ู€ Cosยฒ
139
00:17:02,780 --> 00:17:06,980
ูˆุจุชุนูˆุถ ู…ู† ุตูุฑ ู„ู€ ฯ€ simplified ุจุชุญุตู„ ุนู„ู‰ ุงู„ู€ term
140
00:17:06,980 --> 00:17:12,280
ู‡ุฐุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ deflection ุนู†ุฏ F ุงู„ู„ูŠ ู‡ูŠ ฯ€ FR2 ุนู„ู‰
141
00:17:12,280 --> 00:17:20,680
2 a e e minus by fr ุนู„ู‰ 2 a e ุฒุงุฆุฏ by c of r ุนู„ู‰ 2
142
00:17:20,680 --> 00:17:28,260
a g ู‡ุฐุง ุจุญุงู„ุฉ ุงู„ curve ุจูŠู‡ ุงู„ุขู† ู‡ู†ู‚ุนุฏ ุญุงู„ุฉ ุฎุงุตุฉ
143
00:17:30,700 --> 00:17:36,480
deflection of thin-curved members ูŠุนู†ูŠ ู†ุฑุฌุน ู„ู„ุดูƒู„
144
00:17:36,480 --> 00:17:46,220
ู‡ุฐุง ู…ุณู…ู‰ R ูƒุงุจูŠุชุงู„ ูˆู‡ุฐู‡ H ุฅุฐุง ูƒุงู†ุช R ูƒุงุจูŠุชุงู„ ุนู„ู‰ H
145
00:17:46,220 --> 00:17:52,200
ูƒุจูŠุฑุฉ ุฃูƒุจุฑ ู…ู† ุนุดุฑุฉ ู…ุนู†ุงุชู‡ ูŠุนุชุจุฑ thin ูŠุนุชุจุฑ thin
146
00:17:52,200 --> 00:17:56,180
ู„ุฃู† ุงู„ .. ุงู„ deflection
147
00:17:59,390 --> 00:18:03,870
ุจุชูƒูˆู† ุงู„ most dominant quantity ุฎุงู†ุฉ ุฃุทู„ุน ุนู„ู‰
148
00:18:03,870 --> 00:18:11,130
ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุงุทู„ุน ุนู†ุฏู‡ูŠู† R ุชุฑุจูŠุน ู‡ูŠ ุงู„ู„ูŠ ุนู†ุฏู‡ RRR
149
00:18:11,130 --> 00:18:20,680
ูˆ ุงู„ R ุฃูƒุจุฑ ุจูƒุซูŠุฑ ู…ู† ุงู„ H ููˆุงุถุญ ูŠุนู†ูŠ ุงู†ู‡ ู‡ุชูƒูˆู†
150
00:18:20,680 --> 00:18:27,100
ุงู„ุฃูƒุซุฑ ุชุฃุซูŠุฑุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ component due to bending
151
00:18:27,100 --> 00:18:35,300
ุจุนุฏูŠู† ู„ุงุญุธูˆุง ู‡ุฐู‡ minus ู…ุน ู‡ุฐู‡ plus ุงุชุทู„ุน ุงู„ู…ุนุงุฏู„ุงุช
152
00:18:35,300 --> 00:18:38,660
ู‚ุฑูŠุจุง ู…ู† ุจุนุถ ูŠุนู†ูŠ ู„ู…ุง ุชุฌู…ุน ุงู„ total effect ุชุนุงู„ูˆุง
153
00:18:38,660 --> 00:18:45,700
ูŠุฌู…ุนู„ูˆู‡ ุชู‚ุฑูŠุจุง ุจูŠุฎู ูƒุชูŠุฑ ูุงู„ู…ุคุซุฑ ุนู†ุฏูŠ ู‡ูŠ ุงู„ู„ูŠ ู‡ูˆ
154
00:18:45,700 --> 00:18:50,220
ุงู„ bending moment component ุงู„ู„ูŠ ู‡ูŠ by fr square
155
00:18:50,220 --> 00:18:57,410
ุนู„ู‰ ุงุชู†ูŠู† A E E ููŠ ุงู„ุญุงู„ุฉ ู‡ุฐู‡ ุฅุฐุง ูƒุงู†ุช ุนู†ุฏ ุงู„ RH
156
00:18:57,410 --> 00:19:02,230
ุฃูƒุจุฑ ู…ู† ุนุดุฑุฉ ุจูŠูƒูˆู† ุงู„ extent ุฑุณู…ูˆ ูŠุนู†ูŠ ุงู„ู…ุณุงูุฉ ุจูŠู†
157
00:19:02,230 --> 00:19:06,710
ุงู„ neutral axis ูˆ ุงู„ central axis ู‚ู„ูŠู„ุฉ ุฌุฏุง
158
00:19:12,840 --> 00:19:16,660
ูุงู„ู„ูŠ ุจุชุณูŠุทุฑ ุนู„ู‰ ุงู„ู‚ูŠู…ุฉ ุงู„ูƒู„ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ุฅูŠุด ุงู„
159
00:19:16,660 --> 00:19:22,140
bending moment ูุงู„ุญุงู„ุฉ ุฏูŠ ุจุชุณุชูŠุฑ ุงู† ุฏูŠ ุงู„ U
160
00:19:22,140 --> 00:19:27,080
ุจุงู„ุณุงูˆูŠุฉ ุชูƒุงู…ู„ ุงู„ุฃุณุงุณูŠุฉ ููŠ ุงู„ bending ุงู„ U
161
00:19:27,080 --> 00:19:34,120
ุจุงู„ุณุงูˆูŠุฉ ุชูƒุงู…ู„ M square DX ุนู„ู‰ 2EI ูˆ ุงู„ DX ุงู„ู„ูŠ
162
00:19:34,120 --> 00:19:37,330
ุงุญู†ุง ุญุงูƒูŠู‡ ู‡ู†ุง ุจุงู„ุณุงูˆูŠุฉ RD ฮธูŠุนู†ูŠ ุงู†ุง ู‡ุชุตูŠุฑ ุชูƒุงูˆู…
163
00:19:37,330 --> 00:19:40,930
ุงู„ M squared R D ุซุชุง ูˆ ุงู„ Delta ุณูˆู‰ DU ุนู„ู‰ DF ู„ุณู‡
164
00:19:40,930 --> 00:19:47,970
ูˆุงุญุฏุฉ ู„ูŠู‡ I M DM Y DF R D ุซุชุง ุทูŠุจ
165
00:19:47,970 --> 00:19:51,610
ู†ุดูˆู ุงู„ cantilever ู†ุดูˆู example
166
00:20:20,190 --> 00:20:26,530
ุงู„ู‡ูˆูƒ ุงู„ู„ูŠ ู…ุจูŠู† ู…ุนู…ูˆู„ ู…ู† ุณู„ูƒ ู…ู‚ุทุน ุณู„ูƒ ู…ุฏูˆุฑ ู‚ุทุฑ
167
00:20:26,530 --> 00:20:27,210
2 ู…ู„ูŠ
168
00:20:50,350 --> 00:21:12,150
ูˆ ุงู„ุณู„ูƒ ู…ุณุชู…ุชุน ุงู† ุงู„ุทุฑู ู‡ุฐุง ู‡ุฐู‡ L ู‡ุฐู‡
169
00:21:12,150 --> 00:21:16,670
R capital ูˆ ููŠ force
170
00:21:22,440 --> 00:21:43,200
P ุจุชุฃุซุฑ ุนู† ู†ู‚ุทุฉ C ู‡ุฐู‡ C ูˆ ู‡ุฐู‡ A ูˆ V ูˆ D ุงู„
171
00:21:43,200 --> 00:21:47,740
wire diameter D ุจูŠุณุงูˆูŠ
172
00:21:47,740 --> 00:21:50,360
2 mm
173
00:21:54,040 --> 00:22:02,340
ุงู„ L ู…ุนุทู†ูŠู‡ุง 40 ู…ู„ูŠ ู…ูŠุชุฑ 40
174
00:22:02,340 --> 00:22:12,960
ู…ู„ูŠ ู…ูŠุชุฑ ูˆ ุงู„ R 50 ู…ู„ูŠ ู…ูŠุชุฑ ูˆ ุงู„ force 1
175
00:22:12,960 --> 00:22:18,000
ู†ูŠูˆุชู† ูŠุนู†ูŠ ุงู†ุง ุญูˆุงู„ูŠ ู…ุชุฌุฑุงู… ุชู‚ุฑูŠุจุง ุงู„ force ุงู„ P
176
00:22:18,000 --> 00:22:22,340
1 ู†ูŠูˆุชู†
177
00:22:26,710 --> 00:22:29,790
use Castigliano theorem to estimate the deflection
178
00:22:29,790 --> 00:22:36,490
at point D ุทูŠุจ
179
00:22:36,490 --> 00:22:45,390
ุงู„ุงู† ุนู†ุฏูŠ ููŠ force ู…ุนู†ุงู‡ ุงู† ุนุดุงู† ูˆุฌูˆุฏ deflection
180
00:22:45,390 --> 00:22:50,630
ุฏูŠ ุจุฏุนู… ุงู„ partial ู„ู„ energy ุจุงู„ู†ุณุจุฉ ู„ู‡ุง force ุจุญุท
181
00:22:50,630 --> 00:22:54,130
force ูŠุนู†ูŠ ุจูุฑุถ ุงูุฑุถ ุงู† ููŠ force ูŠุนู†ูŠ
182
00:23:01,300 --> 00:23:07,140
ุจุณ ูŠู…ูŠู‡ุง H Q ู‡ุงุฎุฏ
183
00:23:07,140 --> 00:23:18,020
ุงู„ูุชุฑุฉ ุงู„ู…ุณุงูุฉ ู…ู† D ู„ C ู…ู† D ู„ C ูŠุนู†ูŠ
184
00:23:18,020 --> 00:23:27,620
ุฏู‡ ุญูƒูŠ ุงู„ู„ูŠ ู‡ูˆ segment DC
185
00:23:27,620 --> 00:23:30,660
ู‡ุงุฎุฏ ุงู†ุง at any angle
186
00:23:34,920 --> 00:23:50,920
ุซูŠุชุง ุจุงุฎุฏ ุงู„ free body diagram ู‡ุง
187
00:23:50,920 --> 00:23:58,580
ุฏูŠ ุนุดุฑ ุซูŠุชุง ุนู†ุฏู‡ุง ุงู„ุญูƒูˆู…ุฉ ุนุดุฑ Q
188
00:24:04,690 --> 00:24:14,490
ู‡ูŠูƒูˆู† ุนู†ุฏูŠ ุงู„ู€ Q ููŠู†
189
00:24:14,490 --> 00:24:24,990
ุฏูŠ ุนู†ุฏูŠ H moment DC ุตุญุŸ ู„ุฃ ุฎู„ูŠู†ุง ู†ุดูˆู ู‡ู„ ู‡ูˆ ุงู„ู€
190
00:24:24,990 --> 00:24:30,450
Thin curved ุฏูŠ ูˆู„ุง ุงู„ู€ Thin ุงู„ R
191
00:24:34,100 --> 00:24:40,020
ุนู„ู‰ H ุงู„ู„ูŠ ู‡ูŠ ุงู„ R & D ุงูƒู… ุฎู…ุณูŠู† ุงู„ H ุงู„ู„ูŠ ู‡ูŠ
192
00:24:40,020 --> 00:24:50,230
ุงู„ 2 ู…ู„ูŠ ุตุญุŸ 50 ุนู„ู‰ 2 ุงูƒู… 25
193
00:24:50,230 --> 00:24:56,570
25 ุฃูƒุจุฑ ู…ู† 10 ู…ุนู†ุงุชู‡ ุงู„ assumption ุจุชุงุน thin
194
00:24:56,570 --> 00:25:01,250
curved beam ุจู†ุทุจู‚ ุงู„ุญุงู„ุฉ ู‡ุฐู‡ ู…ุนู†ุงุชู‡ ุงู„ most
195
00:25:01,250 --> 00:25:05,710
dominant term ุงู„ู„ูŠ ู‡ูˆ ุฅูŠุด ุงู„ bending ู…ุนู†ุงุชู‡ ุญุงุฌุฉ
196
00:25:05,710 --> 00:25:06,370
ุฃุญูƒูŠ ุฅู†ู‡
197
00:25:11,230 --> 00:25:16,750
ุงู„ุฏู„ุชุง ุญุงุฌุงุช ุฒูŠ ุงู†ุง ุงุญูƒูŠ ููŠ ุงู„ุงูˆู„ ู‡ุญูƒูŠ ุฏู„ุชุง ุงู„ูƒู„ูŠุฉ
198
00:25:16,750 --> 00:25:24,870
ุฏู„ุชุง due to strain energy ููŠ ุงู„ segment DC ุฒุงุฆุฏ
199
00:25:24,870 --> 00:25:31,330
ุฏู„ุชุง due to strain energy ููŠ ุงู„ segment CB ุฒุงุฆุฏ
200
00:25:31,330 --> 00:25:34,550
ุฏู„ุชุง due to strain energy ููŠ ุงู„ segment BA
201
00:25:43,390 --> 00:25:49,310
ุงู„ุงู† ุนู†ุฏูŠ mdc ุฅูŠู‡
202
00:25:49,310 --> 00:25:59,330
ุดูˆ ุจูŠุณุงูˆูŠุŸ ุจูŠุณุงูˆูŠ ุจู†ูุณู‡ุง ูู‡ุฐู‡ ุจุณ ูู‡ุฐุง ุดูˆ ุจูŠุณุงูˆูŠุŸ
203
00:25:59,330 --> 00:26:08,290
ู‡ุฐู‡ ูƒู„ู‡ุง .. ู‡ุฐู‡ ูƒู„ู‡ุง R ุตุญุŸ ู…ุธุจูˆุทุŸ ูˆ ู‡ุฐู‡ ุฅูŠุดุŸ R
204
00:26:08,290 --> 00:26:14,770
cosine ู…ุนู†ุงุชู‡ ู‡ุฐู‡ ู‡ุชูƒูˆู† R ููŠ 1 minus cosine
205
00:26:14,770 --> 00:26:26,830
ฮธ ู…ุธุจูˆุทุŸ ุฅุฐุง ูƒุงู†ุช MDC ุจูŠุณุงูˆูŠ Q ููŠ R ููŠ 1
206
00:26:26,830 --> 00:26:29,210
minus cosine ฮธ
207
00:26:31,940 --> 00:26:40,160
ู„ุฃู† delta DC ู‡ุชูƒูˆู† ุฃูˆ ุฎู„ูŠู†ุง ู†ุญุณุจ ุฃูˆู„ ุดูŠุก ุงุญู†ุง ุทุจุนุง
208
00:26:40,160 --> 00:26:46,280
ุนุดุงู† ู†ุญุณุจ ุงู„ delta ู‡ุญุณุจ partial ุจุงู„ู†ุณุจุฉ ู„ู€ ุฅูŠุด ู„ู€ Q
209
00:26:46,280 --> 00:26:59,340
ู‡ู†ุง ู‡ุชูƒูˆู† ุจู„ุฒุงู† ุงู„ D M DC ุจุงู„ู†ุณุจุฉ ู„ Q ุจูŠุณุงูˆูŠ
210
00:26:59,340 --> 00:27:11,350
R ููŠ 1 minus cosine ฮธ ู…ุนู†ุงุชู‡ delta DC ู‡ุชูƒูˆู†
211
00:27:11,350 --> 00:27:18,530
ุชุณุงูˆูŠ ุชูƒุงู…ู„ ุชูƒุงู…ู„
212
00:27:18,530 --> 00:27:27,770
ู…ู† 0 ู„ Y ุนู„ู‰ 2 ู„ M DC ุนู„ู‰ EI
213
00:27:32,060 --> 00:27:45,300
DM DC BY DQ DX R Dฮธ Dฮธ
214
00:27:45,300 --> 00:27:57,000
ู‡ูŠูƒูˆู† ุชูƒุงู…ู„ ู…ู† ุตูุฑ ู„ุจุนุถ ุนู„ู‰ ุงุชู†ูŠู† ุงู„ Q ุงู„ M DC
215
00:28:00,190 --> 00:28:12,950
Q ููŠ R Q ููŠ R ููŠ 1 ู†ุงู‚ุต ููŠ
216
00:28:12,950 --> 00:28:19,810
1 minus cosine ฮธ ููŠ DMDC by DQ ุงู„ู„ูŠ ู‡ูŠ R
217
00:28:19,810 --> 00:28:27,090
square 1 ู†ุงู‚ุต ูƒุซูŠุฑุฉ square ุนู„ู‰ EI
218
00:28:33,470 --> 00:28:45,430
RDฮธ ู‡ุฐูŠ ุจูŠุณุงูˆูŠ ุฅูŠุดุŸ ุตูุฑ ู„ุฃู†ู‡ ุงู†ุง 6Q0 6Q ู‡ู†ุง ู‡ุฐูŠ
219
00:28:45,430 --> 00:28:47,990
ุญุทู‡ุง ุฒูŠุฑูˆ ุจุชุนุทูŠู†ุง ุตูุฑ ู…ุด ุชุนู…ู„ integration ูˆู„ุง ูุงูƒุฑ
220
00:28:47,990 --> 00:28:54,630
ุจุงู„ integration ู‡ุฐูŠ ุงู„ุฃูˆู„ู‰ ู„ุฃู†ุฎุฏ segment CB
221
00:28:54,630 --> 00:28:55,370
segment
222
00:29:00,640 --> 00:29:08,660
CB ูŠุนู†ูŠ
223
00:29:08,660 --> 00:29:16,760
ู‡ุงุฎุฏ section ู‡ู†ุง ู‡ุญูƒูŠ ูˆู„ุง ุนู†ุฏูŠ ู‡ุงุฎุฏ free body
224
00:29:16,760 --> 00:29:17,100
diagram
225
00:29:31,570 --> 00:29:41,490
ุฃู†ุง ุจุฃุญูƒูŠ ู‡ุฐุง F ฮธ ูˆุนู†ุฏูŠ ู‡ุฐุง
226
00:29:41,490 --> 00:29:54,230
Q ูˆุนู†ุฏูŠ ู‡ู†ุง P ู‡ูŠูƒูˆู†
227
00:29:54,230 --> 00:29:56,730
ุนู†ุฏู‡ ุงู„ู…ุณุงูุฉ ู‡ุฐุง ู…ุด ุงู„ุตุนุจ ู‡ุฐุง ุงู„ู…ุณุงูุฉ
228
00:30:02,590 --> 00:30:11,910
ู‡ุฐู‡ ูƒู„ู‡ุง ุซุงู„ุซุฉ ู‡ุฐู‡ ู‡ุชูƒูˆู† cosine ุงู„ุฒุงูˆูŠุฉ ู‡ุฐู‡ ูŠุนู†ูŠ
229
00:30:11,910 --> 00:30:21,170
ู‡ุชูƒูˆู† ุงู„ moment ุงู„ moment ุงู„ M CB ู‡ุชูƒูˆู†
230
00:30:21,170 --> 00:30:25,970
ุงู„ P ููŠ
231
00:30:25,970 --> 00:30:28,650
R sin
232
00:30:30,950 --> 00:30:41,770
ฮธ ู†ุงู‚ุต 90 ุตุญุŸ ู‡ุฐู‡ ูƒู„ ุงู„ ฮธ ุฒุงุฆุฏ
233
00:30:41,770 --> 00:30:49,330
Q ููŠ
234
00:30:49,330 --> 00:30:52,970
R
235
00:30:52,970 --> 00:31:06,070
ู‡ุงุฏ ุงู„ู…ุณุงูุฉ R ุฒุงุฆุฏ R sin 90
236
00:31:06,070 --> 00:31:10,450
-ฮธ ุตุญ
237
00:31:10,450 --> 00:31:18,050
ู‡ุฐู‡ R ูŠุนู†ูŠ ู‡ุฐู‡ ุงู„ู…ุณุงูุฉ ุฒุงุฆุฏ ู‡ุฐู‡ ุงู„ู…ุณุงูุฉ ุงู„ุขู†
238
00:31:23,770 --> 00:31:33,930
DMCB by DQ ู‡ุชุณุชูˆูŠู‡ R ููŠ
239
00:31:33,930 --> 00:31:37,270
1
240
00:31:37,270 --> 00:31:45,890
ุฒุงุฆุฏ sin (90-ฮธ) ูŠุนู†ูŠ ุงู†ู‡ุง ู‡ุชูƒูˆู† ุณุงูˆูŠุฉ
241
00:31:45,890 --> 00:31:51,890
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90
242
00:31:51,890 --> 00:31:52,770
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90
243
00:31:52,770 --> 00:31:55,570
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90
244
00:31:55,570 --> 00:31:57,830
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90
245
00:31:57,830 --> 00:32:00,630
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90
246
00:32:00,630 --> 00:32:02,510
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90
247
00:32:02,510 --> 00:32:03,690
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90
248
00:32:03,690 --> 00:32:03,710
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90
249
00:32:03,710 --> 00:32:03,730
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90
250
00:32:03,730 --> 00:32:03,750
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90
251
00:32:03,750 --> 00:32:07,310
sin
252
00:32:10,360 --> 00:32:18,680
ุจูŠุตูŠุฑ ุจูŠุตูŠุฑ ุจูŠุตูŠุฑ ุจูŠุตูŠุฑ ุจูŠุตูŠุฑ ู‡ุชูƒูˆู† DMC by DQ ุจูŠุณุงูˆูŠ R
253
00:32:18,680 --> 00:32:24,600
ููŠ 1 ุฒุงุฆุฏ Cos ฮธ ู„ุฃู†
254
00:32:24,600 --> 00:32:37,000
ู‡ุชูƒูˆู† Delta CB ู‡ุชูƒูˆู† ุชูƒุงู…ู„ ู…ู† Pi ุนู„ู‰ 2 ู„ Pi
255
00:32:41,260 --> 00:32:47,460
ุทุจ ุงู†ุง ุจุฏูŠ ุงุญุท q ุตูุฑ ูŠุนู†ูŠ ุงุญุท .. ู‡ุตูุฑ ู‡ูŠุฏูŠ ุตุญุŸ ุจุฏูŠ
256
00:32:47,460 --> 00:32:53,020
ุฃุญูƒูŠ ู‡ู†ุง while setting q to zero ุญุณูŠู†ุง ุฏูŠ PR
257
00:32:53,020 --> 00:32:56,660
cosine
258
00:32:56,660 --> 00:33:06,340
ฮธ ููŠ R ููŠ 1 ุฒุงุฆุฏ cosine ฮธ
259
00:33:09,760 --> 00:33:16,560
ู‡ู†ูƒุชุจ ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ ุนุดุงู† ู…ุง ู†ุฎุฑุจ ุงู„ุดูƒูˆุด 1 ุนู„ู‰ EI
260
00:33:16,560 --> 00:33:23,180
ููŠ
261
00:33:23,180 --> 00:33:26,940
M
262
00:33:26,940 --> 00:33:36,280
CB d m CB by dq
263
00:33:39,430 --> 00:33:47,790
RD ฮธ ู‡ูŠ ุจุชุญุท ู‡ู†ุง q ุณุช q ุจูŠุณุงูˆูŠ ุตูุฑ
264
00:33:47,790 --> 00:33:55,850
ูŠุนู†ูŠ ู‡ุชุณุงูˆูŠ ุชูƒุงู…ู„
265
00:33:55,850 --> 00:34:05,410
ู…ู† ฯ€ ุนู„ู‰ 2 ู„ ฯ€ 1 ุนู„ู‰ EI ููŠ
266
00:34:07,970 --> 00:34:13,330
ูˆุฏุง ุงุญุท Q0 ู‡ุชูƒูˆู† ููŠ PR Cos
267
00:34:13,330 --> 00:34:19,370
ฮธ ููŠ
268
00:34:19,370 --> 00:34:34,310
R ููŠ 1 ุฒุงุฆุฏ Cos ฮธ ููŠ RD ฮธ ูŠุนู†ูŠ ู‡ุชูƒูˆู† ุชูƒุงู…ู„ ู…ู† ฯ€
269
00:34:34,310 --> 00:34:42,770
ุนู„ู‰ 2 ู„ ฯ€ 1 ุนู„ู‰ EI ุทุจุนุง ูˆุฏูŠ ู‡ุชูƒูˆู† ูˆุฏูŠ
270
00:34:42,770 --> 00:34:57,350
PR ุชูƒุนูŠุจ PR ุชูƒุนูŠุจ ููŠ Cosine ฮธ ุฒุงุฆุฏ Cosine ุชุฑุจูŠุน
271
00:34:57,350 --> 00:35:01,690
ฮธ D ฮธ
272
00:35:10,400 --> 00:35:19,660
ุงู„ู„ูŠ ู‡ุชุทู„ุน Delta CB ุจุชุณุงูˆูŠ ุงู„
273
00:35:19,660 --> 00:35:23,840
Cos ฮธ ุชุฑุจูŠุน .. ุงู„ Cos ุชุฑุจูŠุน ฮธ ุฅูŠุด ุจูŠุณุงูˆูŠุŸ ุงู„
274
00:35:23,840 --> 00:35:28,280
Cos ุชุฑุจูŠุน ฮธ ุฎู„ูŠู†ุง ู†ุญูƒูŠ ุงู„ Cosine 2ฮธ ุฅูŠุด
275
00:35:28,280 --> 00:35:32,180
ุจูŠุณุงูˆูŠุŸ Cosine .. ุฎู„ูŠู†ุง ู†ุณู…ูŠู‡ุง Cosine 2ฮฒ ..
276
00:35:32,180 --> 00:35:38,360
Cosine 2ฮฒ ุจูŠุณุงูˆูŠ Cos ุชุฑุจูŠุน ฮฒ minus Sin
277
00:35:38,360 --> 00:35:45,540
ุชุฑุจูŠุน ฮฒ ูŠุนู†ูŠ ู‡ุชูƒูˆู† ู‡ุฐุง Cos ุชุฑุจูŠุน ฮฒ minus
278
00:35:45,540 --> 00:35:51,000
1 minus Cos ุชุฑุจูŠุน ฮฒ ูŠุนู†ูŠ ู‡ุชูƒูˆู† 2
279
00:35:51,000 --> 00:35:57,220
Cos ุชุฑุจูŠุน ฮฒ ู†ุงู‚ุต 1 ู…ุนู†ุงุชู‡ ู‡ุชูƒูˆู† Cosine
280
00:35:57,220 --> 00:36:04,500
ุชุฑุจูŠุน ฮฒ ุจูŠุณุงูˆูŠ ู†ุต ููŠ 1 ุฒุงุฆุฏ Cosine 2ฮฒ
281
00:36:04,500 --> 00:36:09,160
ู…ุธุจูˆุท ูŠุนู†ูŠ ู‡ุชุตูŠุฑ ู‡ุฐุง
282
00:36:15,460 --> 00:36:22,160
P R
283
00:36:22,160 --> 00:36:32,480
ุชูƒูŠุจ ุนู„ู‰ EI ููŠ ุชูƒุงู…ู„
284
00:36:32,480 --> 00:36:47,700
ู…ู† ฯ€ ุนู„ู‰ 2 ู„ู€ ฯ€ ู„ู€ cosine ฮธ ุฒุงุฆุฏ 1/2 ููŠ 1/2 ููŠ
285
00:36:47,700 --> 00:36:59,960
1/2 ุฒุงุฆุฏ 1/2 cosine 2ฮธ ุฏูŠ ฮธ ูŠุนู†ูŠ ู‡ุชูƒูˆู†
286
00:36:59,960 --> 00:37:08,620
P R ุชูƒูŠุจ ุนู„ู‰
287
00:37:08,620 --> 00:37:09,100
EI
288
00:37:12,290 --> 00:37:18,810
ููŠ sin ฮธ ุฒุงุฆุฏ
289
00:37:18,810 --> 00:37:24,890
ฮธ ุนู„ู‰ 2 ุฒุงุฆุฏ
290
00:37:24,890 --> 00:37:35,650
1/4 sin 2ฮธ ุตุญ ู…ู†
291
00:37:35,650 --> 00:37:41,030
ฯ€ ุนู„ู‰ 2 ู„ู€ ฯ€
292
00:37:44,490 --> 00:37:54,530
ูŠุนู†ูŠ ู‡ุชุณุงูˆูŠ P R ุชูƒูŠุจ ุนู„ู‰ EI ููŠู‡ ู‡ุชูƒูˆู† sin ฯ€
293
00:37:54,530 --> 00:38:01,230
ู‡ุชูƒูˆู† sin ฯ€ - sin ฯ€ ุนู„ู‰ 2 ูŠุนู†ูŠ ู‡ุชูƒูˆู†
294
00:38:01,230 --> 00:38:05,870
-1 ุฒุงุฆุฏ
295
00:38:05,870 --> 00:38:09,730
ฯ€
296
00:38:09,730 --> 00:38:15,620
ุนู„ู‰ 4 ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ 1/2 ุดูˆ ุจุงู‚ูŠ ู†ู‚ุต ุจุงู‚ูŠ ุนู„ู‰ 2
297
00:38:15,620 --> 00:38:20,080
ุฒุงุฆุฏ
298
00:38:20,080 --> 00:38:26,560
ู‡ุฐุง ู‡ุชูƒูˆู† ุงู„ู€ sin 180ยฐ ุงู„ู€
299
00:38:26,560 --> 00:38:29,140
sin 270ยฐ ู…ุงู„ูƒ ุงู„ู€ sin 180ยฐ
300
00:38:29,140 --> 00:38:36,280
ุฒุงุฆุฏ 0 ู‡ุชูƒูˆู† 0
301
00:38:36,280 --> 00:38:46,900
ูŠุนู†ูŠ ู‡ุชุตูุญ ฮ” in segment CB ุงู„ู„ูŠ ู‡ูŠ P R ุชูƒูŠุจ ุนู„ู‰
302
00:38:46,900 --> 00:39:04,660
EI ููŠ ฯ€ ุนู„ู‰ 4 - 1 ุงู„ุขู†
303
00:39:04,660 --> 00:39:09,800
ู†ุงุฎุฏ segment BA ู†ุงุฎุฐ segment
304
00:39:18,560 --> 00:39:25,740
ุณูŠุฌู…ุงู†ุช BA ู‡ุงุฎุฏ
305
00:39:25,740 --> 00:39:29,480
ู‡ุงูŠ ุงู„ู€ X ู‡ุงุฎุฏ
306
00:39:29,480 --> 00:39:31,980
ู‡ู†ุง ู‡ูƒูˆู† ุนู†ุฏู‡
307
00:39:43,980 --> 00:39:57,860
ุนู†ุฏูŠ ู‡ูŠู† P ูˆู‡ูŠู† ุฅูŠุด Q ูˆู‡ุฏ ุงู„ู…ุณุงูุฉ ู‡ุฏ ุงู„ู…ุณุงูุฉ ุฅูŠุด X
308
00:39:57,860 --> 00:40:04,500
ู‡ุชูƒูˆู†
309
00:40:04,500 --> 00:40:22,150
ุทุจุนุง ู‡ุชุนูƒุณ moment BA ุงู„ู€ M<sub>BA</sub> ู‡ุชูƒูˆู† Q ููŠ
310
00:40:22,150 --> 00:40:29,250
2R + X +
311
00:40:29,250 --> 00:40:39,550
P ููŠ R + X ูŠุนู†ูŠ
312
00:40:39,550 --> 00:40:52,140
ู‡ุทู„ุน ุนู†ุฏ ุงู„ู€ dM<sub>BA</sub> / dQ ุฅูŠุด ุจุชุณุงูˆูŠ 2
313
00:40:52,140 --> 00:40:57,320
R + X 2R +
314
00:40:57,320 --> 00:41:10,580
X ู„ุฃู† ฮ”<sub>BA</sub> ู‡ุชูƒูˆู† ุชูƒุงู…ู„ ู…ู† 0 ู„ู€ L ู„ู€ 1 ุนู„ู‰
315
00:41:10,580 --> 00:41:11,180
EI
316
00:41:16,910 --> 00:41:26,930
M<sub>BA</sub> dM<sub>BA</sub> / dQ ุจุฏูŠ ุงุนู…ู„ู‡ุง ุจูŠู† ุงู„ู‚ูˆุณูŠู† ู‡ู†ุง ููŠ dx ู‡ู†ุง
317
00:41:26,930 --> 00:41:35,870
ู†ุญุท Q = 0 ู‡ุชุณุงูˆูŠ ฮ”<sub>BA</sub> ู‡ุชูƒูˆู† ุชูƒุงู…ู„ ู…ู† 0
318
00:41:35,870 --> 00:41:49,180
ู„ู€ L ู„ู€ 1 ุนู„ู‰ EI M<sub>BA</sub> P R + X P P
319
00:41:49,180 --> 00:41:58,080
R + X P
320
00:41:58,080 --> 00:42:03,420
P R + X P P P R + X
321
00:42:03,420 --> 00:42:03,640
P P P P P P P P P P P P P P P P P P P P P P P P
322
00:42:06,840 --> 00:42:22,120
dx ุงู†ุง ุญุทูŠุช Q ู…ุจุงุดุฑุฉ ุจุงู„ุณุงูˆูŠุฉ ูŠุนู†ูŠ ู‡ุชูƒูˆู† P ุนู„ู‰ EI
323
00:42:22,120 --> 00:42:25,620
ุชูƒุงู…ู„
324
00:42:25,620 --> 00:42:32,460
ู…ู† 0 ู„ู€ L ุนู†ุฏ
325
00:42:32,460 --> 00:42:35,100
2PR
326
00:42:37,240 --> 00:42:45,860
ุฃูˆ 2R<sup>2</sup> ุตุญ ุนู†ุฏ R + X + 2R + X +
327
00:42:45,860 --> 00:42:51,180
3R + X +
328
00:42:51,180 --> 00:43:04,020
X<sup>2</sup> dx ูŠุนู†ูŠ ู‡ุชุณุงูˆูŠ P ุนู„ู‰ EI ุงู„ุชูƒุงู…ู„
329
00:43:04,020 --> 00:43:11,920
ุจูŠุตูŠุฑ 2R<sup>2</sup> X +
330
00:43:11,920 --> 00:43:22,960
3/2 R X<sup>2</sup> + X<sup>3</sup> ุนู„ู‰ 3
331
00:43:22,960 --> 00:43:33,300
ู…ู† 0 ู„ู€ L ู‡ุชุณุงูˆูŠ P ุนู„ู‰ EI ููŠ
332
00:43:39,370 --> 00:43:46,030
ุงู„ุชูƒูŠูŠุจ ู‡ูƒูˆู† ุนู†ุฏูŠ 2 2
333
00:43:46,030 --> 00:43:57,610
ุงู„ุชูƒูŠูŠุจ 2 ู„ุฃ ู…ุด ุงู„ุชูƒูŠูŠุจ ู‡ูƒูˆู† ุนู†ุฏูŠ ุจุฏูŠ
334
00:43:57,610 --> 00:44:02,450
ุฃุทู„ุน ุงู„ู€ 2 ุจุฑุง
335
00:44:02,450 --> 00:44:04,650
R<sup>2</sup>
336
00:44:08,480 --> 00:44:15,140
ุฒุงุฆุฏ 3/2 R
337
00:44:15,140 --> 00:44:20,400
L +
338
00:44:20,400 --> 00:44:30,560
L<sup>2</sup> ุนู„ู‰ 3 ุทูŠุจ
339
00:44:32,360 --> 00:44:36,380
ุฃู†ุง ุญูƒูŠ ู‡ู†ุง ฮ” ุงู„ูƒู„ูŠุฉ ฮ” due to DC ุฒูŠ ฮ” CB
340
00:44:36,380 --> 00:44:39,620
ุฒูŠ ฮ” BA ูŠุนู†ูŠ ฮ” ุงู„ูƒู„ูŠุฉ
341
00:44:55,430 --> 00:45:05,490
ุงู„ู€ ฮ” ุงู„ูƒู„ูŠุฉ ุชูƒูˆู† ฮ” DC ุฒูŠ ฮ” CB ุฒูŠ
342
00:45:05,490 --> 00:45:22,570
ฮ” BA ู‡ุชุณุงูˆูŠ 0 ุฒูŠ ฮ” CB ู‡ุฐู‡ ู…ุธุจูˆุท ุฒูŠ P R
343
00:45:22,570 --> 00:45:36,350
ุชูƒูŠุจ ุนู„ู‰ EI ููŠ ฯ€ ุนู„ู‰ 4 - 1 ุฒุงุฆุฏ
344
00:45:36,350 --> 00:45:40,050
PL
345
00:45:40,050 --> 00:45:46,470
ุนู„ู‰ EI ููŠ
346
00:45:46,470 --> 00:45:49,510
2R
347
00:45:49,510 --> 00:45:50,950
<sup>2</sup>
348
00:45:52,630 --> 00:46:05,970
ุฒุงุฆุฏ 3/2 RL + L<sup>2</sup> +
349
00:46:05,970 --> 00:46:14,670
L<sup>2</sup> ุนู„ู‰ 3 ุฃูˆ
350
00:46:14,670 --> 00:46:23,100
ุทุจุนุง ุนู†ุนู† P ูˆ R ูˆ E ูˆ I ูˆ L ุจุชุญุณุจ ุฅูŠุด ุงู„ู€
351
00:46:23,100 --> 00:46:27,240
deflection ุทุจุนุง ุงู„ู€ I ุงู„ู„ูŠ ู‡ูŠ ุฅูŠุด ุงู„ุณุงูˆูŠุฉ ฯ€ ุนู„ู‰
352
00:46:27,240 --> 00:46:31,620
64 d
353
00:46:31,620 --> 00:46:37,760
ูˆุตุฉ 4 ู‡ูŠูƒู…
354
00:46:37,760 --> 00:46:39,080
ุฎู„ุงุต ุงู„ู…ู‡ุงุฑุฏุฉ ุฃุนุทูŠูƒู… ุงู„ุนุงููŠุฉ