|
1 |
|
00:00:02,310 --> 00:00:05,090 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูุณูุงู
ุนูููู
ูู
ุฑุญุจุง |
|
|
|
2 |
|
00:00:05,090 --> 00:00:09,870 |
|
ูุจุฑูุงุชู ูููู
ู ูู ู
ุงุฏุฉ ุชุตู
ูู
ุงูุขูุงุช ูุงุญุฏ ุงูู
ุฑุฉ ุงููุงุชุช |
|
|
|
3 |
|
00:00:09,870 --> 00:00:14,250 |
|
ุจุฏูุง ูุญูู ุนู Castigliano theorem ููู ูุณุชุฎุฏู
ุงูุญุณุงุจ |
|
|
|
4 |
|
00:00:14,250 --> 00:00:21,230 |
|
ุงูู deflections ุญูููุง ู
ุซุงู ุงูููู
ูููู
ู ููุณุชุฎุฏู
ุจุฑุถู |
|
|
|
5 |
|
00:00:21,230 --> 00:00:24,730 |
|
Castigliano theorem ุนุดุงู ุญุณุงุจุงุช ุงูู deflections ูู |
|
|
|
6 |
|
00:00:24,730 --> 00:00:33,120 |
|
ุงูู curved beams ูุฃู ุฃูุง ุนูุฏู ููุง ุจููุฉ Curve beam |
|
|
|
7 |
|
00:00:33,120 --> 00:00:43,000 |
|
ุนูู ุดูู ุฏุงุฆุฑุฉ ูููู ุจุชุฃุซุฑ force ุทุงูุฏู ุงููู ูู ุงู |
|
|
|
8 |
|
00:00:43,000 --> 00:00:49,140 |
|
radius ุจุชุงุน ุงูู centroidal axis R ูุงุจูุชุงู ููุฃูู care |
|
|
|
9 |
|
00:00:49,140 --> 00:00:54,120 |
|
ุจูู ุงูู neutral axis ู
ุด ูููุทุจู ุนูู ุงูู central axis |
|
|
|
10 |
|
00:00:54,120 --> 00:00:58,760 |
|
ูุนูู ููููู ูุฌูู ุดููุฉ ููู some eccentricity E ุจูู |
|
|
|
11 |
|
00:00:58,760 --> 00:01:04,760 |
|
ุงูู neutral axis ูุงูู central axis ูู ุฃุฎุฏุช ุนู
ูุฉ cut |
|
|
|
12 |
|
00:01:04,760 --> 00:01:12,010 |
|
ุนูู ุฃู ุฒุงููุฉ ฮธ ุฃุฎุฏุช ุงูู free body diagram ุงูุฌุฒุก |
|
|
|
13 |
|
00:01:12,010 --> 00:01:16,850 |
|
ูุฐุง ุฃู ุงูุฌุฒุก ุงูุซุงูู ุงุญูุง ููุง ู
ุงุฎุฏูู ุงูุฌุฒุก ุงูุซุงูู |
|
|
|
14 |
|
00:01:16,850 --> 00:01:21,630 |
|
ูุฐุง ุงูู free body diagram ููููู ููู ุนูุฏู ุทุจุนุง ููู |
|
|
|
15 |
|
00:01:21,630 --> 00:01:29,370 |
|
force F ุงู ูุนูู ุงูู force ูุฐู F ุฎูููู ุขุฎุฏ ุงูุฌุฒุก |
|
|
|
16 |
|
00:01:29,370 --> 00:01:33,050 |
|
ูุนูู |
|
|
|
17 |
|
00:01:33,050 --> 00:01:37,570 |
|
ูู ุฃุฎุฏุช ูู |
|
|
|
18 |
|
00:01:37,570 --> 00:01:38,330 |
|
ุฌุงูุจ ุฒููุงุฌ |
|
|
|
19 |
|
00:01:48,520 --> 00:01:56,220 |
|
ููุงู F ุฎุฏุช at any angle ฮธ ูู |
|
|
|
20 |
|
00:01:56,220 --> 00:02:08,440 |
|
ุฎุฏุช ูุฐุง ุงูุนูุตุฑ ูุทูุนุชู ุจุฑุง ุนูุฏู |
|
|
|
21 |
|
00:02:08,440 --> 00:02:14,380 |
|
ูุงู ููุง F ูุชููู |
|
|
|
22 |
|
00:02:14,380 --> 00:02:15,160 |
|
ุนูุณูุง F |
|
|
|
23 |
|
00:02:18,910 --> 00:02:23,990 |
|
ูุงููุฑุตุฉ ูููุง ุชุญุงูู ุชุนู
ู moment ุจุนูุณ ุนูุงุฑุจ ุงูุณุงุนุฉ |
|
|
|
24 |
|
00:02:23,990 --> 00:02:37,350 |
|
ูุชููู ูู moment ู
ุนุงูุณุฉ ุจุงุชุฌุงู ุนูุงุฑุจ ุงูุณุงุนุฉ ุงููู |
|
|
|
25 |
|
00:02:37,350 --> 00:02:43,330 |
|
ูุฐุง ู
ู
ูู ุฃุญููู ูู two components ูุงุญุฏุฉ ุจุงุชุฌุงู ูุฐุง F |
|
|
|
26 |
|
00:02:43,330 --> 00:02:47,130 |
|
radial ุฃู |
|
|
|
27 |
|
00:02:47,130 --> 00:02:55,400 |
|
ุจุงุชุฌุงู ุงูุนู
ูุฏู ูู ฮธ ูู ุฃุฎุฏุช ุงูุฌุฒุก ุงูุซุงูู |
|
|
|
28 |
|
00:02:55,400 --> 00:03:10,260 |
|
ูุชููู |
|
|
|
29 |
|
00:03:10,260 --> 00:03:16,580 |
|
ูุฐู ุนูุณ ูุฐู ุงูู M ูุชููู ูุฐู ุงูู M ูุงูู |
|
|
|
30 |
|
00:03:16,580 --> 00:03:28,340 |
|
F ูุชููู ุงูุนูุณ ููุนููุง ููููู Fr Fฮธ |
|
|
|
31 |
|
00:03:28,340 --> 00:03:36,500 |
|
ุฒู ู
ุง ุฃูุชู
ุดุงูููู ุงูุขู |
|
|
|
32 |
|
00:03:36,500 --> 00:03:41,260 |
|
ุทุจุนุง ุนูุฏู ุงูู section ุฏู ุจุฃุซุฑ ุนูุฏู ุงููู ูู ุงูู |
|
|
|
33 |
|
00:03:41,260 --> 00:03:48,520 |
|
moment M ูุงูู radial component Fr ููู axial component |
|
|
|
34 |
|
00:03:48,520 --> 00:03:53,960 |
|
Fฮธ ู
ุนูุงุชู ูุฏูู ูููู
ุจูุนู
ููุง strain energy |
|
|
|
35 |
|
00:03:53,960 --> 00:03:58,460 |
|
ุจูุนู
ูููุง strain energy ูู ุงูู curved beam ูุนูู |
|
|
|
36 |
|
00:03:58,460 --> 00:04:00,400 |
|
ู
ุนูุงุชู ูู ุนูุฏู strain energy due to bending moment |
|
|
|
37 |
|
00:04:00,400 --> 00:04:07,050 |
|
M ูู strain energy due to axial force Fฮธ ููู |
|
|
|
38 |
|
00:04:07,050 --> 00:04:12,130 |
|
strain energy due to transverse force FR ููู bending |
|
|
|
39 |
|
00:04:12,130 --> 00:04:16,890 |
|
moment due to Fฮธ ูุนูู ุงูุขู ุฃูุง ุฌุงูุจ ุงูู forces |
|
|
|
40 |
|
00:04:16,890 --> 00:04:20,910 |
|
ูุงูู moments ุนูุฏ ุงูู centroidal axis ููู ุฃูุง ุนูุฏ ุงูู |
|
|
|
41 |
|
00:04:20,910 --> 00:04:25,190 |
|
neutral axis ูุฌูู ุดููุฉ ูุฃูุง ุจููู Fฮธ ูุชุนู
ู |
|
|
|
42 |
|
00:04:25,190 --> 00:04:30,210 |
|
bending moment ูุนูู ูู combined effect moment ู
ุน |
|
|
|
43 |
|
00:04:30,210 --> 00:04:31,530 |
|
axial force ููููู |
|
|
|
44 |
|
00:04:37,900 --> 00:04:41,480 |
|
ุงูุขู ุฃูู ุดูุก ูุญูู ุงููู ูู ุงูู strain energy due to |
|
|
|
45 |
|
00:04:41,480 --> 00:04:46,500 |
|
ุฅู ุงุญูุง ุนูุฏูุง ุฃุฑุจุน ุฃุฑุจุน strain energy components |
|
|
|
46 |
|
00:04:46,500 --> 00:04:49,500 |
|
ุงุญูุง ุญูููุง ุฃูู ุดูุก ุนูุฏูุง ุงูู bending moment ูุนูู |
|
|
|
47 |
|
00:04:49,500 --> 00:04:52,220 |
|
ุงูู strain energy due to bending moment ุงููู ูู |
|
|
|
48 |
|
00:04:52,220 --> 00:04:54,380 |
|
ูุชููู ุชูุงู
ู U |
|
|
|
49 |
|
00:05:05,250 --> 00:05:14,190 |
|
due to bending ูุชููู ุชูุงู
ู Mยฒ dx |
|
|
|
50 |
|
00:05:14,190 --> 00:05:17,350 |
|
ูุนู
|
|
|
|
51 |
|
00:05:17,350 --> 00:05:25,990 |
|
dx ุนูู 2EI |
|
|
|
52 |
|
00:05:25,990 --> 00:05:31,710 |
|
ุฅุฐุง ูุงูุฑูู ู
ุธุจูุท ุฃูุง |
|
|
|
53 |
|
00:05:31,710 --> 00:05:38,480 |
|
ุนูุฏ ุงูู dx ูู ุฃุฎุฏุช ุงููDฮธ ูุฐู |
|
|
|
54 |
|
00:05:38,480 --> 00:05:51,580 |
|
ูู ุงููDX ุตุญ ุงููDX ุณุชุด ุชุณุงูู R Dฮธ ูุงููI |
|
|
|
55 |
|
00:05:51,580 --> 00:05:56,920 |
|
ุฅุฐุง ูุฑุฌุน ูุฌูู ูู ุงูู chapter ุชูุงุชุฉ ูู ุงูู curve |
|
|
|
56 |
|
00:05:56,920 --> 00:05:57,300 |
|
beams |
|
|
|
57 |
|
00:07:03,760 --> 00:07:12,940 |
|
ูู ุงูู curved beams ุงุญูุง ุงุนุทููุง ู
ุนุงุฏูุฉ ุชูุฑูุจุง ููู |
|
|
|
58 |
|
00:07:12,940 --> 00:07:17,640 |
|
eccentricity ุงูู E ุงููู ูู ุจุณ ุจูู ุงูู neutral axis ู |
|
|
|
59 |
|
00:07:17,640 --> 00:07:23,620 |
|
ุงูู centroidal axis E ุชูุฑูุจุง |
|
|
|
60 |
|
00:07:23,620 --> 00:07:36,410 |
|
ุจู ุชุณุงูู I ุนูู RC ูู A ุจู ุชุณุงูู I ุงูู R ุงูุตูู ูู |
|
|
|
61 |
|
00:07:36,410 --> 00:07:44,130 |
|
ุงูุญุงูุฉ ูุฏูู R capital ุตุญุ ูู A ู
ุนูุงุชู ุงูู I ูุชููู |
|
|
|
62 |
|
00:07:44,130 --> 00:07:48,250 |
|
ุชุณุงูู ERA |
|
|
|
63 |
|
00:07:48,250 --> 00:07:58,670 |
|
ู
ุนูุงุชู ูุฐู ูุชุตูุฑ ุชูุงู
ู M square R D ฮธ ุนูู ุงุชููู |
|
|
|
64 |
|
00:07:58,670 --> 00:08:07,290 |
|
E ุงูู I ุงููู ูู E R A ูุนูู ูุชุฑูุญ R ู
ุน R ูุชุตูุฑ ุชูุงู
ู |
|
|
|
65 |
|
00:08:07,290 --> 00:08:15,390 |
|
M Square D ฮธ ุนูู ุงุชููู E E A |
|
|
|
66 |
|
00:08:28,050 --> 00:08:32,350 |
|
ุงููู ูู ุงูู
ุนุงุฏูุฉ ูุฐู ูุงูู |
|
|
|
67 |
|
00:08:32,350 --> 00:08:36,190 |
|
ุงูู ุงุญูุง ุญูููุง ุงููู ูู ุงูู R minus RN ุงูู |
|
|
|
68 |
|
00:08:36,190 --> 00:08:40,510 |
|
eccentricity ูุฐุง |
|
|
|
69 |
|
00:08:40,510 --> 00:08:45,530 |
|
ุจุงููุณุจุฉ ููู bending ุนูุฏู ุงูู strain energy due to axial |
|
|
|
70 |
|
00:08:45,530 --> 00:08:53,570 |
|
force ุนูุฏู |
|
|
|
71 |
|
00:08:53,570 --> 00:08:54,730 |
|
ูุง ุนุฒูุฒู ุซุงูููุฉ ุชูุงู
ู |
|
|
|
72 |
|
00:08:58,090 --> 00:09:08,050 |
|
mยฒ dฮธ ุนูู ุงุชููู a e a ู ุงูู u ฮธ ุงูู u ุช ุฃูุณ ุงูู force |
|
|
|
73 |
|
00:09:08,050 --> 00:09:25,770 |
|
ูุชููู ุชูุงู
ู f ฮธ square dx ุนูู ุงุชููู e a ุจุธูุฑ ุทูุจ |
|
|
|
74 |
|
00:09:27,230 --> 00:09:39,370 |
|
ูุนูู ูุชููู ุงูุชูุงู
ู FยฒฮธRdฮธ2Ea |
|
|
|
75 |
|
00:09:39,370 --> 00:09:44,930 |
|
ูุบุงูุฉ ุงูู
ุนุงุฏูุฉ ุงูู component ุงูุซุงูุซุฉ |
|
|
|
76 |
|
00:09:48,650 --> 00:09:53,810 |
|
ุงููู ูู ุงูู .. ุงูู combined effect ุจูู ุงูู moment ู |
|
|
|
77 |
|
00:09:53,810 --> 00:09:58,450 |
|
ุงูู axial force Fฮธ ุทุจุนุง ูู ุงููุชุงุจ ุญุงุทุท ู
ุฑุฌุน |
|
|
|
78 |
|
00:09:58,450 --> 00:10:00,650 |
|
ุชุฑุฌุน ุนูู ูุชุงุจ ู
ุนูู ุนุดุงู ุชุดูู ุงูู derivation ุชุงุนุชูุง |
|
|
|
79 |
|
00:10:00,650 --> 00:10:06,230 |
|
ุฅุฐุง ุจุฏูู
ุญุงุทุท ูุฌู
ุฉ ุชุฑุฌุน ููุง ุงูุขู ุงูู U ุจุชุงุนุฉ |
|
|
|
80 |
|
00:10:06,230 --> 00:10:16,410 |
|
ูุณู
ููุง U ุชูุงุชุฉ ูุฐู .. ูุฐู U1 ููุฐุง U2 U3 ุงููู ูู |
|
|
|
81 |
|
00:10:16,410 --> 00:10:20,590 |
|
ูุชููู ูุณู minus ุทุจ ูุฐุง ุงูู minus ููู ุฌุงูุฉ ุงูู minusุ |
|
|
|
82 |
|
00:10:21,980 --> 00:10:31,440 |
|
ูุฃู ุงูู M ุชุนู
ู moment ูู ูุฐุง ุงูุงุชุฌุงู ุงูู Fฮธ ูู ุงูู |
|
|
|
83 |
|
00:10:31,440 --> 00:10:35,560 |
|
neutral axis ุชุนู
ู moment ู
ุนุงูุณุฉ ุนุดุงู ูููู
ุจุนูุณูุง |
|
|
|
84 |
|
00:10:35,560 --> 00:10:39,660 |
|
ุจุนุถ ูุงุญุฏุฉ ุจุชุญุงูู ุชุฒููุฏ ุงูุฒุงููุฉ ููุงุญุฏุฉ ุจุชุญุงูู ุชููู |
|
|
|
85 |
|
00:10:39,660 --> 00:10:49,380 |
|
ุงูุฒุงููุฉ ููุชููู minus ุชูุงู
ู M Fฮธ Dฮธ |
|
|
|
86 |
|
00:10:51,040 --> 00:11:00,960 |
|
ุนูู a e a ุงูู component ุงูุฑุงุจุน ุฏู ุงูู transverse ุงูู |
|
|
|
87 |
|
00:11:00,960 --> 00:11:12,480 |
|
force ุงููู ูู F radial ุงูู U ุฃุฑุจุนุฉ ูุชููู ุชูุงู
ู C F R |
|
|
|
88 |
|
00:11:12,480 --> 00:11:17,120 |
|
square DX ุนูู |
|
|
|
89 |
|
00:11:18,830 --> 00:11:26,570 |
|
ูุจุฑุถู 2 A G ูุนูู |
|
|
|
90 |
|
00:11:26,570 --> 00:11:37,830 |
|
ูุชููู ุชูุงู
ู C F R Square ูู R D ฮธ ุนูู ุงุชููู A |
|
|
|
91 |
|
00:11:37,830 --> 00:11:39,550 |
|
G |
|
|
|
92 |
|
00:11:42,500 --> 00:11:46,260 |
|
ุงูู Total Strain Energy ูุชููู ู
ุฌู
ูุนูู
U ุงููููุฉ ูุชููู U |
|
|
|
93 |
|
00:11:46,260 --> 00:11:54,400 |
|
ูุงุญุฏ ุฒุงุฆุฏ U ุงุชููู ุฒุงุฆุฏ U ุชูุงุชุฉ ุฒุงุฆุฏ U ุฃุฑุจุนุฉ ุงููู ูู |
|
|
|
94 |
|
00:11:54,400 --> 00:12:00,270 |
|
ุงูุฃุฑุจุน components ูุฐู ุงููู ูู due to bending ููุฐู |
|
|
|
95 |
|
00:12:00,270 --> 00:12:04,670 |
|
due to axial load ููุฐู due to combined effect ุจูู |
|
|
|
96 |
|
00:12:04,670 --> 00:12:11,690 |
|
F ฮธ ู M ููุฐู due to transverse load ุงูุขู ุงูู |
|
|
|
97 |
|
00:12:11,690 --> 00:12:19,790 |
|
deflection ุนูุฏ ููุทุฉ ุชุฃุซูุฑ force F ููููู ุงูู partial |
|
|
|
98 |
|
00:12:19,790 --> 00:12:21,990 |
|
derivative ุฏู U by ุฏู F |
|
|
|
99 |
|
00:12:24,950 --> 00:12:30,570 |
|
ุงูุขู ูู
ุง ูุนู
ู ุงูู partial derivative ููู U ููุฏุฎู ุงูู |
|
|
|
100 |
|
00:12:30,570 --> 00:12:34,990 |
|
partial derivative ุฌูุง ูู ุงูุชุฌุฑุงู ุตุญุ ูุนูู ูุชููู ูู
ุง |
|
|
|
101 |
|
00:12:34,990 --> 00:12:39,750 |
|
ูุฏุฎููุง ุนูู ุงูุฃูู ูุชููู ุนูุฏ 2 A E ูุฐู constant |
|
|
|
102 |
|
00:12:39,750 --> 00:12:46,490 |
|
ูุชููู 2 M ูู DM by DF ูุนูู ูุชููู ุนูุฏู ุชูุงู
ู M |
|
|
|
103 |
|
00:12:46,490 --> 00:12:52,350 |
|
ุนูู AE E ูู D M by D F D ฮธ ุฒุงุฆุฏ ุงูู term ุงูุซุงูู |
|
|
|
104 |
|
00:12:52,350 --> 00:12:56,750 |
|
ูุชููู 2 F ฮธ D F ฮธ by D ฮธ ู 2 |
|
|
|
105 |
|
00:12:56,750 --> 00:13:02,270 |
|
ู
ุน 2 ูู ุงูู
ูุงู
ุจูุตูุฑ F ฮธ R ุนูู A E ูู D F |
|
|
|
106 |
|
00:13:02,270 --> 00:13:08,950 |
|
ฮธ by D F D ฮธ ูุงูุต ุงูู derivative ูู 2 |
|
|
|
107 |
|
00:13:08,950 --> 00:13:14,150 |
|
ูุฐูู ู
ุน ุจุนุถ ูุงูุต 1 ุนูู A E E D M F ฮธ |
|
|
|
108 |
|
00:13:14,150 --> 00:13:20,670 |
|
by D F D ฮธ ุฒุงุฆุฏ ูุชููู CFR R ูุงุจูุชุงู ุนูู A |
|
|
|
109 |
|
00:13:20,670 --> 00:13:27,010 |
|
G D F R by D F D ฮธ ุงูุขู ูุฑูุญ ุนูู ุงูู |
|
|
|
110 |
|
00:13:27,010 --> 00:13:29,810 |
|
free body diagram ุงูู moment ุงูุด ุจู ุชุณุงูู ููู
ุฉ ุงูู |
|
|
|
111 |
|
00:13:29,810 --> 00:13:37,090 |
|
moment ุงูู moment ุจู ุชุณุงูู ูุงู |
|
|
|
112 |
|
00:13:37,090 --> 00:13:37,910 |
|
ุงูู
ุณุงูุฉ ูุงุฏุฉ |
|
|
|
113 |
|
00:13:44,930 --> 00:13:49,430 |
|
ู
ุนูุงุชู ุงูู M ุจู ุชุณุงูู |
|
|
|
114 |
|
00:13:49,430 --> 00:14:02,050 |
|
F R Sin ฮธ ู
ููุง ุจู ูุญุตู DM by DF ุงููู ูู ูุชููู R |
|
|
|
115 |
|
00:14:02,050 --> 00:14:04,030 |
|
Sin ฮธ |
|
|
|
116 |
|
00:14:06,680 --> 00:14:12,640 |
|
ูุงูู Fฮธ ู
ุง ูู ุงูู Fฮธ ูุงูู F R components ู
ู F |
|
|
|
117 |
|
00:14:15,510 --> 00:14:26,170 |
|
ูุชููู ุชุณุงูู F Sin ฮธ ูุนูู ุงูู DF ฮธ by DF ุจู ุชุณุงูู Sin |
|
|
|
118 |
|
00:14:26,170 --> 00:14:38,430 |
|
ฮธ ูุงูู F R ุจู ุชุณุงูู F Cos ฮธ ูุนูู ุงูู DF R by DF ุจู ุชุณุงูู |
|
|
|
119 |
|
00:14:38,430 --> 00:14:39,990 |
|
Cos ฮธ |
|
|
|
120 |
|
00:14:42,290 --> 00:14:48,910 |
|
ุนูุฏู ุงูู term ุงูุฑุงุจุน ุงููู ูู M Fฮธ |
|
|
|
121 |
|
00:14:48,910 --> 00:14:54,170 |
|
ุดู ุจู ุชุณุงููุ ูุงู ุงูู M ูุชุณุงูู F square |
|
|
|
122 |
|
00:15:01,120 --> 00:15:14,680 |
|
Sin Square ฮธ ู
ุนูุงุชู D ูู M F ฮธ By DF ูุชููู |
|
|
|
123 |
|
00:15:14,680 --> 00:15:22,700 |
|
ุจู ุชุณุงูู 2 F R Sin Square ฮธ |
|
|
|
124 |
|
00:15:31,600 --> 00:15:40,060 |
|
ุงูุขู ุฃูุง ุญุงุฌุฉ ุฃุนููุถ ูู ุงูู
ุนุงุฏูุฉ ูุฐู ูุฃุนูุถ ุนู M ู DM |
|
|
|
125 |
|
00:15:40,060 --> 00:15:55,700 |
|
by DF ูุฃุนููุถ ุนู Fฮธ ู DFฮธ by DF ู DMFฮธ by DF ู FR ู |
|
|
|
126 |
|
00:15:55,700 --> 00:16:01,160 |
|
DFR by DF ูุฃุนููุถูู
ูู ุงูู
ุนุงุฏูุฉ ูุฃุนู
ู ุชุจุณูุท ููุง |
|
|
|
127 |
|
00:16:04,170 --> 00:16:06,510 |
|
ูุฃุทูุน ุงูู constants ุจุฑุง ุจูุตูุฑ ู
ุนุฏู ุงูู deflection |
|
|
|
128 |
|
00:16:06,510 --> 00:16:13,280 |
|
ุนูุฏ F ุจู ุชุณุงูู ุทุจุนุง ฮธ ฮธ ูู ุงูุญุงู ูุชุทูุฑ ู
ู Zero ูู |
|
|
|
129 |
|
00:16:13,280 --> 00:16:17,760 |
|
ฯ ุนูู 180 ุฏุฑุฌุฉ ูุชููู ุงูู term ุงูุฃูู ุจุชุงุน ุงูู bending |
|
|
|
130 |
|
00:16:17,760 --> 00:16:22,600 |
|
ุงููู ูู F R square ุนูู A E E integral ู
ู ุตูุฑ ูู ฯ |
|
|
|
131 |
|
00:16:22,600 --> 00:16:26,640 |
|
ูู sine square ฮธ d ฮธ ุฒู ุงูู term ุงูุซุงูู ุจุชุงุน |
|
|
|
132 |
|
00:16:26,640 --> 00:16:29,900 |
|
axial force ุงููู ูู FR ุนูู AE ุชูุงู
ู ู
ู ุตูุฑ ูู ฯ |
|
|
|
133 |
|
00:16:29,900 --> 00:16:33,020 |
|
sine square ฮธ d ฮธ ุงูู term ุงูุซุงูุซ ุงููู ูู |
|
|
|
134 |
|
00:16:33,020 --> 00:16:35,920 |
|
combined effect ุจูู ุงูู bending ู axial force |
|
|
|
135 |
|
00:16:37,630 --> 00:16:43,750 |
|
-2FRKPT ุนูู AE ุชูุงู
ู ฯ SinยฒฮธDฮธ ุงูุชุฑู
|
|
|
|
136 |
|
00:16:43,750 --> 00:16:48,270 |
|
ุงูุฑุงุจุน ูู transverse component ุฒุงุฆุฏ CFR ุนูู AG |
|
|
|
137 |
|
00:16:48,270 --> 00:16:54,530 |
|
ุชูุงู
ู ฯ CosยฒฮธDฮธ ุทุจุนุง ูุฐู ุจุชุนู
ู ุงูู |
|
|
|
138 |
|
00:16:54,530 --> 00:17:00,450 |
|
integrals ููู Sinยฒ ุชุนุฑููุง ุฃุณูุฃูุง ูุงูู Cosยฒ |
|
|
|
139 |
|
00:17:02,780 --> 00:17:06,980 |
|
ูุจุชุนูุถ ู
ู ุตูุฑ ูู ฯ simplified ุจุชุญุตู ุนูู ุงูู term |
|
|
|
140 |
|
00:17:06,980 --> 00:17:12,280 |
|
ูุฐุง ุงููู ูู ุงูู deflection ุนูุฏ F ุงููู ูู ฯ FR2 ุนูู |
|
|
|
141 |
|
00:17:12,280 --> 00:17:20,680 |
|
2 a e e minus by fr ุนูู 2 a e ุฒุงุฆุฏ by c of r ุนูู 2 |
|
|
|
142 |
|
00:17:20,680 --> 00:17:28,260 |
|
a g ูุฐุง ุจุญุงูุฉ ุงู curve ุจูู ุงูุขู ูููุนุฏ ุญุงูุฉ ุฎุงุตุฉ |
|
|
|
143 |
|
00:17:30,700 --> 00:17:36,480 |
|
deflection of thin-curved members ูุนูู ูุฑุฌุน ููุดูู |
|
|
|
144 |
|
00:17:36,480 --> 00:17:46,220 |
|
ูุฐุง ู
ุณู
ู R ูุงุจูุชุงู ููุฐู H ุฅุฐุง ูุงูุช R ูุงุจูุชุงู ุนูู H |
|
|
|
145 |
|
00:17:46,220 --> 00:17:52,200 |
|
ูุจูุฑุฉ ุฃูุจุฑ ู
ู ุนุดุฑุฉ ู
ุนูุงุชู ูุนุชุจุฑ thin ูุนุชุจุฑ thin |
|
|
|
146 |
|
00:17:52,200 --> 00:17:56,180 |
|
ูุฃู ุงู .. ุงู deflection |
|
|
|
147 |
|
00:17:59,390 --> 00:18:03,870 |
|
ุจุชููู ุงู most dominant quantity ุฎุงูุฉ ุฃุทูุน ุนูู |
|
|
|
148 |
|
00:18:03,870 --> 00:18:11,130 |
|
ุงูู
ุนุงุฏูุฉ ูุฐู ุงุทูุน ุนูุฏููู R ุชุฑุจูุน ูู ุงููู ุนูุฏู RRR |
|
|
|
149 |
|
00:18:11,130 --> 00:18:20,680 |
|
ู ุงู R ุฃูุจุฑ ุจูุซูุฑ ู
ู ุงู H ููุงุถุญ ูุนูู ุงูู ูุชููู |
|
|
|
150 |
|
00:18:20,680 --> 00:18:27,100 |
|
ุงูุฃูุซุฑ ุชุฃุซูุฑุง ุงููู ูู ุงู component due to bending |
|
|
|
151 |
|
00:18:27,100 --> 00:18:35,300 |
|
ุจุนุฏูู ูุงุญุธูุง ูุฐู minus ู
ุน ูุฐู plus ุงุชุทูุน ุงูู
ุนุงุฏูุงุช |
|
|
|
152 |
|
00:18:35,300 --> 00:18:38,660 |
|
ูุฑูุจุง ู
ู ุจุนุถ ูุนูู ูู
ุง ุชุฌู
ุน ุงู total effect ุชุนุงููุง |
|
|
|
153 |
|
00:18:38,660 --> 00:18:45,700 |
|
ูุฌู
ุนููู ุชูุฑูุจุง ุจูุฎู ูุชูุฑ ูุงูู
ุคุซุฑ ุนูุฏู ูู ุงููู ูู |
|
|
|
154 |
|
00:18:45,700 --> 00:18:50,220 |
|
ุงู bending moment component ุงููู ูู by fr square |
|
|
|
155 |
|
00:18:50,220 --> 00:18:57,410 |
|
ุนูู ุงุชููู A E E ูู ุงูุญุงูุฉ ูุฐู ุฅุฐุง ูุงูุช ุนูุฏ ุงู RH |
|
|
|
156 |
|
00:18:57,410 --> 00:19:02,230 |
|
ุฃูุจุฑ ู
ู ุนุดุฑุฉ ุจูููู ุงู extent ุฑุณู
ู ูุนูู ุงูู
ุณุงูุฉ ุจูู |
|
|
|
157 |
|
00:19:02,230 --> 00:19:06,710 |
|
ุงู neutral axis ู ุงู central axis ููููุฉ ุฌุฏุง |
|
|
|
158 |
|
00:19:12,840 --> 00:19:16,660 |
|
ูุงููู ุจุชุณูุทุฑ ุนูู ุงูููู
ุฉ ุงููููุฉ ุงููู ูู ุฅูุด ุงู |
|
|
|
159 |
|
00:19:16,660 --> 00:19:22,140 |
|
bending moment ูุงูุญุงูุฉ ุฏู ุจุชุณุชูุฑ ุงู ุฏู ุงู U |
|
|
|
160 |
|
00:19:22,140 --> 00:19:27,080 |
|
ุจุงูุณุงููุฉ ุชูุงู
ู ุงูุฃุณุงุณูุฉ ูู ุงู bending ุงู U |
|
|
|
161 |
|
00:19:27,080 --> 00:19:34,120 |
|
ุจุงูุณุงููุฉ ุชูุงู
ู M square DX ุนูู 2EI ู ุงู DX ุงููู |
|
|
|
162 |
|
00:19:34,120 --> 00:19:37,330 |
|
ุงุญูุง ุญุงููู ููุง ุจุงูุณุงููุฉ RD ฮธูุนูู ุงูุง ูุชุตูุฑ ุชูุงูู
|
|
|
|
163 |
|
00:19:37,330 --> 00:19:40,930 |
|
ุงู M squared R D ุซุชุง ู ุงู Delta ุณูู DU ุนูู DF ูุณู |
|
|
|
164 |
|
00:19:40,930 --> 00:19:47,970 |
|
ูุงุญุฏุฉ ููู I M DM Y DF R D ุซุชุง ุทูุจ |
|
|
|
165 |
|
00:19:47,970 --> 00:19:51,610 |
|
ูุดูู ุงู cantilever ูุดูู example |
|
|
|
166 |
|
00:20:20,190 --> 00:20:26,530 |
|
ุงูููู ุงููู ู
ุจูู ู
ุนู
ูู ู
ู ุณูู ู
ูุทุน ุณูู ู
ุฏูุฑ ูุทุฑ |
|
|
|
167 |
|
00:20:26,530 --> 00:20:27,210 |
|
2 ู
ูู |
|
|
|
168 |
|
00:20:50,350 --> 00:21:12,150 |
|
ู ุงูุณูู ู
ุณุชู
ุชุน ุงู ุงูุทุฑู ูุฐุง ูุฐู L ูุฐู |
|
|
|
169 |
|
00:21:12,150 --> 00:21:16,670 |
|
R capital ู ูู force |
|
|
|
170 |
|
00:21:22,440 --> 00:21:43,200 |
|
P ุจุชุฃุซุฑ ุนู ููุทุฉ C ูุฐู C ู ูุฐู A ู V ู D ุงู |
|
|
|
171 |
|
00:21:43,200 --> 00:21:47,740 |
|
wire diameter D ุจูุณุงูู |
|
|
|
172 |
|
00:21:47,740 --> 00:21:50,360 |
|
2 mm |
|
|
|
173 |
|
00:21:54,040 --> 00:22:02,340 |
|
ุงู L ู
ุนุทูููุง 40 ู
ูู ู
ูุชุฑ 40 |
|
|
|
174 |
|
00:22:02,340 --> 00:22:12,960 |
|
ู
ูู ู
ูุชุฑ ู ุงู R 50 ู
ูู ู
ูุชุฑ ู ุงู force 1 |
|
|
|
175 |
|
00:22:12,960 --> 00:22:18,000 |
|
ูููุชู ูุนูู ุงูุง ุญูุงูู ู
ุชุฌุฑุงู
ุชูุฑูุจุง ุงู force ุงู P |
|
|
|
176 |
|
00:22:18,000 --> 00:22:22,340 |
|
1 ูููุชู |
|
|
|
177 |
|
00:22:26,710 --> 00:22:29,790 |
|
use Castigliano theorem to estimate the deflection |
|
|
|
178 |
|
00:22:29,790 --> 00:22:36,490 |
|
at point D ุทูุจ |
|
|
|
179 |
|
00:22:36,490 --> 00:22:45,390 |
|
ุงูุงู ุนูุฏู ูู force ู
ุนูุงู ุงู ุนุดุงู ูุฌูุฏ deflection |
|
|
|
180 |
|
00:22:45,390 --> 00:22:50,630 |
|
ุฏู ุจุฏุนู
ุงู partial ูู energy ุจุงููุณุจุฉ ููุง force ุจุญุท |
|
|
|
181 |
|
00:22:50,630 --> 00:22:54,130 |
|
force ูุนูู ุจูุฑุถ ุงูุฑุถ ุงู ูู force ูุนูู |
|
|
|
182 |
|
00:23:01,300 --> 00:23:07,140 |
|
ุจุณ ูู
ููุง H Q ูุงุฎุฏ |
|
|
|
183 |
|
00:23:07,140 --> 00:23:18,020 |
|
ุงููุชุฑุฉ ุงูู
ุณุงูุฉ ู
ู D ู C ู
ู D ู C ูุนูู |
|
|
|
184 |
|
00:23:18,020 --> 00:23:27,620 |
|
ุฏู ุญูู ุงููู ูู segment DC |
|
|
|
185 |
|
00:23:27,620 --> 00:23:30,660 |
|
ูุงุฎุฏ ุงูุง at any angle |
|
|
|
186 |
|
00:23:34,920 --> 00:23:50,920 |
|
ุซูุชุง ุจุงุฎุฏ ุงู free body diagram ูุง |
|
|
|
187 |
|
00:23:50,920 --> 00:23:58,580 |
|
ุฏู ุนุดุฑ ุซูุชุง ุนูุฏูุง ุงูุญููู
ุฉ ุนุดุฑ Q |
|
|
|
188 |
|
00:24:04,690 --> 00:24:14,490 |
|
ููููู ุนูุฏู ุงูู Q ููู |
|
|
|
189 |
|
00:24:14,490 --> 00:24:24,990 |
|
ุฏู ุนูุฏู H moment DC ุตุญุ ูุฃ ุฎูููุง ูุดูู ูู ูู ุงูู |
|
|
|
190 |
|
00:24:24,990 --> 00:24:30,450 |
|
Thin curved ุฏู ููุง ุงูู Thin ุงู R |
|
|
|
191 |
|
00:24:34,100 --> 00:24:40,020 |
|
ุนูู H ุงููู ูู ุงู R & D ุงูู
ุฎู
ุณูู ุงู H ุงููู ูู |
|
|
|
192 |
|
00:24:40,020 --> 00:24:50,230 |
|
ุงู 2 ู
ูู ุตุญุ 50 ุนูู 2 ุงูู
25 |
|
|
|
193 |
|
00:24:50,230 --> 00:24:56,570 |
|
25 ุฃูุจุฑ ู
ู 10 ู
ุนูุงุชู ุงู assumption ุจุชุงุน thin |
|
|
|
194 |
|
00:24:56,570 --> 00:25:01,250 |
|
curved beam ุจูุทุจู ุงูุญุงูุฉ ูุฐู ู
ุนูุงุชู ุงู most |
|
|
|
195 |
|
00:25:01,250 --> 00:25:05,710 |
|
dominant term ุงููู ูู ุฅูุด ุงู bending ู
ุนูุงุชู ุญุงุฌุฉ |
|
|
|
196 |
|
00:25:05,710 --> 00:25:06,370 |
|
ุฃุญูู ุฅูู |
|
|
|
197 |
|
00:25:11,230 --> 00:25:16,750 |
|
ุงูุฏูุชุง ุญุงุฌุงุช ุฒู ุงูุง ุงุญูู ูู ุงูุงูู ูุญูู ุฏูุชุง ุงููููุฉ |
|
|
|
198 |
|
00:25:16,750 --> 00:25:24,870 |
|
ุฏูุชุง due to strain energy ูู ุงู segment DC ุฒุงุฆุฏ |
|
|
|
199 |
|
00:25:24,870 --> 00:25:31,330 |
|
ุฏูุชุง due to strain energy ูู ุงู segment CB ุฒุงุฆุฏ |
|
|
|
200 |
|
00:25:31,330 --> 00:25:34,550 |
|
ุฏูุชุง due to strain energy ูู ุงู segment BA |
|
|
|
201 |
|
00:25:43,390 --> 00:25:49,310 |
|
ุงูุงู ุนูุฏู mdc ุฅูู |
|
|
|
202 |
|
00:25:49,310 --> 00:25:59,330 |
|
ุดู ุจูุณุงููุ ุจูุณุงูู ุจููุณูุง ููุฐู ุจุณ ููุฐุง ุดู ุจูุณุงููุ |
|
|
|
203 |
|
00:25:59,330 --> 00:26:08,290 |
|
ูุฐู ูููุง .. ูุฐู ูููุง R ุตุญุ ู
ุธุจูุทุ ู ูุฐู ุฅูุดุ R |
|
|
|
204 |
|
00:26:08,290 --> 00:26:14,770 |
|
cosine ู
ุนูุงุชู ูุฐู ูุชููู R ูู 1 minus cosine |
|
|
|
205 |
|
00:26:14,770 --> 00:26:26,830 |
|
ฮธ ู
ุธุจูุทุ ุฅุฐุง ูุงูุช MDC ุจูุณุงูู Q ูู R ูู 1 |
|
|
|
206 |
|
00:26:26,830 --> 00:26:29,210 |
|
minus cosine ฮธ |
|
|
|
207 |
|
00:26:31,940 --> 00:26:40,160 |
|
ูุฃู delta DC ูุชููู ุฃู ุฎูููุง ูุญุณุจ ุฃูู ุดูุก ุงุญูุง ุทุจุนุง |
|
|
|
208 |
|
00:26:40,160 --> 00:26:46,280 |
|
ุนุดุงู ูุญุณุจ ุงู delta ูุญุณุจ partial ุจุงููุณุจุฉ ูู ุฅูุด ูู Q |
|
|
|
209 |
|
00:26:46,280 --> 00:26:59,340 |
|
ููุง ูุชููู ุจูุฒุงู ุงู D M DC ุจุงููุณุจุฉ ู Q ุจูุณุงูู |
|
|
|
210 |
|
00:26:59,340 --> 00:27:11,350 |
|
R ูู 1 minus cosine ฮธ ู
ุนูุงุชู delta DC ูุชููู |
|
|
|
211 |
|
00:27:11,350 --> 00:27:18,530 |
|
ุชุณุงูู ุชูุงู
ู ุชูุงู
ู |
|
|
|
212 |
|
00:27:18,530 --> 00:27:27,770 |
|
ู
ู 0 ู Y ุนูู 2 ู M DC ุนูู EI |
|
|
|
213 |
|
00:27:32,060 --> 00:27:45,300 |
|
DM DC BY DQ DX R Dฮธ Dฮธ |
|
|
|
214 |
|
00:27:45,300 --> 00:27:57,000 |
|
ููููู ุชูุงู
ู ู
ู ุตูุฑ ูุจุนุถ ุนูู ุงุชููู ุงู Q ุงู M DC |
|
|
|
215 |
|
00:28:00,190 --> 00:28:12,950 |
|
Q ูู R Q ูู R ูู 1 ูุงูุต ูู |
|
|
|
216 |
|
00:28:12,950 --> 00:28:19,810 |
|
1 minus cosine ฮธ ูู DMDC by DQ ุงููู ูู R |
|
|
|
217 |
|
00:28:19,810 --> 00:28:27,090 |
|
square 1 ูุงูุต ูุซูุฑุฉ square ุนูู EI |
|
|
|
218 |
|
00:28:33,470 --> 00:28:45,430 |
|
RDฮธ ูุฐู ุจูุณุงูู ุฅูุดุ ุตูุฑ ูุฃูู ุงูุง 6Q0 6Q ููุง ูุฐู |
|
|
|
219 |
|
00:28:45,430 --> 00:28:47,990 |
|
ุญุทูุง ุฒูุฑู ุจุชุนุทููุง ุตูุฑ ู
ุด ุชุนู
ู integration ููุง ูุงูุฑ |
|
|
|
220 |
|
00:28:47,990 --> 00:28:54,630 |
|
ุจุงู integration ูุฐู ุงูุฃููู ูุฃูุฎุฏ segment CB |
|
|
|
221 |
|
00:28:54,630 --> 00:28:55,370 |
|
segment |
|
|
|
222 |
|
00:29:00,640 --> 00:29:08,660 |
|
CB ูุนูู |
|
|
|
223 |
|
00:29:08,660 --> 00:29:16,760 |
|
ูุงุฎุฏ section ููุง ูุญูู ููุง ุนูุฏู ูุงุฎุฏ free body |
|
|
|
224 |
|
00:29:16,760 --> 00:29:17,100 |
|
diagram |
|
|
|
225 |
|
00:29:31,570 --> 00:29:41,490 |
|
ุฃูุง ุจุฃุญูู ูุฐุง F ฮธ ูุนูุฏู ูุฐุง |
|
|
|
226 |
|
00:29:41,490 --> 00:29:54,230 |
|
Q ูุนูุฏู ููุง P ููููู |
|
|
|
227 |
|
00:29:54,230 --> 00:29:56,730 |
|
ุนูุฏู ุงูู
ุณุงูุฉ ูุฐุง ู
ุด ุงูุตุนุจ ูุฐุง ุงูู
ุณุงูุฉ |
|
|
|
228 |
|
00:30:02,590 --> 00:30:11,910 |
|
ูุฐู ูููุง ุซุงูุซุฉ ูุฐู ูุชููู cosine ุงูุฒุงููุฉ ูุฐู ูุนูู |
|
|
|
229 |
|
00:30:11,910 --> 00:30:21,170 |
|
ูุชููู ุงู moment ุงู moment ุงู M CB ูุชููู |
|
|
|
230 |
|
00:30:21,170 --> 00:30:25,970 |
|
ุงู P ูู |
|
|
|
231 |
|
00:30:25,970 --> 00:30:28,650 |
|
R sin |
|
|
|
232 |
|
00:30:30,950 --> 00:30:41,770 |
|
ฮธ ูุงูุต 90 ุตุญุ ูุฐู ูู ุงู ฮธ ุฒุงุฆุฏ |
|
|
|
233 |
|
00:30:41,770 --> 00:30:49,330 |
|
Q ูู |
|
|
|
234 |
|
00:30:49,330 --> 00:30:52,970 |
|
R |
|
|
|
235 |
|
00:30:52,970 --> 00:31:06,070 |
|
ูุงุฏ ุงูู
ุณุงูุฉ R ุฒุงุฆุฏ R sin 90 |
|
|
|
236 |
|
00:31:06,070 --> 00:31:10,450 |
|
-ฮธ ุตุญ |
|
|
|
237 |
|
00:31:10,450 --> 00:31:18,050 |
|
ูุฐู R ูุนูู ูุฐู ุงูู
ุณุงูุฉ ุฒุงุฆุฏ ูุฐู ุงูู
ุณุงูุฉ ุงูุขู |
|
|
|
238 |
|
00:31:23,770 --> 00:31:33,930 |
|
DMCB by DQ ูุชุณุชููู R ูู |
|
|
|
239 |
|
00:31:33,930 --> 00:31:37,270 |
|
1 |
|
|
|
240 |
|
00:31:37,270 --> 00:31:45,890 |
|
ุฒุงุฆุฏ sin (90-ฮธ) ูุนูู ุงููุง ูุชููู ุณุงููุฉ |
|
|
|
241 |
|
00:31:45,890 --> 00:31:51,890 |
|
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 |
|
|
|
242 |
|
00:31:51,890 --> 00:31:52,770 |
|
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 |
|
|
|
243 |
|
00:31:52,770 --> 00:31:55,570 |
|
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 |
|
|
|
244 |
|
00:31:55,570 --> 00:31:57,830 |
|
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 |
|
|
|
245 |
|
00:31:57,830 --> 00:32:00,630 |
|
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 |
|
|
|
246 |
|
00:32:00,630 --> 00:32:02,510 |
|
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 |
|
|
|
247 |
|
00:32:02,510 --> 00:32:03,690 |
|
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 |
|
|
|
248 |
|
00:32:03,690 --> 00:32:03,710 |
|
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 |
|
|
|
249 |
|
00:32:03,710 --> 00:32:03,730 |
|
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 |
|
|
|
250 |
|
00:32:03,730 --> 00:32:03,750 |
|
sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 sin 90 |
|
|
|
251 |
|
00:32:03,750 --> 00:32:07,310 |
|
sin |
|
|
|
252 |
|
00:32:10,360 --> 00:32:18,680 |
|
ุจูุตูุฑ ุจูุตูุฑ ุจูุตูุฑ ุจูุตูุฑ ุจูุตูุฑ ูุชููู DMC by DQ ุจูุณุงูู R |
|
|
|
253 |
|
00:32:18,680 --> 00:32:24,600 |
|
ูู 1 ุฒุงุฆุฏ Cos ฮธ ูุฃู |
|
|
|
254 |
|
00:32:24,600 --> 00:32:37,000 |
|
ูุชููู Delta CB ูุชููู ุชูุงู
ู ู
ู Pi ุนูู 2 ู Pi |
|
|
|
255 |
|
00:32:41,260 --> 00:32:47,460 |
|
ุทุจ ุงูุง ุจุฏู ุงุญุท q ุตูุฑ ูุนูู ุงุญุท .. ูุตูุฑ ููุฏู ุตุญุ ุจุฏู |
|
|
|
256 |
|
00:32:47,460 --> 00:32:53,020 |
|
ุฃุญูู ููุง while setting q to zero ุญุณููุง ุฏู PR |
|
|
|
257 |
|
00:32:53,020 --> 00:32:56,660 |
|
cosine |
|
|
|
258 |
|
00:32:56,660 --> 00:33:06,340 |
|
ฮธ ูู R ูู 1 ุฒุงุฆุฏ cosine ฮธ |
|
|
|
259 |
|
00:33:09,760 --> 00:33:16,560 |
|
ูููุชุจ ู
ุนุงุฏูุฉ ุงูุฃูู ุนุดุงู ู
ุง ูุฎุฑุจ ุงูุดููุด 1 ุนูู EI |
|
|
|
260 |
|
00:33:16,560 --> 00:33:23,180 |
|
ูู |
|
|
|
261 |
|
00:33:23,180 --> 00:33:26,940 |
|
M |
|
|
|
262 |
|
00:33:26,940 --> 00:33:36,280 |
|
CB d m CB by dq |
|
|
|
263 |
|
00:33:39,430 --> 00:33:47,790 |
|
RD ฮธ ูู ุจุชุญุท ููุง q ุณุช q ุจูุณุงูู ุตูุฑ |
|
|
|
264 |
|
00:33:47,790 --> 00:33:55,850 |
|
ูุนูู ูุชุณุงูู ุชูุงู
ู |
|
|
|
265 |
|
00:33:55,850 --> 00:34:05,410 |
|
ู
ู ฯ ุนูู 2 ู ฯ 1 ุนูู EI ูู |
|
|
|
266 |
|
00:34:07,970 --> 00:34:13,330 |
|
ูุฏุง ุงุญุท Q0 ูุชููู ูู PR Cos |
|
|
|
267 |
|
00:34:13,330 --> 00:34:19,370 |
|
ฮธ ูู |
|
|
|
268 |
|
00:34:19,370 --> 00:34:34,310 |
|
R ูู 1 ุฒุงุฆุฏ Cos ฮธ ูู RD ฮธ ูุนูู ูุชููู ุชูุงู
ู ู
ู ฯ |
|
|
|
269 |
|
00:34:34,310 --> 00:34:42,770 |
|
ุนูู 2 ู ฯ 1 ุนูู EI ุทุจุนุง ูุฏู ูุชููู ูุฏู |
|
|
|
270 |
|
00:34:42,770 --> 00:34:57,350 |
|
PR ุชูุนูุจ PR ุชูุนูุจ ูู Cosine ฮธ ุฒุงุฆุฏ Cosine ุชุฑุจูุน |
|
|
|
271 |
|
00:34:57,350 --> 00:35:01,690 |
|
ฮธ D ฮธ |
|
|
|
272 |
|
00:35:10,400 --> 00:35:19,660 |
|
ุงููู ูุชุทูุน Delta CB ุจุชุณุงูู ุงู |
|
|
|
273 |
|
00:35:19,660 --> 00:35:23,840 |
|
Cos ฮธ ุชุฑุจูุน .. ุงู Cos ุชุฑุจูุน ฮธ ุฅูุด ุจูุณุงููุ ุงู |
|
|
|
274 |
|
00:35:23,840 --> 00:35:28,280 |
|
Cos ุชุฑุจูุน ฮธ ุฎูููุง ูุญูู ุงู Cosine 2ฮธ ุฅูุด |
|
|
|
275 |
|
00:35:28,280 --> 00:35:32,180 |
|
ุจูุณุงููุ Cosine .. ุฎูููุง ูุณู
ููุง Cosine 2ฮฒ .. |
|
|
|
276 |
|
00:35:32,180 --> 00:35:38,360 |
|
Cosine 2ฮฒ ุจูุณุงูู Cos ุชุฑุจูุน ฮฒ minus Sin |
|
|
|
277 |
|
00:35:38,360 --> 00:35:45,540 |
|
ุชุฑุจูุน ฮฒ ูุนูู ูุชููู ูุฐุง Cos ุชุฑุจูุน ฮฒ minus |
|
|
|
278 |
|
00:35:45,540 --> 00:35:51,000 |
|
1 minus Cos ุชุฑุจูุน ฮฒ ูุนูู ูุชููู 2 |
|
|
|
279 |
|
00:35:51,000 --> 00:35:57,220 |
|
Cos ุชุฑุจูุน ฮฒ ูุงูุต 1 ู
ุนูุงุชู ูุชููู Cosine |
|
|
|
280 |
|
00:35:57,220 --> 00:36:04,500 |
|
ุชุฑุจูุน ฮฒ ุจูุณุงูู ูุต ูู 1 ุฒุงุฆุฏ Cosine 2ฮฒ |
|
|
|
281 |
|
00:36:04,500 --> 00:36:09,160 |
|
ู
ุธุจูุท ูุนูู ูุชุตูุฑ ูุฐุง |
|
|
|
282 |
|
00:36:15,460 --> 00:36:22,160 |
|
P R |
|
|
|
283 |
|
00:36:22,160 --> 00:36:32,480 |
|
ุชููุจ ุนูู EI ูู ุชูุงู
ู |
|
|
|
284 |
|
00:36:32,480 --> 00:36:47,700 |
|
ู
ู ฯ ุนูู 2 ูู ฯ ูู cosine ฮธ ุฒุงุฆุฏ 1/2 ูู 1/2 ูู |
|
|
|
285 |
|
00:36:47,700 --> 00:36:59,960 |
|
1/2 ุฒุงุฆุฏ 1/2 cosine 2ฮธ ุฏู ฮธ ูุนูู ูุชููู |
|
|
|
286 |
|
00:36:59,960 --> 00:37:08,620 |
|
P R ุชููุจ ุนูู |
|
|
|
287 |
|
00:37:08,620 --> 00:37:09,100 |
|
EI |
|
|
|
288 |
|
00:37:12,290 --> 00:37:18,810 |
|
ูู sin ฮธ ุฒุงุฆุฏ |
|
|
|
289 |
|
00:37:18,810 --> 00:37:24,890 |
|
ฮธ ุนูู 2 ุฒุงุฆุฏ |
|
|
|
290 |
|
00:37:24,890 --> 00:37:35,650 |
|
1/4 sin 2ฮธ ุตุญ ู
ู |
|
|
|
291 |
|
00:37:35,650 --> 00:37:41,030 |
|
ฯ ุนูู 2 ูู ฯ |
|
|
|
292 |
|
00:37:44,490 --> 00:37:54,530 |
|
ูุนูู ูุชุณุงูู P R ุชููุจ ุนูู EI ููู ูุชููู sin ฯ |
|
|
|
293 |
|
00:37:54,530 --> 00:38:01,230 |
|
ูุชููู sin ฯ - sin ฯ ุนูู 2 ูุนูู ูุชููู |
|
|
|
294 |
|
00:38:01,230 --> 00:38:05,870 |
|
-1 ุฒุงุฆุฏ |
|
|
|
295 |
|
00:38:05,870 --> 00:38:09,730 |
|
ฯ |
|
|
|
296 |
|
00:38:09,730 --> 00:38:15,620 |
|
ุนูู 4 ูุฐู ุงููู ูู 1/2 ุดู ุจุงูู ููุต ุจุงูู ุนูู 2 |
|
|
|
297 |
|
00:38:15,620 --> 00:38:20,080 |
|
ุฒุงุฆุฏ |
|
|
|
298 |
|
00:38:20,080 --> 00:38:26,560 |
|
ูุฐุง ูุชููู ุงูู sin 180ยฐ ุงูู |
|
|
|
299 |
|
00:38:26,560 --> 00:38:29,140 |
|
sin 270ยฐ ู
ุงูู ุงูู sin 180ยฐ |
|
|
|
300 |
|
00:38:29,140 --> 00:38:36,280 |
|
ุฒุงุฆุฏ 0 ูุชููู 0 |
|
|
|
301 |
|
00:38:36,280 --> 00:38:46,900 |
|
ูุนูู ูุชุตูุญ ฮ in segment CB ุงููู ูู P R ุชููุจ ุนูู |
|
|
|
302 |
|
00:38:46,900 --> 00:39:04,660 |
|
EI ูู ฯ ุนูู 4 - 1 ุงูุขู |
|
|
|
303 |
|
00:39:04,660 --> 00:39:09,800 |
|
ูุงุฎุฏ segment BA ูุงุฎุฐ segment |
|
|
|
304 |
|
00:39:18,560 --> 00:39:25,740 |
|
ุณูุฌู
ุงูุช BA ูุงุฎุฏ |
|
|
|
305 |
|
00:39:25,740 --> 00:39:29,480 |
|
ูุงู ุงูู X ูุงุฎุฏ |
|
|
|
306 |
|
00:39:29,480 --> 00:39:31,980 |
|
ููุง ูููู ุนูุฏู |
|
|
|
307 |
|
00:39:43,980 --> 00:39:57,860 |
|
ุนูุฏู ููู P ูููู ุฅูุด Q ููุฏ ุงูู
ุณุงูุฉ ูุฏ ุงูู
ุณุงูุฉ ุฅูุด X |
|
|
|
308 |
|
00:39:57,860 --> 00:40:04,500 |
|
ูุชููู |
|
|
|
309 |
|
00:40:04,500 --> 00:40:22,150 |
|
ุทุจุนุง ูุชุนูุณ moment BA ุงูู M<sub>BA</sub> ูุชููู Q ูู |
|
|
|
310 |
|
00:40:22,150 --> 00:40:29,250 |
|
2R + X + |
|
|
|
311 |
|
00:40:29,250 --> 00:40:39,550 |
|
P ูู R + X ูุนูู |
|
|
|
312 |
|
00:40:39,550 --> 00:40:52,140 |
|
ูุทูุน ุนูุฏ ุงูู dM<sub>BA</sub> / dQ ุฅูุด ุจุชุณุงูู 2 |
|
|
|
313 |
|
00:40:52,140 --> 00:40:57,320 |
|
R + X 2R + |
|
|
|
314 |
|
00:40:57,320 --> 00:41:10,580 |
|
X ูุฃู ฮ<sub>BA</sub> ูุชููู ุชูุงู
ู ู
ู 0 ูู L ูู 1 ุนูู |
|
|
|
315 |
|
00:41:10,580 --> 00:41:11,180 |
|
EI |
|
|
|
316 |
|
00:41:16,910 --> 00:41:26,930 |
|
M<sub>BA</sub> dM<sub>BA</sub> / dQ ุจุฏู ุงุนู
ููุง ุจูู ุงูููุณูู ููุง ูู dx ููุง |
|
|
|
317 |
|
00:41:26,930 --> 00:41:35,870 |
|
ูุญุท Q = 0 ูุชุณุงูู ฮ<sub>BA</sub> ูุชููู ุชูุงู
ู ู
ู 0 |
|
|
|
318 |
|
00:41:35,870 --> 00:41:49,180 |
|
ูู L ูู 1 ุนูู EI M<sub>BA</sub> P R + X P P |
|
|
|
319 |
|
00:41:49,180 --> 00:41:58,080 |
|
R + X P |
|
|
|
320 |
|
00:41:58,080 --> 00:42:03,420 |
|
P R + X P P P R + X |
|
|
|
321 |
|
00:42:03,420 --> 00:42:03,640 |
|
P P P P P P P P P P P P P P P P P P P P P P P P |
|
|
|
322 |
|
00:42:06,840 --> 00:42:22,120 |
|
dx ุงูุง ุญุทูุช Q ู
ุจุงุดุฑุฉ ุจุงูุณุงููุฉ ูุนูู ูุชููู P ุนูู EI |
|
|
|
323 |
|
00:42:22,120 --> 00:42:25,620 |
|
ุชูุงู
ู |
|
|
|
324 |
|
00:42:25,620 --> 00:42:32,460 |
|
ู
ู 0 ูู L ุนูุฏ |
|
|
|
325 |
|
00:42:32,460 --> 00:42:35,100 |
|
2PR |
|
|
|
326 |
|
00:42:37,240 --> 00:42:45,860 |
|
ุฃู 2R<sup>2</sup> ุตุญ ุนูุฏ R + X + 2R + X + |
|
|
|
327 |
|
00:42:45,860 --> 00:42:51,180 |
|
3R + X + |
|
|
|
328 |
|
00:42:51,180 --> 00:43:04,020 |
|
X<sup>2</sup> dx ูุนูู ูุชุณุงูู P ุนูู EI ุงูุชูุงู
ู |
|
|
|
329 |
|
00:43:04,020 --> 00:43:11,920 |
|
ุจูุตูุฑ 2R<sup>2</sup> X + |
|
|
|
330 |
|
00:43:11,920 --> 00:43:22,960 |
|
3/2 R X<sup>2</sup> + X<sup>3</sup> ุนูู 3 |
|
|
|
331 |
|
00:43:22,960 --> 00:43:33,300 |
|
ู
ู 0 ูู L ูุชุณุงูู P ุนูู EI ูู |
|
|
|
332 |
|
00:43:39,370 --> 00:43:46,030 |
|
ุงูุชูููุจ ูููู ุนูุฏู 2 2 |
|
|
|
333 |
|
00:43:46,030 --> 00:43:57,610 |
|
ุงูุชูููุจ 2 ูุฃ ู
ุด ุงูุชูููุจ ูููู ุนูุฏู ุจุฏู |
|
|
|
334 |
|
00:43:57,610 --> 00:44:02,450 |
|
ุฃุทูุน ุงูู 2 ุจุฑุง |
|
|
|
335 |
|
00:44:02,450 --> 00:44:04,650 |
|
R<sup>2</sup> |
|
|
|
336 |
|
00:44:08,480 --> 00:44:15,140 |
|
ุฒุงุฆุฏ 3/2 R |
|
|
|
337 |
|
00:44:15,140 --> 00:44:20,400 |
|
L + |
|
|
|
338 |
|
00:44:20,400 --> 00:44:30,560 |
|
L<sup>2</sup> ุนูู 3 ุทูุจ |
|
|
|
339 |
|
00:44:32,360 --> 00:44:36,380 |
|
ุฃูุง ุญูู ููุง ฮ ุงููููุฉ ฮ due to DC ุฒู ฮ CB |
|
|
|
340 |
|
00:44:36,380 --> 00:44:39,620 |
|
ุฒู ฮ BA ูุนูู ฮ ุงููููุฉ |
|
|
|
341 |
|
00:44:55,430 --> 00:45:05,490 |
|
ุงูู ฮ ุงููููุฉ ุชููู ฮ DC ุฒู ฮ CB ุฒู |
|
|
|
342 |
|
00:45:05,490 --> 00:45:22,570 |
|
ฮ BA ูุชุณุงูู 0 ุฒู ฮ CB ูุฐู ู
ุธุจูุท ุฒู P R |
|
|
|
343 |
|
00:45:22,570 --> 00:45:36,350 |
|
ุชููุจ ุนูู EI ูู ฯ ุนูู 4 - 1 ุฒุงุฆุฏ |
|
|
|
344 |
|
00:45:36,350 --> 00:45:40,050 |
|
PL |
|
|
|
345 |
|
00:45:40,050 --> 00:45:46,470 |
|
ุนูู EI ูู |
|
|
|
346 |
|
00:45:46,470 --> 00:45:49,510 |
|
2R |
|
|
|
347 |
|
00:45:49,510 --> 00:45:50,950 |
|
<sup>2</sup> |
|
|
|
348 |
|
00:45:52,630 --> 00:46:05,970 |
|
ุฒุงุฆุฏ 3/2 RL + L<sup>2</sup> + |
|
|
|
349 |
|
00:46:05,970 --> 00:46:14,670 |
|
L<sup>2</sup> ุนูู 3 ุฃู |
|
|
|
350 |
|
00:46:14,670 --> 00:46:23,100 |
|
ุทุจุนุง ุนูุนู P ู R ู E ู I ู L ุจุชุญุณุจ ุฅูุด ุงูู |
|
|
|
351 |
|
00:46:23,100 --> 00:46:27,240 |
|
deflection ุทุจุนุง ุงูู I ุงููู ูู ุฅูุด ุงูุณุงููุฉ ฯ ุนูู |
|
|
|
352 |
|
00:46:27,240 --> 00:46:31,620 |
|
64 d |
|
|
|
353 |
|
00:46:31,620 --> 00:46:37,760 |
|
ูุตุฉ 4 ูููู
|
|
|
|
354 |
|
00:46:37,760 --> 00:46:39,080 |
|
ุฎูุงุต ุงูู
ูุงุฑุฏุฉ ุฃุนุทููู
ุงูุนุงููุฉ |
|
|