abdullah's picture
Add files using upload-large-folder tool
4b6d5de verified
raw
history blame
23.1 kB
1
00:00:01,140 --> 00:00:03,520
ุจุงุณู… ุงู„ู„ู‡ ูˆ ุงู„ุญู…ุฏ ู„ู„ู‡ ูˆ ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุนู„ูŠ ุฑุณูˆู„
2
00:00:03,520 --> 00:00:08,140
ุงู„ู„ู‡ ู‡ุฐุง ุงู„ุชุณุฌูŠู„ ุงู„ุฃุฎูŠุฑ ุงู† ุดุงุก ุงู„ู„ู‡ ููŠ chapter ุงู„
3
00:00:08,140 --> 00:00:12,840
clustering ุนููˆุง ู‚ุจู„ ุงู„ุฃุฎูŠุฑ ุจูŠุถู„ู„ู†ุง ููŠ ุชุณุฌูŠู„ ุงู† ุดุงุก
4
00:00:12,840 --> 00:00:16,540
ุงู„ู„ู‡ ู‡ูŠูƒูˆู† ุนู…ู„ูŠ ุจุงุนุชู…ุงุฏ ุงู„ python ุงู„ุตุญูŠุญ ูุดูˆู ููŠ
5
00:00:16,540 --> 00:00:24,320
ุดุบู„ ุงู„ python ุจุนุถ ุงู„ุฅุจุฏุงุนุงุช ู…ู†ูƒู… ูˆ ุจุนุถูƒู… .. ุญู„ูˆ
6
00:00:24,320 --> 00:00:25,480
ุญู„ูˆ ุญู„ูˆ ุทุจุนูƒ ู…ุงุณุชูˆุฑ
7
00:00:28,370 --> 00:00:31,030
ุงู„ุจุฏุงูŠุฉ ุงู„ุดุจุชุฑ ุงู† ุงู„ cluster ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุนู…ู„ูŠุฉ
8
00:00:31,030 --> 00:00:34,230
ุชู‚ุณูŠู… ุงู„ instances ุจู†ุงุก ุนู„ู‰ ุชุดุงุจู‡ ุงูˆ similarities
9
00:00:34,230 --> 00:00:38,570
ู…ุง ุจูŠู†ู‡ู… ู„ู…ุฌู…ูˆุนุงุช ููŠ ุนู†ุฏ partition ุงู„ cluster ูˆ ุงู„
10
00:00:38,570 --> 00:00:41,070
partition ุงู„ cluster ุงู†ู‡ ู…ุงูŠูƒูˆู†ุด ููŠ ุนู†ุฏู‡ overlap
11
00:00:41,070 --> 00:00:44,550
clusters ูˆ ููŠ ุนู†ุฏู‡ hierarchical cluster ุงู†ู‡ ุงู†ุง
12
00:00:44,550 --> 00:00:48,870
ูุนู„ูŠุง ู…ู‚ุฏุฑ ุงุดูˆู ูƒู„ cluster ุจูŠู†ุชู…ูŠ ู„ุฃูŠ cluster ูˆ
13
00:00:48,870 --> 00:00:51,330
ุทุจุนุง ู‡ุงู† ุจุชุญูƒู… ููŠ ุนุฏุฏ ุงู„ clusters ุงู„ู„ูŠ ุงู†ุง ุจุฏูŠ
14
00:00:51,330 --> 00:00:55,310
ุงูŠุงู‡ุง ูƒู„ clusterุจุณุงุทุฉุŒ ุงู„ูŠูˆู… ุงู† ุดุงุก ุงู„ู„ู‡ ู†ุชูƒู„ู… ุนู†
15
00:00:55,310 --> 00:00:59,990
ุฌุฒุฆูŠุฉ evaluation ุทุจุนุงู‹ ู„ู…ุง ู†ุชูƒู„ู… ุนู† evaluation
16
00:00:59,990 --> 00:01:07,030
ูƒุชู‚ูŠูŠู… ุงู„ ..
17
00:01:07,030 --> 00:01:11,390
ู†ุชูƒู„ู… ุนู† ุงู„ุชู‚ูŠูŠู…ุŒ ู‡ู„ ุงู„ุชู‚ูŠูŠู… ูˆุงุฑุฏ ููŠ ุงู„
18
00:01:11,390 --> 00:01:16,990
clusteringุŸ ุงู„ุชู‚ูŠูŠู… ูƒุชู‚ูŠูŠู… ููŠ ุงู„ clustering ุฅุฐุง ุงู„
19
00:01:16,990 --> 00:01:21,650
data 6 ุจู‚ู‰ unlabeled ูˆู„ุง ุนู…ุฑู‡ ุจูŠูƒูˆู† ุตุญู„ุฃู† ุงู†ุง
20
00:01:21,650 --> 00:01:27,410
ูุนู„ูŠุง ู„ุงุฒู… ุงุชุฏุฎู„ ู„ human ุนููˆุง ุงู„ู…ู‚ุตูˆุฏ ุงู† ุงู„ุชู‚ูŠูŠู…
21
00:01:27,410 --> 00:01:35,220
ู…ุณุชุญูŠู„ ูŠูƒูˆู† ุตุญูŠุญ ุงูˆ ุญุงู„ูŠุง ุจุฏูŠ ุงู‚ูˆู„ ุงู†ู‡ ูŠูƒุงุฏ ูŠูƒูˆู†ู…ู†
22
00:01:35,220 --> 00:01:40,060
ุงู„ู…ุณุชุญูŠู„ ุชุทุจูŠู‚ ุงู„ุชู‚ูŠูŠู… ุฅู„ุง ู…ู† ุฎู„ุงู„ expert ู‚ุงุฏุฑ
23
00:01:40,060 --> 00:01:45,460
ูุนู„ูŠุง ุนู„ู‰ ุฏุฑุงุณุฉ ูƒู„ instance ูˆ ูุนู„ูŠุง ุฃู†ู‡ุง ุชู†ุชู…ูŠ ู„
24
00:01:45,460 --> 00:01:49,620
cluster ุฃูˆ ู…ุชุดุงุจู‡ ู…ุน ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ู„ูƒู†
25
00:01:49,620 --> 00:01:54,920
ุฅุญู†ุง ู‡ู„ุฃ ู„ู…ุง ู†ุชูƒู„ู… ุนู† ุงู„ clusteringุฃู†ุง ู„ุฏูŠ
26
00:01:54,920 --> 00:01:58,140
algorithm ูˆ data set ูˆ ุทุจู‚ุช ุนู„ู‰ ุงู„ data set ู‡ู„ ููŠ
27
00:01:58,140 --> 00:02:01,520
ู…ุฌุงู„ ุฃุนู…ู„ evaluation ู„ู„ algorithm ุฃูˆ ู„ู„ู†ุงุชุฌ ุงู„ู„ูŠ
28
00:02:01,520 --> 00:02:06,160
ู…ูˆุฌูˆุฏุŸ ุฃู‡ ููŠ ู…ุฌุงู„ ู„ูƒู† ููŠ ุญุงู„ุฉ ูˆุงุญุฏุฉ ูู‚ุท ุฅุฐุง ุงู†ุง
29
00:02:06,160 --> 00:02:10,720
ุงุนุชู…ุฏุช ุงู† ููŠ ุนู†ุฏูŠ labelled data set ุทุจ ุงุญู†ุง ู‚ู„ู†ุง
30
00:02:10,720 --> 00:02:15,020
ู…ู† ุงู„ุจุฏุงูŠุฉ ุงู†
31
00:02:15,020 --> 00:02:17,800
ุงู„ cluster ุจุชุดุชุบู„ ุนู„ู‰ ุงู„ test set ูŠุนู†ูŠ ุงู„ label ู…ุด
32
00:02:17,800 --> 00:02:22,580
ู…ูˆุฌูˆุฏ ุตุญูŠุญ ุงู„ููƒุฑุฉ ูˆูŠู† ุงู† ุงู†ุง ุจุฏูŠ ุงูุตู„ ุงู„ data set
33
00:02:22,580 --> 00:02:31,250
ุชุจุนุชูŠู…ุฌู…ูˆุนุฉ ุงู„ู€ attributes ู„ุญุงู„ ูˆ ุงู„ target label
34
00:02:31,250 --> 00:02:40,670
ู„ุญุงู„ูŠ ูˆุจุนุฏ ู‡ูŠูƒ ุงุนู…ู„ ู„ู‡ุงุฏูŠ clustering ุจุฏูŠ ุงุนู…ู„ ู‡ู†ุง
35
00:02:40,670 --> 00:02:44,590
clustering ู„ู„ data set ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู‡ู†ุง ูˆุจู†ุงุก
36
00:02:44,590 --> 00:02:48,270
ุนู„ู‰ ุงู„ clusters ุงู†ุง ุนุงุฑู ุงู† ูƒู„ instance ุจุชุชุจุน ุงูŠ
37
00:02:48,270 --> 00:02:54,960
label ูุจุตูŠุฑ ุงู†ุง ุจู‚ู‰ ุงู‚ุงุฑู† ุงู„ labelุงู„ู„ูŠ ุนู†ุฏูŠ ู…ุน ุงู„
38
00:02:54,960 --> 00:02:57,100
clusters ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุงู† ูˆุจู†ุงุกู‹ ุนู† ู‡ูŠูƒุช ุจุญุตู„
39
00:02:57,100 --> 00:03:02,660
ุนู„ู‰ ุชู‚ูŠูŠู… ูˆุจุงู„ุชุงู„ูŠ ู„ู…ุง ุงุญู†ุง ุจู†ุชูƒู„ู… ุนู„ู‰ ุงู„ ุงู„ ุงู„ ุงู„
40
00:03:02,660 --> 00:03:03,400
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
41
00:03:03,400 --> 00:03:04,060
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
42
00:03:04,060 --> 00:03:05,500
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
43
00:03:05,500 --> 00:03:06,460
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
44
00:03:06,460 --> 00:03:06,460
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
45
00:03:06,460 --> 00:03:07,520
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
46
00:03:07,520 --> 00:03:07,520
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
47
00:03:07,520 --> 00:03:07,520
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
48
00:03:07,520 --> 00:03:07,520
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
49
00:03:07,520 --> 00:03:07,520
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
50
00:03:07,520 --> 00:03:07,620
ุงู„ ุงู„ ุงู„ ุงู„
51
00:03:22,210 --> 00:03:28,550
ู„ุฃู† ุงู„ู†ุชุงุฆุฌ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู…ุงุญุฏุด ุจูŠู‚ูˆู„ ุนู†ู‡ุง ุตุญ
52
00:03:28,550 --> 00:03:31,570
ุฃูˆ ุฎุทุฃ ูŠุนู†ูŠ ุงู†ุง ุงุณุชุฎุฏู…ุช two different algorithms
53
00:03:31,570 --> 00:03:36,930
ูˆู‚ู„ุชู„ู‡ู… ูˆุงู„ู„ู‡ ุฌุณู…ูˆู„ูŠ ุงู„ data set ูƒpartitional ู„
54
00:03:36,930 --> 00:03:46,770
three clusters ุทู„ุนูˆู„ูŠ three clustersู…ุด ุถุฑูˆุฑูŠ ู…ุด
55
00:03:46,770 --> 00:03:50,350
ุถุฑูˆุฑูŠ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ููŠ ุงู„ cluster ุงู„ุฃูˆู„ ู‡ูŠ ู†ูุณู‡ุง
56
00:03:50,350 --> 00:03:51,970
ุงู„ู„ูŠ ููŠ ุงู„ุนู†ุงุตุฑ ุงู„ cluster ุงู„ุชุงู†ูŠ ู†ุงุชุฌ ุงู„
57
00:03:51,970 --> 00:04:00,600
algorithm ูˆุจุงู„ุชุงู„ูŠ ู…ู‚ุงุฑู†ุฉ ุงู„ output ุดุจู‡ ู…ุณุชุญูŠู„ุฉุฅุฐุง
58
00:04:00,600 --> 00:04:02,640
ูƒู†ุช ุฃู‚ูˆู„ ุฃู† ุงู„ู€ Algorithm ุฃุนุทุงู†ูŠ ู†ูุณ ุงู„ู†ุชูŠุฌุฉ ุฃูˆ
59
00:04:02,640 --> 00:04:05,880
ู†ูุณ ุงู„ู€ ุงู„ู€ ูุงูŠุฏุฉ ู…ู† ุงู„ุชุงู†ูŠุŒ ูู„ุง ุชุชู…ูŠุฒ ุงู„ุชุงู†ูŠ ุนู†ู‡
60
00:04:05,880 --> 00:04:10,360
ุชู…ุงู…ุŒ ุฅู„ุง ูุนู„ูŠู‹ุง ู„ูˆ ุงู„ู€ Data ูƒุงู†ุช ูุนู„ูŠู‹ุง ุงู„ู€ Data
61
00:04:10,360 --> 00:04:13,960
Discriminant ุงู„ู€ Instances ู…ูŠุงู„ุฉ ู„ู€ Different Tree
62
00:04:13,960 --> 00:04:18,180
Classes ูˆูƒู„ ูˆุงุญุฏุฉุŒ ูƒู„ Instance ุชู†ุชู…ูŠ ู„ ClassุŒ ูŠุนู†ูŠ
63
00:04:18,180 --> 00:04:22,100
ููŠ ุนู†ุฏูŠ Discriminant Attribute ูˆุฌุงุฏุฑูŠุงุด ุชูˆุตูู„ูŠู‡ู…
64
00:04:22,100 --> 00:04:25,100
ุฃูˆ ุชูˆุฏูŠู„ูŠู‡ู… ุนู„ู‰ ุงู„ู€ Certain Class ุฃูˆ ุงู„ู€ Target
65
00:04:25,100 --> 00:04:30,020
Cluster ุนููˆุงู‹ ุจุดูƒู„ ูƒูˆูŠุณุŒ ู„ูƒู† ู„ู…ุง ุฃู†ุง ูุนู„ูŠู‹ุงุจุทุจู‚
66
00:04:30,020 --> 00:04:34,000
ู…ู…ูƒู† ุจุงุนุชู…ุงุฏูŠ ุนู„ู‰ ุงู„ training set ุงู„ training set
67
00:04:34,000 --> 00:04:39,000
ุฅุฐุง ุฃู†ุง ุทุจู‚ุช ุงู„ cluster algorithm ุนู„ู‰ ุงู„ training
68
00:04:39,000 --> 00:04:43,020
set ุชู„ุงุญุธูŠู† ู…ุนุงูŠุง ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑุŸ ู„ู…ุง ุฃู†ุง ุจุฏูŠ ุฃุนู…ู„
69
00:04:43,020 --> 00:04:45,720
evaluation .. ุงู„ุขู† ูุนู„ูŠุง .. ูุนู„ูŠุง ู„ูŠู‡ clustering
70
00:04:45,720 --> 00:04:49,580
unsupervised learningุŸ ูŠุนู†ูŠ ุฃู†ุง ุจุชุฌุงู‡ู„ ุงู„ label ุฃูˆ
71
00:04:49,580 --> 00:04:53,560
ุงู„ label ู…ุด ู…ูˆุฌูˆุฏ ููŠ ุงู„ data set ู‡ุฐู‡ ูˆุงุญุฏุฉ ู„ู…ุง ุฃู†ุง
72
00:04:53,560 --> 00:04:59,370
ุจุฏูŠ ุฃุนู…ู„ู‡ evaluation ู„ู„ algorithm ุชู…ุงู…ุŸุจู‚ุฏุฑ ุงุนู…ู„
73
00:04:59,370 --> 00:05:03,170
evaluation ููŠ ุญุงู„ุฉ ูˆุงุญุฏุฉ ูู‚ุท ุงุฐุง ุงู†ุง ู‚ุฏุฑุช ุงุทุจู‚ู‡
74
00:05:03,170 --> 00:05:06,410
ุนู„ู‰ training set ุดูˆ training set ูŠุนู†ูŠ ููŠ ุนู†ุฏูŠ
75
00:05:06,410 --> 00:05:09,930
label ุทุจ ู‡ู„ ุงู„ูƒู„ุงู… ู‡ุฐุง ู…ูˆุฌูˆุฏุŸ ุงู‡ ู…ูˆุฌูˆุฏ ุจุตูŠุฑ ูƒู„
76
00:05:09,930 --> 00:05:15,670
label ูƒู„ class ุจู…ุซุงุจุฉ cluster ูƒู„ class ุจู…ุซุงุจุฉ
77
00:05:15,670 --> 00:05:21,910
cluster ูˆ ุจุฑูˆุญ ุจุงุฎู ุงู„ class ูˆ ุจุฌุณู… ุงู„ data set
78
00:05:21,910 --> 00:05:24,210
ุจุฏูˆู† ุงู„ cluster ุฒูŠ ู…ุง ูˆุงุฌู‡ุชูƒูˆุง ููŠ ุงู„ slide ุงู„ุณุงุจู‚ุฉ
79
00:05:24,210 --> 00:05:30,020
ุฒูŠ ู…ุง ุฑุณู„ู†ุงู‡ุง ูŠุนู†ูŠ ุงู†ุง ุงู„ุขู†ู‡ูŠ ุงู„ data set ุชุจุนูŠ
80
00:05:30,020 --> 00:05:37,920
ูƒู…ุงู† ู…ุฑุฉ ูุตู„ุช ุงู„ cluster
81
00:05:37,920 --> 00:05:40,940
ุฃูˆ ูุตู„ุช ุงู„ data set ุงู„ attribute ูˆุงู„ label ุฃูˆ ุงู„
82
00:05:40,940 --> 00:05:46,720
class ุฌุณู…
83
00:05:46,720 --> 00:05:49,200
ุงู„ data set ุตุงุฑ ุนู†ุฏู‰ ุงู„ุขู† ู‡ูŠ ุงู„ label ูˆู‡ูŠ ุงู„
84
00:05:49,200 --> 00:05:55,150
attribute ุงู„ุขู† ุจุงุฌุจ ุงุทุจู‚ ุงู„ clustering handุทุจู‚ ุงู„ู€
85
00:05:55,150 --> 00:05:57,170
Clustering ุนู„ู‰ ุงู„ู€ Attributes ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง
86
00:05:57,170 --> 00:06:02,830
ุนู„ู‰ ุงู„ู€ Instances ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุชู…ุงู…ุŒ ุงู„ุขู† ูุนู„ูŠุงู‹ ูƒู„
87
00:06:02,830 --> 00:06:07,870
Instance ุจุชุจู‚ู‰ Class ูˆููŠ ุนู†ุฏู‰ ู…ุฌู…ูˆุนุฉ Instances ููŠ
88
00:06:07,870 --> 00:06:10,470
ู†ูุณ ุงู„ class ุจูŠู† ุฌุณูŠู† ุฃู†ู‡ ูุนู„ูŠุงู‹ ุงู„ data already
89
00:06:10,470 --> 00:06:15,590
ู…ู†ุฌุณู…ุฉ ูุฅุฐุง ุฃู†ุง ู‚ุฏุฑุช ุฃุฑุจุท ู…ุง ุจูŠู† ุงู„ true cluster
90
00:06:15,590 --> 00:06:21,890
ุงู„ู„ูŠ ู‡ูŠ ุงู„ label ูˆ ุงู„ predicted cluster ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ
91
00:06:21,890 --> 00:06:26,610
ุนู†ุฏู‡ุงุจู‚ุฏุฑ ุฃู†ุดุฆ ุดุบู„ ุงุณู…ู‡ุง ุงู„ู€ Contingency Matrix
92
00:06:26,610 --> 00:06:29,930
ูˆู…ู† ุงู„ู€ Contingency Matrix ู…ู…ูƒู† ุฃู† ุงุชูƒู„ู… ุนู„ู‰ ุดุบู„
93
00:06:29,930 --> 00:06:36,160
ุงูˆู„ metric ู‡ุณู…ูŠู‡ุง ุงู„ู€ Durityุชุนุงู„ู‰ ู†ุชูƒู„ู… ุนู† ุงู„ู€
94
00:06:36,160 --> 00:06:38,920
Contingency Matrix ุงูŠุด ุงู„ู€ Contingency Matrix
95
00:06:38,920 --> 00:06:43,720
ุจุชู‚ูˆู„ ุงู† ู„ุฏูŠ ุซู„ุงุซุฉ .. ุทุจุนุง ู„ุงุญุธูˆุง ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ
96
00:06:43,720 --> 00:06:47,960
ููŠ ู…ูˆู‚ุฒูŠ ุงู†ุง ุจุฏูŠ ุงุฎุชุจุฑ Clustering Algorithm ููŠ
97
00:06:47,960 --> 00:06:51,980
ุนู†ุฏูŠ label data set ุงู„ label data set ููŠู‡ุง ุนุฏุฏ
98
00:06:51,980 --> 00:06:55,800
classes ู…ุนูŠู† N ู„ู…ุง ุจุฏูŠ ุงุณุชุฎุฏู… ุงู„ Clustering
99
00:06:55,800 --> 00:06:59,020
Algorithm ุจุฏูŠ ุงู‚ูˆู„ ุฌุณู…ู„ูŠู‡ุง ู„ู€ N ู…ู† ุงู„ cluster ู„ุฃู†
100
00:06:59,020 --> 00:07:02,800
ูƒู„ cluster ุจุฏูŠ ู…ูŠุซู„ Classูุฃู†ุง ุจูุชุฑุถ ุฃู†ู‡ ุนู†ุฏูŠ data
101
00:07:02,800 --> 00:07:07,680
set ู…ูƒูˆู‘ู†ุฉ ู…ู† three classes label data set ู…ูƒูˆู‘ู†ุฉ
102
00:07:07,680 --> 00:07:13,080
ู…ู† three classes ุจุชุณู…ูŠู‡ู… T1 ูˆT2 ูˆT3 ู…ู† true true
103
00:07:13,080 --> 00:07:18,520
cluster ุฃูˆ true segment ุฃูˆ true partition ุณู…ูŠู‡ุง ุฒูŠ
104
00:07:18,520 --> 00:07:24,380
ู…ุง ุจุฏูƒ true label ุณู…ูŠู‡ุง ุฒูŠ ู…ุง ุจุฏูƒูˆุงูˆC1 ูˆC2 ูˆC3 ู‡ู…ุง
105
00:07:24,380 --> 00:07:28,060
ุงู„ู€ clusters ุงู„ู„ูŠ ุงู†ุดุบู„ูŠุงู‡ู… ู…ู† ุงู„ algorithm ุงู„ู„ูŠ
106
00:07:28,060 --> 00:07:31,580
ู…ูˆุฌูˆุฏ ุนู†ุฏู‡ุง ุงูŠุด ุฑุงุญ ุงุฌู„ุจุŸ ุงูŠุด ุจูู‡ู… ุงู„ contingency
107
00:07:31,580 --> 00:07:41,000
matrixุŸ ุงู†ู‡ ููŠ C1 C1 ุฎู…ุณุฉ ูˆุนุดุฑูŠู† element ุจูŠู†ุชู…ูŠ ู„
108
00:07:41,000 --> 00:07:45,020
T2 ูˆุฎู…ุณุฉ
109
00:07:45,020 --> 00:07:50,410
element ุจูŠู†ุชู…ูŠ ู„ T3 ูˆุฎู…ุณ ุนู†ุงุตุฑ ุจูŠู†ุชู…ูŠ ู„ T3ูŠุนู†ูŠ
110
00:07:50,410 --> 00:07:56,730
ุนู†ุฏูŠ 25 ุนู†ุตุฑ ู…ู† T ู†ุงุชุฌ
111
00:07:56,730 --> 00:08:06,470
ุงู„ clustering C1 ุจูŠุญุชูˆูŠ ุนู„ู‰ 30 ุนู†ุตุฑ 25 ู…ู†ู‡ู… ุญู‚ูŠู‚ุฉ
112
00:08:06,470 --> 00:08:12,550
ู…ู† ุงู„ class ุงู„ุชุงู†ูŠ ูˆ 5 ู…ู† ุงู„ class ุงู„ุชุงู„ุช ูˆ ู„ุง
113
00:08:12,550 --> 00:08:18,880
ูˆุงุญุฏ ู…ู† ุงู„ class ุงู„ุฃูˆู„T2 ุฃูˆ cluster C2 ุจูŠุญุชูˆูŠ ุนู„ู‰
114
00:08:18,880 --> 00:08:25,100
35 ุนู†ุตุฑ 15 ู…ู† ุงู„ class ุงู„ุฃูˆู„ ูˆ 20 ู…ู† ุงู„ class
115
00:08:25,100 --> 00:08:32,220
ุงู„ุชุงู„ุช cluster ุชู„ุงุชุฉ ุจูŠุญุชูˆูŠ ุนู„ู‰ ุนุดุฑ ุนู†ุงุตุฑ ูู‚ุท ูƒู„ู‡ู…
116
00:08:32,220 --> 00:08:40,100
ูƒู„ู‡ู… ุจูŠุชุจุนูˆุง T1 ุงู„ุขู† ู‡ุฐุง ุงู„ูƒู„ุงู… ุฅุฐุง ุงู†ุง ุงูู‡ู…ุชู‡
117
00:08:41,270 --> 00:08:45,670
ู…ุนู†ุงุชู‡ ุฃู†ุง ู…ุด ุถุฑูˆุฑูŠ ุงู„ู€ Clustering algorithm ุชุจุนูŠ
118
00:08:45,670 --> 00:08:49,250
ูŠูƒูˆู† ุตุญ ู…ุงุฆุฉ ููŠ ุงู„ู…ุงุฆุฉ ู…ู…ุชุงุฒ ุทุจ ู…ุชู‰ ุจูŠูƒูˆู† ุตุญ ู…ุงุฆุฉ
119
00:08:49,250 --> 00:08:57,710
ููŠ ุงู„ู…ุงุฆุฉ ุฅุฐุง ูˆุงู„ู„ู‡ ุฃู†ุง ุฅุฌูŠุช ู‚ูˆู„ุช ู‡ูŠูƒ ู…ุซู„ู‹ุง
120
00:08:57,710 --> 00:09:00,830
ุญุตุฑุช ุนู„ู‰ ุตูˆุฑุฉ ูˆุงุญุฏุฉ ู…ู† ุงู„ุตูˆุฑ ุงู„ุชุงู„ูŠุฉ ูุงู†ุง ู‡ุชูƒู„ู… ุนู†
121
00:09:00,830 --> 00:09:08,150
ุงู„ matrix ู„ูˆ ุฃู†ุง ุฅุฌูŠุช ู‚ูˆู„ุช ู‡ู†ุง ูˆุงู„ู„ู‡ ุนู†ุฏูŠ
122
00:09:08,150 --> 00:09:08,990
ู‡ู†ุง ุชู„ุงุชูŠู†
123
00:09:12,600 --> 00:09:24,500
ูˆุนู†ุฏูŠ ู‡ู†ุง 20 ูˆุนู†ุฏูŠ ู‡ู†ุง 50 ูˆุงู†ุง
124
00:09:24,500 --> 00:09:28,740
C1 C2
125
00:09:28,740 --> 00:09:39,400
ูˆC3 ูˆุงู„ุจุงู‚ูŠ ุฃุตูุฑ ุทุจุนุง ู‡ู†ุง T1 T2 T3 ูˆุงู†ุง ุงุชุนู…ุฏุช ุงุญุท
126
00:09:39,400 --> 00:09:45,560
ุงู„ู‚ูŠู… ู†ูุณ ุงู„ูƒูŠููŠุฉู„ุญุธูˆุง ู…ุนุงูŠุง ุฅู†ู‡ ูุนู„ูŠุง ูƒู„ cluster
127
00:09:45,560 --> 00:09:50,720
completely pure ุตุงููŠ ู…ุงููŠุด ููŠู‡ ุฃูŠ .. ูŠุนู†ูŠ ูƒู„
128
00:09:50,720 --> 00:09:53,800
cluster ู…ุซู„ ูˆุงุญุฏุฉ ู…ู† ุงู„ classes ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰
129
00:09:53,800 --> 00:09:57,980
ูƒู„ cluster ู…ุซู„ ูˆุงุญุฏุฉ ูู‚ุท ู…ู† ุงู„ classes ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ
130
00:09:57,980 --> 00:10:01,920
ุนู†ุฏู‰ ูˆู‡ู†ุง ุจุชูƒู„ู… ุฅู†ู‡ ูุนู„ูŠุง ูƒู„ cluster ู†ู‚ูŠ ุชู…ุงู…ุง
131
00:10:01,920 --> 00:10:06,740
ุจูŠุญุชูˆูŠ ุนู†ุงุตุฑ ู…ู† ู†ูุณ ุงู„ class ูู‚ุท ุนุดุงู† ู‡ูŠ ูƒุงู†
132
00:10:06,740 --> 00:10:10,900
ุจู†ุชูƒู„ู… ุงุญู†ุง ุนู„ู‰ ุงู„ purity ู†ู‚ุงูˆุฉ ุฃูˆ ู†ู‚ุงุก ุฏุฑุฌุฉ
133
00:10:10,900 --> 00:10:17,700
ุงู„ู†ู‚ุงุกุทูŠุจุŒ ุจู…ุง ุฃู† ุงู„ุญุงู„ุฉ ุฏูŠ ู‡ูŠ ุงู„ู€ optimal case ุฃูˆ
134
00:10:17,700 --> 00:10:21,640
ุงู„ู€ ideal case ูˆุงู„ู„ูŠ ุฃู†ุง ูุนู„ุง ู…ุด ู‡ุญุตู„ ุนู„ูŠู‡ุงุŒ ุฃู†ุง
135
00:10:21,640 --> 00:10:24,400
ู‡ุญุตู„ ุนู„ู‰ ุดุบู„ ู…ุดุงุจู‡ ุฒูŠ ู‡ูŠูƒ ู…ู† ุฎู„ุงู„ ุงู„ู€ contingency
136
00:10:24,400 --> 00:10:28,020
matrix ูƒูŠู ุฃุญุณุจ ุงู„ู€ purityุŸ ุงู„ู€ purity ู‡ูŠ ุชุณุงูˆูŠ
137
00:10:28,020 --> 00:10:35,180
ุนุจุงุฑุฉ ุนู† ู…ุฌู…ูˆุน ุงู„ maximum ููŠ ูƒู„ ุตูุฑ ุงู„ maximum ุนุฏุฏ
138
00:10:35,180 --> 00:10:40,410
maximum ู„ู„ู€ Ti ุชู†ุชู…ูŠ ู„Cุนู„ู‰ ุงู„ุงู† ุงู„ maximum ุฎู…ุณุฉ ูˆ
139
00:10:40,410 --> 00:10:44,750
ุนุดุฑูŠู† ุงู„ maximum ุนุดุฑูŠู† ุงู„ maximum ุนุดุฑุฉ ูŠุนู†ูŠ ุฎู…ุณุฉ ูˆ
140
00:10:44,750 --> 00:10:49,430
ุนุดุฑูŠู† ุฒุงุฆุฏ ุนุดุฑูŠู† ุฒุงุฆุฏ ุนุดุฑุฉุนู†ุฏู…ุง ุงุชูƒู„ู… ุนู† ุฎู…ุณุฉ ูˆ
141
00:10:49,430 --> 00:10:53,550
ุฎู…ุณูŠู† ุนู„ู‰ ูƒู„ ุงู„ุงู† ุฎู…ุณุฉ ูˆ ุฎู…ุณูŠู† ูˆ ููŠ ุนู†ุฏู‰ ุงุถูŠูู‡ู…
142
00:10:53,550 --> 00:10:58,670
ู‡ู†ุง ุนู„ู‰ ุฎู…ุณุฉ ูˆ ุณุจุนูŠู† ุจุชูƒู„ู… ุนู„ู‰ ุงู„ purity ุงู„ุงู† ุงู†
143
00:10:58,670 --> 00:11:04,870
ุนู†ุฏูŠ ู‡ุงู† ุชู„ุงุชูŠู† ุฎู…ุณุฉ ูˆ ุชู„ุงุชูŠู† ู‡ูŠ ุฎู…ุณุฉ ูˆ ุณุชูŠู† ุฎู…ุณุฉ
144
00:11:04,870 --> 00:11:10,750
ูˆ ุณุจุนูŠู† ู…ุนู†ุงุชู‡ ุนู†ุฏู‰ ุงู†ุง ู‡ุงู† ุฎู…ุณุฉุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ู†ุง
145
00:11:10,750 --> 00:11:13,830
ู†ุชูƒู„ู… .. ุงุญู†ุง ู‚ูˆู„ู†ุง ุงู„ maximum ุฎู…ุณุฉ ูˆ ุฃุฑุจุนูŠู† ..
146
00:11:13,830 --> 00:11:21,510
ุฎู…ุณุฉ ูˆ ุฎู…ุณูŠู† .. ุฎู…ุณุฉ ูˆ ุฎู…ุณูŠู† ุนู„ู‰ ุฎู…ุณุฉ ูˆ ุณุจุนูŠู† ู‡ุฐู‡
147
00:11:21,510 --> 00:11:23,970
ุงู„ purity ุชุจุน ุงู„ cluster ุฃูˆ ุชุจุน ุงู„ contingency
148
00:11:23,970 --> 00:11:29,990
matrix ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ
149
00:11:29,990 --> 00:11:34,250
ุทูŠุจ .. ุชุนุงู„ู‰ ู†ุดูˆู ุงู„ู…ุซุงู„ ุงู„ุจุณูŠุท ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุงุฏ
150
00:11:41,930 --> 00:11:45,370
ุฃู†ุง ู…ุด ุจู‚ูˆู„ุŒ ุจู‚ูˆู„ ุฅู† ุฃู†ุง ุงู„ู€Purity ุจู‚ุฏุฑ ุฃุญุณุจู‡ุง ุฅุฐุง
151
00:11:45,370 --> 00:11:50,690
ูƒุงู†ุช ุจุชุนุงู…ู„ ู…ุน test set ุจุชุญุชูˆูŠ ุนู„ู‰ target class
152
00:11:50,690 --> 00:11:56,970
ุชุฎูŠู„ุŒ ุนุดุงู† ูŠุฏู…ุฌ ุงู„ุชุนุฑูŠู ู‡ุฐุง ุงู„ู€definition ู‡ุฐุง ุนุดุงู†
153
00:11:56,970 --> 00:12:00,610
ูŠุฏู…ุฌ ู…ุง ุจูŠู† ุงู„ุดุบู„ุชูŠู† ุจูŠู† ุฅู†ู‡ ูุนู„ูŠุง ุงู„ู€clustering
154
00:12:00,610 --> 00:12:05,230
ุชุทุจู‚ ุนู„ู‰ test set ูˆุฃู†ุง ู…ู‚ุฏุฑุด ุฃุฑูˆุญ ุฃู‚ุฏุฑ ุฃุนู…ู„
155
00:12:05,230 --> 00:12:09,980
evaluation ุฅู„ุง ุบูŠุฑ ู„ูˆ ูƒุงู† ุงู„ label ู…ูˆุฌูˆุฏูุฌุงู„ูŠ ุงู„
156
00:12:09,980 --> 00:12:12,960
test set ุจุชุญุชูˆูŠ ุนู„ู‰ target ุงู„ุชูŠ ุจู†ุฌูˆุฒู†ูŠ training
157
00:12:12,960 --> 00:12:20,520
set ูˆ ู„ุง ุดูˆ ุฑุฃูŠูƒูˆุง training
158
00:12:20,520 --> 00:12:25,220
set ุจูŠุจู‚ู‰ ุงู„ุงู† ุจู‚ูˆู„ ุงูุชุฑุถ ุงู† ุงู†ุง ููŠ ุนู†ุฏู‰ test set
159
00:12:25,220 --> 00:12:29,900
ู…ูƒูˆู†ุฉ ู…ู† 24 element ุจุชู†ุชู…ูŠ ู„ three different
160
00:12:29,900 --> 00:12:39,530
classes ุงู„ O ุงูˆ ุงู„ circleTriangle ูˆSquare ูˆู…ุฌุณู…
161
00:12:39,530 --> 00:12:45,490
ุงู„ุนู†ุงุตุฑ ุจุงู„ุชุณุงูˆูŠ 8888 ุจุนุฏ ู…ุง ุทุจู‚ุช ุงู„ clustering
162
00:12:45,490 --> 00:12:50,510
ุชุจุนุช ุงู„ cluster C1 ููŠู‡ุง ุงู„ุนู†ุงุตุฑ ุงู„ุชุงู„ูŠุฉ ุงู„ cluster
163
00:12:50,510 --> 00:12:55,650
C2 ูˆ ุงู„ cluster C3 ุทุจุนุง ู‡ู†ุง ููŠ ู…ุตุทู„ุญ ุฌุฏูŠุฏ ุงุถูŠูู‡
164
00:12:55,650 --> 00:13:01,630
ู†ู‚ุงุก ูƒู„ cluster ู†ู‚ุงุก ูƒู„ cluster ุจุดูƒู„ ู…ุณุชู‚ู„ ุงุฐุง
165
00:13:01,630 --> 00:13:07,380
ุณุฃู„ุชูƒ ุงู„ cluster ุงู„ุฃูˆู„ ุจู…ุซู„ ุงูŠุดุŸู…ุนุธู…ูƒู… ุญูŠู‚ูˆู„ูˆุง ูˆ
166
00:13:07,380 --> 00:13:12,880
ุงู„ู„ู‡ ู‡ุฐุง ุจูŠู…ุซู„ ุงู„ู…ุซู„ุซุงุช ุงู„ triangles ูˆ ุงู„ู„ูŠ ุชุญุช
167
00:13:12,880 --> 00:13:16,480
ุงู„ุชุงู†ูŠ ู‡ูŠู…ุซู„ ุงู„ู…ุฑุจุนุงุช ุงู„ุญู…ุฑุงุก ูˆ ู‡ุฐู‡ ู‡ูŠู…ุซู„ ุงู„ุฏูˆุงุฆุฑ
168
00:13:16,480 --> 00:13:19,340
ุงู„ุฎุถุฑุงุกุŒ ู…ุธุจูˆุทุŸ ูุจุงู„ุชุงู„ูŠ ุฃู†ุง ุจู‚ุฏุฑ ุฃุญุณุจ ุงู„ purity
169
00:13:19,340 --> 00:13:22,300
ุชุจุน ูƒู„ cluster ุงู„ cluster ุงู„ุฃูˆู„ ุจูŠุญุชูˆูŠ ุนู„ู‰ 9 ุนู†ุงุตุฑ
170
00:13:22,300 --> 00:13:26,420
ูˆ ุงู„ maximum ูƒุงู†ุช ู„ู…ูŠู†ุŸ ู„ู„ู…ุซู„ุซุงุชุŒ ู…ุนู†ุงุชู‡ 6 ุนู„ู‰ 9
171
00:13:26,420 --> 00:13:29,880
ู„ูƒู† ู…ุด ู‡ูŠ ุงู„ target ุชุจุนุชูŠุŒ ุฃู†ุง ู…ุงุจู‡ู…ู†ูŠุด ุงู„ purity
172
00:13:29,880 --> 00:13:34,820
ุชุจุน ูƒู„ class ุฃู†ุง ุงู„ู„ูŠ ุจูŠู‡ู…ู†ูŠ ุงู„ purity ู„ูƒู„ output
173
00:13:34,820 --> 00:13:40,340
ู…ุฑุฉ ูˆุงุญุฏุฉู„ู„ู€ algorithm ุงู„ element 24 element ู‡ุฑูˆุญ
174
00:13:40,340 --> 00:13:44,920
ุฃุฏูˆุฑ ู‡ุงู†ุงู„ู€ maximum ู‡ู†ุง 6 ุงู„ู€ maximum ู‡ู†ุง 5 ุงู„ู€
175
00:13:44,920 --> 00:13:49,980
maximum ู‡ู†ุง 5 6 ุฒุงุฆุฏ 5 ุฒุงูŠุฏ 5 ุนู„ู‰ 24 16 ุนู„ู‰ 24
176
00:13:49,980 --> 00:13:53,660
ุฏุฑุฌุฉ ุงู„ู†ู‚ุงุก ุงู„ู„ูŠ ุจูŠุนุทูŠู†ุง ุฅูŠุงู‡ุง ุงู„ cluster ู‡ุฐุง ุจุดูƒู„
177
00:13:53,660 --> 00:14:00,460
ุนุงู… 76.67% ูˆ ู‡ูŠูƒ ุจุชุชู… ุญุณุจุฉ ุงู„ purity ุชุจุนุชู†ุง ู‡ู†ุง
178
00:14:00,460 --> 00:14:04,220
ุทุจุนุง ูƒู…ุงู† ู…ุฑุฉ ุจุฑุฌุน ุจู‚ูˆู„ ุฃู†ุง ุจู‚ุฏุฑ ุฃุชูƒู„ู… ุจุดูƒู„ ู…ุจุฏุฆูŠ
179
00:14:04,220 --> 00:14:09,910
ุงู„ majority ุชุจุน ูƒู„ cluster ูƒุฐุงุบุงู„ุจูŠุฉ ุชุจุนุช ูƒู„
180
00:14:09,910 --> 00:14:13,370
cluster ูƒุฏู‡ ู„ูƒู† ุงู„ purity ุชุจุนุชู‡ุง ู‡ุชูƒูˆู† ู‡ุฐู‡ ู…ุด
181
00:14:13,370 --> 00:14:17,330
ูˆุงุถุญุฉ ูุนู„ูŠุง ู„ูˆ ู‚ู„ุน ุนู†ุฏูŠ cluster ู…ุงุฏุฉ ู†ุณูˆุดูŠ ูˆ
182
00:14:17,330 --> 00:14:22,150
ุจูŠู†ุชู…ูŠ ู…ุซู„ุง ูู‚ุท ู„ two clusters ู„ two classes ูŠุนู†ูŠ
183
00:14:22,150 --> 00:14:25,770
ู…ู† ู†ูˆุนูŠู† ู…ุฎุชู„ููŠู† ู‡ู‚ูˆู„ ุงู„ purity ู„ู…ูŠู† ูุจุชุตูŠุฑ ุงู„
184
00:14:25,770 --> 00:14:29,990
purity ู‡ุฐู‡ ุบูŠุฑ ูˆุงุถุญุฉ ุฃูˆ ุจุชุตูŠุฑ ู…ูู‡ูˆู…ู‡ุง ุบูŠุฑ ุฏู‚ูŠู‚ ุฃู†ุง
185
00:14:29,990 --> 00:14:34,770
ุงู„ู„ูŠ ุจู‡ู…ู†ูŠ ุงู„ purity ุชุจุนุช ุงู„ cluster ุจุดูƒู„ ุนุงู…ุทุจุนุงู‹
186
00:14:34,770 --> 00:14:38,790
ุฃู†ุง ููŠู‡ ู…ุชุฑูŠูƒุฒ ุชุงู†ูŠุฉ ู…ู…ูƒู† ุชุณุชุฎุฏู… ู†ูุณ ุงู„ู…ุจุฏุฃ ุงู„ู€
187
00:14:38,790 --> 00:14:41,230
Ground Truth ุฅู† ุฃู†ุง ูุนู„ูŠุงู‹ ู„ุงุฒู… ูŠูƒูˆู† ููŠู‡ training
188
00:14:41,230 --> 00:14:44,710
data set ูˆู‡ุฐุง ู…ูู‡ูˆู… Ground Truth ูŠุนู†ูŠ ุงู„ุญู‚ูŠู‚ุฉ
189
00:14:44,710 --> 00:14:47,690
ุงู„ุฃู…ุฑ ุงู„ูˆุงู‚ุนุŒ ุฅูŠุด ุงู„ุฃู…ุฑ ุงู„ูˆุงู‚ุนุŸ ุงู„ุฃู…ุฑ ุงู„ูˆุงู‚ุน ุงู„
190
00:14:47,690 --> 00:14:51,510
class ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู‡ุงุŒ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฃุณุงุณุŒ ุชู…ุงู…ุŸ ูˆู‡ุฐุง
191
00:14:51,510 --> 00:14:57,250
ูุนู„ูŠุงู‹ ุฃู†ุง ู„ู…ุง ุจุทุจู‚ ุงู„ data setุฃูˆ Clustering ุนู„ู‰
192
00:14:57,250 --> 00:14:59,690
ุงู„ู€ Training Set ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ููŠ ุนู†ุฏูŠ ุงู„ู€
193
00:14:59,690 --> 00:15:04,710
Adjusted Random Index ูˆููŠ ุนู†ุฏูŠ Normalized Mutual
194
00:15:04,710 --> 00:15:09,450
Information ูˆู‡ุฐู‡ ุจุชุฏูŠู†ูŠ ู‚ูŠู… ู…ู† ุตูุฑ ู„ูˆุงุญุฏ ูˆูƒู„ ู…ุง
195
00:15:09,450 --> 00:15:15,390
ูƒุงู†ุช ุงู„ู‚ูŠู…ุฉุฃู‚ุฑุจ ู„ู„ูˆุงุญุฏ ู…ุนูŠู†ุชู‡ ุงู„ู€ purity ุชุจุนุชูŠ ุฃูˆ
196
00:15:15,390 --> 00:15:19,830
ุงู„ู€ scale ุชุจุนูŠ ุงู„ algorithm ุชุจุนุชูŠ ุฃูุถู„ ุงู„ุตุญูŠุญ ุฃู†ุง
197
00:15:19,830 --> 00:15:25,010
ู…ุด ู‡ุงุทู„ุจ ู…ู†ูƒูˆุง ุงู„ุนู…ู„ูŠุงุช ุงู„ุญุณุงุจูŠุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏ
198
00:15:25,010 --> 00:15:28,810
ู‡ุงู† ู†ูุณ ุงู„ูƒู„ุงู… ู‡ูŠ ููŠ ุนู†ุฏ contingency matrix ุนู†ุฏ ุงู„
199
00:15:28,810 --> 00:15:30,890
actual class
200
00:15:32,410 --> 00:15:38,490
ุนู† ุทุฑูŠู‚ ุงู„ู€ Predicted Cluster ููŠ ู†ูุณ ุงู„ุญุณุจุฉ ู„ูƒู†
201
00:15:38,490 --> 00:15:43,770
ู‡ู†ุง ุจุชูƒู„ู… ุนู† ุฌุฏุงุด ุงู„ู€ elements ู…ู† ูƒู„ ุนู†ุตุฑ ุชู…ุงู…ุง
202
00:15:43,770 --> 00:15:47,710
ุงู„ุญุณุจุฉ ู…ุด ู…ุทู„ูˆุจุฉ ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ ู„ูƒู† ู‡ูˆุฑูŠูƒู… ุฅูŠุงู‡ุง
203
00:15:47,710 --> 00:15:51,830
ุฅู† ุดุงุก ุงู„ู„ู‡ ููŠ ุงู„ุนู…ู„ ูˆุจู‡ูŠูƒ ู†ู‡ูŠู†ุง ุดุจุชุฑู†ุง ูŠุนู†ูŠ ุฃู†ุง
204
00:15:51,830 --> 00:15:55,630
ุงู„ุขู† ู„ู…ุง ุฃุชูƒู„ู… ุนู„ู‰ ุงู„ evaluation ู…ู…ูƒู† ุฃุชูƒู„ู… ุนู„ู‰
205
00:15:55,630 --> 00:15:59,590
three different metrics3 ู…ุชุฑุงุช ู…ุฎุชู„ูุฉ ู„ู€ Purity
206
00:15:59,590 --> 00:16:03,710
ูˆู‡ูŠ ู…ุทู…ูˆุนุฉ ู…ู†ูƒูˆุง ุญุณุงุจูŠุชู‡ุง ู„ุฃู†ู‡ุง ุณู‡ู„ุฉ ุงู„ maximum ุงู„
207
00:16:03,710 --> 00:16:06,390
summation ู„ู„ู…ุงูƒุณูŠู…ู…ู… ููŠ ูƒู„ cluster ุนู„ู‰ ุนุฏุฏ ุงู„
208
00:16:06,390 --> 00:16:09,130
elements ูƒู„ู‡ุง ููŠ ุงู„ data set ูˆู‡ูŠ ุจุชู…ุซู„ ุงู„ purity
209
00:16:09,130 --> 00:16:14,890
ููŠ ุนู†ุฏูŠ ู…ุฌุฑุฏ ู…ุตุทู„ุญูŠู† ุฃุฎุฑูŠู† ุฃุฎุฑูŠู† ุจุฏูŠ ุฃุณู…ุนู‡ู… ุจุฏูŠ
210
00:16:14,890 --> 00:16:19,810
ุฃุญุฑูู‡ู… ุงู„ู„ูŠ ู‡ูˆ adjusted rank index ูˆnormalize
211
00:16:19,810 --> 00:16:25,010
mutual information ู‡ูŠ ุนุจุงุฑุฉ ุนู† rank ุจุญุณุจ ุงู„
212
00:16:25,010 --> 00:16:30,060
similarity between any two clustersุญุณุจุฉ ู…ุด ู…ุทู„ูˆุจุฉ
213
00:16:30,060 --> 00:16:33,520
ู„ูƒู† ูุนู„ูŠุงู‹ ู‡ูŠ ุนุจุงุฑุฉ ุนู† evaluation metric ุงู†ุง ู…ู…ูƒู†
214
00:16:33,520 --> 00:16:36,580
ุงูˆ ุฌุฏ ุงุณุชุฎุฏู…ู‡ุง ู…ุน ุงู„ clustering ุงู„ู„ูŠ ูŠุนุทูŠูƒูˆุง
215
00:16:36,580 --> 00:16:39,320
ุงู„ุนุงููŠุฉ ูˆ ุจุชู…ู†ุงู„ูƒูˆุง ุงู„ุชูˆููŠู‚ ุงู„ุณู„ุงู… ุนู„ูŠูƒู… ูˆุฑุญู…ุฉ
216
00:16:39,320 --> 00:16:39,440
ุงู„ู„ู‡