|
1 |
|
00:00:20,650 --> 00:00:24,730 |
|
ุงููู ุฑุญู
ุฉ ูุฑุญู
ุฉ ุฃููููุง ูู ุงูู
ุญุงุถุฑุฉ ุงูู
ุงุถูุฉ chapter |
|
|
|
2 |
|
00:00:24,730 --> 00:00:28,550 |
|
ุซู
ุงููุฉ ูุฌุฒุก ูุธุฑู ูุงูุขู ูุฐู ุงูู
ุญุงุถุฑุฉ ุฅู ุดุงุก ุงููู |
|
|
|
3 |
|
00:00:28,550 --> 00:00:35,150 |
|
ุณููุงูุด ุจุนุถ ุงูุฃุณุฆูุฉ ุจูุฏุฑ ู
ุง ูุณุชุทูุน ุฎูุงู ูุฐู ุงูุณุงุนุฉ |
|
|
|
4 |
|
00:00:35,150 --> 00:00:43,140 |
|
ุฅู ุดุงุก ุงููู ุชุนุงูู ูุจุฏุฃ ุจุงูุฃุณุฆูุฉ ุนูู Chapter 8 ูุงูุชู |
|
|
|
5 |
|
00:00:43,140 --> 00:00:47,920 |
|
ุชุชุนูู ุจุงูู product external direct ูู ูุจุฏุฃ ุจุงูุณุคุงู |
|
|
|
6 |
|
00:00:47,920 --> 00:00:52,620 |
|
ุงูุณุงุฏุณ ู
ุซููุง ุจูููู prove by comparing orders of the |
|
|
|
7 |
|
00:00:52,620 --> 00:00:57,200 |
|
element ูุจูู ุงููู ุจุฏู ุชุณุชุฎุฏู
ุทุฑููุฉ ุงูู
ูุงุฑูุฉ ุจูู |
|
|
|
8 |
|
00:00:57,200 --> 00:01:08,610 |
|
ุงูุนูุงุตุฑ ูุฅุซุจุงุช ุฃูู ูุฅุซุจุงุช ุฃู Z8 external direct |
|
|
|
9 |
|
00:01:08,610 --> 00:01:17,670 |
|
product ู
ุน Z2 is not isomorphic |
|
|
|
10 |
|
00:01:17,670 --> 00:01:18,970 |
|
ุฅูู Z4 |
|
|
|
11 |
|
00:01:23,930 --> 00:01:28,970 |
|
ูุจูู ุฏููู ุนูู ุทุฑููุฉ ูููู ูู ุงุณุชุฎุฏู
ูู ุงูู orders ูู |
|
|
|
12 |
|
00:01:28,970 --> 00:01:33,270 |
|
element ูู ููุง ุงูู two groups ููุญูู
ุนูู ุฃู ุงูู group |
|
|
|
13 |
|
00:01:33,270 --> 00:01:37,930 |
|
ุงูุฃููู ููุณุช isomorphic ููู group ุงูุซุงููุฉ ูู
ุซููุง ูู |
|
|
|
14 |
|
00:01:37,930 --> 00:01:41,810 |
|
ุฌูุช ููู group ุงูุฃููู ูู ูููุง element of order |
|
|
|
15 |
|
00:01:41,810 --> 00:01:49,270 |
|
ุซู
ุงููุฉ ุจุงูู
ุฑุฉ Z ุซู
ุงููุฉ ร ุซุงููุฉ direct product ู
ุน Z |
|
|
|
16 |
|
00:01:49,270 --> 00:01:49,730 |
|
ุงุซููู |
|
|
|
17 |
|
00:01:53,360 --> 00:01:59,800 |
|
ุจุณ ูููุง .. ูููุง ุงุซููู ูุงูุซู
ุงููุฉ ููุง ุฌุฒุงูุ ุซู
ุงููุฉ |
|
|
|
18 |
|
00:01:59,800 --> 00:02:05,740 |
|
ูุงุชููู ุงููุงุญุฏ |
|
|
|
19 |
|
00:02:05,740 --> 00:02:09,080 |
|
ูุงููุงุญุฏ |
|
|
|
20 |
|
00:02:09,080 --> 00:02:14,500 |
|
ูููุณุ ูู ุบูุฑูุ ุงููุงุญุฏ ูุงูุตูุฑ ูุจูู ุนูุฏู ุจุฏู ุงูู |
|
|
|
21 |
|
00:02:14,500 --> 00:02:18,020 |
|
element ุงุซููู ุงูู orders ุงููู ูู
ูุณุงููุง ุซู
ุงููุฉ |
|
|
|
22 |
|
00:02:18,020 --> 00:02:22,560 |
|
ุงููุงุญุฏ ูู ุงูู Z ุซู
ุงููุฉ ุงูู order ุงููู ูู ุซู
ุงููุฉ ุงูู |
|
|
|
23 |
|
00:02:22,560 --> 00:02:25,280 |
|
zero ุงูู order ุงููู ูู ูุงุญุฏ ุงูู least common |
|
|
|
24 |
|
00:02:25,280 --> 00:02:28,660 |
|
multiple ุจูู ุงูุซู
ุงููุฉ ูุงููุงุญุฏ ุงููู ูู ุซู
ุงููุฉ ู
ุธุจูุท |
|
|
|
25 |
|
00:02:28,660 --> 00:02:35,800 |
|
ูุจูู ููุง ุนูุฏู ุงูู element ูุงุญุฏ ู zero ู
ูุฌูุฏ ูู Z |
|
|
|
26 |
|
00:02:35,800 --> 00:02:42,970 |
|
ุซู
ุงููุฉ external direct product with order ุงููู ูู |
|
|
|
27 |
|
00:02:42,970 --> 00:02:48,030 |
|
ุซู
ุงููุฉ ุงูู order ููุฐุง ุงูู element ุซู
ุงููุฉ ุงูุขู ุจูุฌู ูู |
|
|
|
28 |
|
00:02:48,030 --> 00:02:52,590 |
|
Z ุฃุฑุจุนุฉ direct product ู
ุน Z ุฃุฑุจุนุฉ ูู ุจุชูุงูู ูู |
|
|
|
29 |
|
00:02:52,590 --> 00:02:56,430 |
|
element ุงูู order ุงููู ุจูุณุงูู ุซู
ุงููุฉ ุฑุบู
ุฃูู ุณุชุฉ |
|
|
|
30 |
|
00:02:56,430 --> 00:03:02,410 |
|
ุนุดุฑ ุนูุตุฑ ูุง ูู element Z ุฃุฑุจุนุฉ ุงูู order ููู
ูุง ุฅู
ุง |
|
|
|
31 |
|
00:03:02,410 --> 00:03:06,790 |
|
ูุงุญุฏ ูุง ุฅู
ุง ุงุซููู ูุง ุฃุฑุจุนุฉ ูุงูุชุงูู ูุงุญุฏ ูุงุซููู |
|
|
|
32 |
|
00:03:06,790 --> 00:03:10,410 |
|
ูุฃุฑุจุนุฉ ูู ูู least common multiple ูููู
ุฃูุซุฑ ู
ู |
|
|
|
33 |
|
00:03:10,410 --> 00:03:15,710 |
|
ุฃุฑุจุนุฉ ุงูุฐู ูุณูุจ ุงูู
ูุชูุจ ููุฐู ุงูู order ููู ุฃูุซุฑ ู
ู |
|
|
|
34 |
|
00:03:15,710 --> 00:03:24,090 |
|
ุฃุฑุจุนุฉ ู
ุง ุนูุฏููุด ูุจูู ุจุงุฌู ุจููู ูู ุจุทูููู ุงูู Z ุฃุฑุจุนุฉ |
|
|
|
35 |
|
00:03:24,090 --> 00:03:34,830 |
|
external product ู
ุน Z ุฃุฑุจุนุฉ has no element of |
|
|
|
36 |
|
00:03:34,830 --> 00:03:38,990 |
|
order ุซู
ุงููุฉ because |
|
|
|
37 |
|
00:03:41,450 --> 00:03:54,550 |
|
The maximum order in Z4 is 4 |
|
|
|
38 |
|
00:03:57,180 --> 00:04:00,700 |
|
ูุฃู ุงูู order ููู element ุจููุณู
ุงูู order ููู group |
|
|
|
39 |
|
00:04:00,700 --> 00:04:04,580 |
|
ุฅุฐุง Z ุฃุฑุจุนุฉ ูุง ููุฌุฏ ูููุง ุฅูุง ุงูู elements ุงูู order |
|
|
|
40 |
|
00:04:04,580 --> 00:04:09,580 |
|
ุงููุงุญุฏ ุงููู ูู ุงูู identity ูุงูุงุซููู ุงููู ูู ุงูุนุฏุฏ |
|
|
|
41 |
|
00:04:09,580 --> 00:04:13,740 |
|
ุงุซููู ููุฐูู ุงูุฃุฑุจุนุฉ ุงููู ูู ุงูุนุฏุฏ ูุงุญุฏ ูุซูุงุซุฉ |
|
|
|
42 |
|
00:04:13,740 --> 00:04:19,380 |
|
ุชู
ุงู
ุ ูุจูู ู
ู ููุง ุฃูุตู order ุนูุฏู ูู Z ุฃุฑุจุนุฉ direct |
|
|
|
43 |
|
00:04:19,380 --> 00:04:23,760 |
|
product ูุจูุฑุฉ ุฒู Z ุฃุฑุจุนุฉ ูู ุฃุฑุจุนุฉ ููุฐู ุซู
ุงููุฉ ูุจูู |
|
|
|
44 |
|
00:04:23,760 --> 00:04:29,010 |
|
ุงุซููู ูุฐูู ู
ุง ููู
isomorphic ูุจูู ุงูุชุฒุงู
ูู |
|
|
|
45 |
|
00:04:29,010 --> 00:04:33,810 |
|
ุงูููุงู
ุงููู ูุงูู ูุตูุช ูููุชูุฌุฉ ุจุฏูุง ูุฑูุญ ูุณุคุงู |
|
|
|
46 |
|
00:04:33,810 --> 00:04:42,490 |
|
ุฃุฑุจุนุฉ ุนุดุฑ ุณุคุงู ุฃุฑุจุนุฉ ุนุดุฑ ุจูููู ู
ุง ูุฃุชู suppose ุงูู G1 |
|
|
|
47 |
|
00:04:42,490 --> 00:04:53,490 |
|
isomorphic ุฅูู G2 ู group ุซุงููุฉ H1 isomorphic ูู
ูุ |
|
|
|
48 |
|
00:04:53,490 --> 00:05:03,330 |
|
ูู H2 ูู H1 isomorphic ูู H2 prove that ุงุซุจุช ุฃูู ุงูู |
|
|
|
49 |
|
00:05:03,330 --> 00:05:10,530 |
|
G1 external direct product ู
ุน H1 isomorphic ูู G2 |
|
|
|
50 |
|
00:05:10,530 --> 00:05:19,550 |
|
external direct product ู
ุน H2 ูุฐุง ุงููู ุงุญูุง ุจุฏูุง ูุฑูุญ |
|
|
|
51 |
|
00:05:19,550 --> 00:05:26,330 |
|
ูุซุจุชู ุฅุฐุง ุฏุงุฆู
ูุง ูุฃุจุฏูุง ุจูุญุงูู ูุณุชููุฏ ู
ู ุงูู
ุนุทูุงุช |
|
|
|
52 |
|
00:05:26,330 --> 00:05:31,190 |
|
ุงููู ุนูุฏูุง ูู ุฅุซุจุงุช ุงูู
ุทููุจ ูุฐูู two groups are |
|
|
|
53 |
|
00:05:31,190 --> 00:05:35,790 |
|
isomorphic ูุฐูู two groups are isomorphic ุฃุฎุฐุช ุงูู |
|
|
|
54 |
|
00:05:35,790 --> 00:05:38,830 |
|
external product ู
ุง ุจูู ุงูู group ุงูุฃููู ู ุงูู group |
|
|
|
55 |
|
00:05:38,830 --> 00:05:42,280 |
|
ุงูุฃููู ู
ู ุงูู
ุฌู
ูุนุฉ ุงูุซุงููุฉ ูุงูุฌุฑูุจ ุงูุซุงููุฉ ู
ุน |
|
|
|
56 |
|
00:05:42,280 --> 00:05:46,480 |
|
ุงูุฌุฑูุจ ุงูุซุงููุฉ ุจุฏู ุฃุซุจุช ุฃูู ุงููู ูู ุงูู external |
|
|
|
57 |
|
00:05:46,480 --> 00:05:50,460 |
|
product ูุฐุง ู
ุง ูู isomorphic ููู external product |
|
|
|
58 |
|
00:05:50,460 --> 00:05:55,480 |
|
ุงููู ุนูุฏูุง ูุฐุง ูุจูู ุงูุญููุฉ ุงูุชุงููุฉ solution |
|
|
|
59 |
|
00:06:00,220 --> 00:06:09,660 |
|
ุฃูุชุฑุถ ุฃู ุงูู Alpha ู
ู ุงูู G1 ุฅูู ุงูู G2 ู ุงูู Beta |
|
|
|
60 |
|
00:06:09,660 --> 00:06:18,860 |
|
ู
ู ุงูู H1 ุฅูู ุงูู H2 ูู
isomorphism |
|
|
|
61 |
|
00:06:20,010 --> 00:06:24,330 |
|
ูุจูู ุจุฏู ุฃูุชุฑุถ ุฅู ูุฐูู ุงูุงุซููู isomorphism ุงูุขู |
|
|
|
62 |
|
00:06:24,330 --> 00:06:29,750 |
|
ูุฐุง ู
ุดุงู ุฃุซุจุช ุฅู ุงุซููู isomorphism ุจุฏู ุฃุนุฑู |
|
|
|
63 |
|
00:06:29,750 --> 00:06:33,530 |
|
function ู
ู ุงูุฌุฑูุจ ุงูุฃููู ุฅูู ุงูุฌุฑูุจ ุงูุซุงููุฉ ูุฃุซุจุช |
|
|
|
64 |
|
00:06:33,530 --> 00:06:37,390 |
|
ุฃููุง one to one and one to one ูุชุฎุฏู
ุฎุงุตูุฉ ุงูู isomorphism |
|
|
|
65 |
|
00:06:37,390 --> 00:06:40,710 |
|
ุฅุฐุง ุจุฏู ุฃููู ูู define |
|
|
|
66 |
|
00:06:43,180 --> 00:06:52,220 |
|
A function ูู ู
ู ุงูู G1 ู H1 ูู external direct product |
|
|
|
67 |
|
00:06:52,220 --> 00:06:55,760 |
|
ู
ู |
|
|
|
68 |
|
00:06:55,760 --> 00:07:05,860 |
|
ุงูู G1 ู H1 ูู
ููุ ูู G2 ูู external direct product ู
ุน H2 |
|
|
|
69 |
|
00:07:05,860 --> 00:07:16,200 |
|
ุจู ูู of ุจุฏู ุขุฎุฐ element ู
ู G1 ููููู G ู H ูุนูู ู
ุง |
|
|
|
70 |
|
00:07:16,200 --> 00:07:24,520 |
|
ุชุฃุซุฑ ุนูู G ู H ุจุฏู ุฃูุฏููุง ูููุ ูู ุงูู group G2 ู H2 |
|
|
|
71 |
|
00:07:24,520 --> 00:07:31,280 |
|
ุทูุจ G2 ูุฐู ู
ุด ูู G2 ูุฐู ุตุญุ ุฅุฐุง ุงูู element ุงููู |
|
|
|
72 |
|
00:07:31,280 --> 00:07:37,350 |
|
ููุง ูู ุตูุฑุฉ ูู element ู
ู ููุง ุงููุงููุดู ู
ู ููุง ูููุง |
|
|
|
73 |
|
00:07:37,350 --> 00:07:44,510 |
|
ุดู ุณู
ูุชูุง Alpha ูุจูู ูุฐู ุจูุฏุฑ ุขุฎุฐูุง Alpha of G |
|
|
|
74 |
|
00:07:44,510 --> 00:07:52,690 |
|
ูุจูู ูุฐู ุจูุฏุฑ ุฃููู Alpha of G ููุดุ ูุฃู Alpha of G G |
|
|
|
75 |
|
00:07:52,690 --> 00:07:59,210 |
|
ู
ูุฌูุฏุฉ ูู G1 ูุงุญูุง ุนูุฏูุง ููุง G ู
ูุฌูุฏุฉ ูู G1 ูุจูู |
|
|
|
76 |
|
00:07:59,210 --> 00:08:04,350 |
|
ููุง ุตูุฑุชูุง ูู G2 ุตูุฑุชูุง ูู G2 ุงููู Alpha of G |
|
|
|
77 |
|
00:08:05,900 --> 00:08:12,960 |
|
ุจุชุฏุงุฌุฑ ููู H ุงูู H ู
ูุฌูุฏุฉ ูู ุงูู H1 ุชู
ุงู
ุฃูุง ุนูุฏู |
|
|
|
78 |
|
00:08:12,960 --> 00:08:18,140 |
|
Beta ู
ู H1 ุฅูู H2 ูุจูู H ุงููู ู
ูุฌูุฏุฉ ูู H1 ุตูุฑุชูุง |
|
|
|
79 |
|
00:08:18,140 --> 00:08:25,520 |
|
ุชุจูู Beta of H ูุจูู ูุฐุง Beta of H ุจุงูุดูู ุงููู |
|
|
|
80 |
|
00:08:25,520 --> 00:08:32,520 |
|
ุนูุฏูุง ูุจูู ููุฐุง ุนุฑูุช ุงูุฏุงูุฉ ุชุนุฑูููุง ุณููู
ูุง ุงูุขู ูุฐู |
|
|
|
81 |
|
00:08:32,520 --> 00:08:37,400 |
|
ุงูุฏุงูุฉ ุจุฏู ุฃุญุงูู ุฃุซุจุช ุฃููุง one to one and onto |
|
|
|
82 |
|
00:08:37,400 --> 00:08:42,120 |
|
ูุชุฎุฏู
ุฎุงุตูุฉ ุงูู isomorphism ุฅู ุชู
ูุฐูู ูุจูู ุจูููููุง |
|
|
|
83 |
|
00:08:42,120 --> 00:08:45,660 |
|
ุงุซููู ูุฐูู are isomorphic ูุจููู ุฃูุช ููุง ู
ู ูุงูุดุบู |
|
|
|
84 |
|
00:08:45,660 --> 00:08:51,020 |
|
ูุงุฏู ูุจูู ุจุฏู ุขุฌู ููุฎุทูุฉ ุงูุฃููู ุจุฏู ุฃุซุจุช ูู ุฅู ูุงู |
|
|
|
85 |
|
00:08:51,020 --> 00:08:58,240 |
|
is one to one ู
ุดุงู ููู ุจุฏู ุขุฎุฐ ุตูุฑุชูู ู
ุชุณุงููุชูู |
|
|
|
86 |
|
00:08:58,240 --> 00:09:08,360 |
|
Assume Phi of G ู H ุจุฏู ุฃุณุงูู Phi of X ู Y ู
ุซููุง ุฅุฐุง |
|
|
|
87 |
|
00:09:08,360 --> 00:09:14,420 |
|
ูุฏุฑุช ุฃุซุจุช ุฅู ุงูู ordered pair G ู H ูู ุงูู ordered pair X |
|
|
|
88 |
|
00:09:14,420 --> 00:09:16,540 |
|
ู Y ุจููู ุงูุชูููุง ู
ู ุงูุดุบู ูุนูู |
|
|
|
89 |
|
00:09:19,880 --> 00:09:25,740 |
|
ุจุชุฏุงุฌู ูุตูุฑุฉ ุงูู element ุงูุฃูู ุญุณุจ ุงูุชุนุฑูู ูุจูู |
|
|
|
90 |
|
00:09:25,740 --> 00:09:35,420 |
|
Alpha of G ู Beta of H ูุจูู ูุฐู ุชุจูู Alpha of G ู |
|
|
|
91 |
|
00:09:35,420 --> 00:09:41,760 |
|
Beta of H ุจุงูุดูู ุงููู ุนูุฏูุง ููุง ุงูู Phi of X ุจููุณ |
|
|
|
92 |
|
00:09:41,760 --> 00:09:51,500 |
|
ุงูุทุฑููุฉ ูุจูู ูุงุฏู Alpha of X ุงูุตูุฑุฉ ูุงูุซุงููุฉ Beta |
|
|
|
93 |
|
00:09:51,500 --> 00:09:53,920 |
|
of Y ุงูุดูู ุงููู ุนูุฏูุง |
|
|
|
94 |
|
00:09:57,060 --> 00:10:01,740 |
|
ุจูุงุก ุนูู ูุฐุง ุงูููุงู
ุตุงุฑ ุนูุฏู two ordered pair are |
|
|
|
95 |
|
00:10:01,740 --> 00:10:05,240 |
|
equal ูุจูู ุงูู
ุฑูุจุฉ ุงูุฃููู ูุชุณุงูู ุงูู
ุฑูุจุฉ ุงูุฃููู |
|
|
|
96 |
|
00:10:05,240 --> 00:10:10,020 |
|
ูุงูู
ุฑูุจุฉ ุงูุซุงููุฉ ูุชุณุงูู ุงูู
ุฑูุจุฉ ุงูุซุงููุฉ ูุจูู ุจูุงุก |
|
|
|
97 |
|
00:10:10,020 --> 00:10:17,900 |
|
ุนููู Alpha of G ุจุฏูู ูุณุงูู Alpha of X and Beta of |
|
|
|
98 |
|
00:10:17,900 --> 00:10:24,180 |
|
H ุจุฏูู ูุณุงูู Beta of Y ุดูู ูุฐุง ุดู ุจุฏูู ูุนุทููุง ุงูุขู |
|
|
|
99 |
|
00:10:24,180 --> 00:10:29,940 |
|
ุงูู Alpha ูุฐู isomorphism ูุจูู one to one and onto |
|
|
|
100 |
|
00:10:29,940 --> 00:10:34,960 |
|
ุฅุฐุง ู
ุฏุงู
one to one ูุจูู ุงูู G ุจุฏู ูุณุงูู ุงููู ูู |
|
|
|
101 |
|
00:10:34,960 --> 00:10:42,960 |
|
ุงูู X ูุจูู ููุง ุงูู G ุจุฏู ูุณุงูู ุงูู X and ุงูู H |
|
|
|
102 |
|
00:10:42,960 --> 00:10:51,920 |
|
ุจุฏู ูุณุงูู ุงูู Y ุงูุณุจุจ ุจุณุจุจ ุฃู Alpha ู Beta ูู
one |
|
|
|
103 |
|
00:10:51,920 --> 00:10:57,500 |
|
to one ู
ุง ุฏุงู
ุตูุฑุชูู ู
ุชุณุงููุชูู ุฅุฐุง ุงูุฃุตู ู
ุชุณุงูู ูุฃู |
|
|
|
104 |
|
00:10:57,500 --> 00:11:02,000 |
|
ุงูู Alpha one to one ู ูุฐูู ุงูู Beta is one to one |
|
|
|
105 |
|
00:11:02,000 --> 00:11:08,360 |
|
ูุจูู ุจูุงุก ุนููู ูุฐุง ุจุฏูู ูุนุทููุง ูู ุฃุฎุฐุช ุงูู G ู ุงูู H |
|
|
|
106 |
|
00:11:08,360 --> 00:11:15,900 |
|
as an ordered ุงูู G ุนุจุงุฑุฉ ุนู ู
ููุ X ู ุงูู H ุนุจุงุฑุฉ ุนู |
|
|
|
107 |
|
00:11:15,900 --> 00:11:20,420 |
|
ู
ููุ Y ุนุจุงุฑุฉ ุนู Y ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ูุจูู ุฃุฎุฐ |
|
|
|
108 |
|
00:11:20,420 --> 00:11:26,890 |
|
ุตูุฑุชูู ู
ุชุณุงููุชูู ูุงุซุจุช ุฅู ุฃุตู ูู
ุงูู ู
ุชุณุงูู ูุฐูู |
|
|
|
109 |
|
00:11:26,890 --> 00:11:28,630 |
|
ูุงู is one to one |
|
|
|
110 |
|
00:11:34,980 --> 00:11:43,220 |
|
ูุจูู ุฃูุง ุจุฃุฎุฐ element ูู ุงูู G2 ู X2 ู H2 ูุจูู |
|
|
|
111 |
|
00:11:43,220 --> 00:11:50,340 |
|
ุจุงูุฏุฑุฌุฉ ูููู ูู ุฃุฎุฐุช ุงูู X ู
ูุฌูุฏ ู
ุซููุง ูู ุงูู G2 |
|
|
|
112 |
|
00:11:50,340 --> 00:12:00,280 |
|
external product ู
ุน H2 ุจุดูู ูุนูู ูุฐุง ูุจูู then ุจุฏู |
|
|
|
113 |
|
00:12:00,280 --> 00:12:06,570 |
|
ุฃุฏูุฑ ุนูู ุดูู ูุฐุง ุงูู element ูุจูู ุดูู ุงูู element X |
|
|
|
114 |
|
00:12:06,570 --> 00:12:12,370 |
|
ูุฐุง ุจุฏู ูุณุงูู element ู
ู G2 ู element ู
ู H2 |
|
|
|
115 |
|
00:12:12,370 --> 00:12:20,370 |
|
ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู element ููููู G2 ู H2 ู
ู |
|
|
|
116 |
|
00:12:20,370 --> 00:12:30,200 |
|
H2 ุทูุจ ูุฐุง ุงูููุงู
ูุณุงูู ุงูู G2 ู
ูุฌูุฏุฉ ูู G2 ุชู
ุงู
ู |
|
|
|
117 |
|
00:12:30,200 --> 00:12:38,180 |
|
Alpha is onto ูุจูู ูุฐุง ุงูู element ูู ุฃุตู ูู G1 |
|
|
|
118 |
|
00:12:38,180 --> 00:12:43,260 |
|
ุตุญูุญ ููุง ูุฃ ูุจูู ูุฐุง ุงูููุงู
ุจูุฏุฑ ุฃุดูู ุงูู G2 ู |
|
|
|
119 |
|
00:12:43,260 --> 00:12:51,940 |
|
ุฃูุชุจูุง Alpha of G1 ู
ุซููุง ู ุจูุฏุฑ ุฃูุชุจ ูุฐุง Beta of |
|
|
|
120 |
|
00:12:51,940 --> 00:12:57,180 |
|
each one ุดู ุงูุณุจุจ ูู ุฐูู ูุฃู Alpha and Beta are |
|
|
|
121 |
|
00:12:57,180 --> 00:13:10,440 |
|
onto ูุจูู ููุง since ุงูู Alpha and Beta are onto ูุฐุง |
|
|
|
122 |
|
00:13:10,440 --> 00:13:15,400 |
|
ุงูููุงู
ูู ุฑุฌุนุชู ุฅูู ุฃุตูู ุจูุงูู ูู ุงูุชุนุฑูู ุงููู ุฃูุง |
|
|
|
123 |
|
00:13:15,400 --> 00:13:21,100 |
|
ูุงููู ููุง ูุจูู ุงูุฃุตู ุงููู ุจุชุงุจุนู ูู ุนุจุงุฑุฉ ุนู Phi |
|
|
|
124 |
|
00:13:21,100 --> 00:13:28,960 |
|
of G1 ู H1 ูุจูู ุงูู element ุงููู ุฃุฎุฏุชู ูู G2 ู H2 ุงููู |
|
|
|
125 |
|
00:13:28,960 --> 00:13:36,600 |
|
ุฌุงุช ูู ุฃุตู ูู G1 ู H1 ุงููู ูู G1 ู H1 ุตุบูุฑ ูุจูู Phi |
|
|
|
126 |
|
00:13:36,600 --> 00:13:41,600 |
|
is in two ุถุงูู ุนููู ูุซุจุช ุฃู Phi is an isomorphism |
|
|
|
127 |
|
00:13:41,600 --> 00:13:50,020 |
|
ูุจูู ุจุงูู ุจููู Phi is an isomorphism ูุจูู ุจุฏู ุฃูุง |
|
|
|
128 |
|
00:13:50,020 --> 00:13:55,920 |
|
ุขุฎุฐ ุงููู ูู ุงููPhi of ุญุงุตู ุถุฑุจ two elements ุงู |
|
|
|
129 |
|
00:13:55,920 --> 00:14:01,100 |
|
element ุงูุฃูู ุงููู ูู ุจุฏู ุชุฃุฎุฐู ู
ู ููุง ู
ู ู
ูุงู |
|
|
|
130 |
|
00:14:01,100 --> 00:14:08,120 |
|
ูููู ูุจูู ูู ุฌุฆุช ููุช G ูH ู
ุถุฑูุจ ูู element ุซุงูู |
|
|
|
131 |
|
00:14:08,120 --> 00:14:14,720 |
|
ููููู ู
ุซูุง G prime ูH prime ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง |
|
|
|
132 |
|
00:14:15,810 --> 00:14:21,390 |
|
ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู Phi of ูุฐุง ุงูุถุฑุจ ุนููู |
|
|
|
133 |
|
00:14:21,390 --> 00:14:25,770 |
|
ุจูุถุฑุจ component wise ุญุณุจ ู
ุง ุนุฑููุง ุนู
ููุฉ ุงูุถุฑุจ ุนูู |
|
|
|
134 |
|
00:14:25,770 --> 00:14:32,350 |
|
ุงู external product ูุจูู G G prime ู H H prime |
|
|
|
135 |
|
00:14:32,350 --> 00:14:39,440 |
|
ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู Phi ูู
ุง |
|
|
|
136 |
|
00:14:39,440 --> 00:14:43,900 |
|
ุชุฃุซุฑ ุนูู ูุฐุง ุงู element ูุจูู Alpha ููุฃูู ู Beta |
|
|
|
137 |
|
00:14:43,900 --> 00:14:52,700 |
|
ููุซุงูู ูุจูู ูุฐุง Alpha of G G prime ู Beta of H H |
|
|
|
138 |
|
00:14:52,700 --> 00:14:58,950 |
|
prime ุงูุฃูู ูุงูุจูุชุง ูู ูุงุญุฏุฉ ูููู
isomorphism ู
ุฏุงู
|
|
|
|
139 |
|
00:14:58,950 --> 00:15:04,790 |
|
ูู ูุงุญุฏุฉ ูููู
isomorphism ุฅุฐุง ูุฐู Alpha of G ููุฐู |
|
|
|
140 |
|
00:15:04,790 --> 00:15:14,430 |
|
Alpha of G' ููุฐู Beta of H ููุฐู Beta of H' ุจุงูุดูู |
|
|
|
141 |
|
00:15:14,430 --> 00:15:19,000 |
|
ุงููู ุนูุฏูุง ููุง ูุจูู ุฃุซุฑ ุนูู ุดูู order pair ุงูุณุคุงู |
|
|
|
142 |
|
00:15:19,000 --> 00:15:25,600 |
|
ูู ูู ุงู order pair ูุฐุง ุจูุฏุฑ ุฃูุชุจู ุนูู ุดูู ุญุงุตู |
|
|
|
143 |
|
00:15:25,600 --> 00:15:31,240 |
|
ุถุฑุจ two ordered pairsุ ุงูุฅุฌุงุจุฉ ูุนู
ุ ูููุ ูุงูุชุงููุ |
|
|
|
144 |
|
00:15:31,240 --> 00:15:36,140 |
|
ุดูููุง ูุง ุณูุฏุชูุ ูุงู ุจุงุฌู ุจูููู ููุง Alpha of G ุจุฏู |
|
|
|
145 |
|
00:15:36,140 --> 00:15:43,870 |
|
ุขุฎุฐูุง ู
ุน Beta of H ุนุดุงู ุงูุชุฑุชูุจ ูููุง Alpha of G |
|
|
|
146 |
|
00:15:43,870 --> 00:15:50,450 |
|
prime ุจุฏู ุขุฎุฐูุง ู
ุน Beta of H prime ูุจูู ูุงู ูุชุจุชูู
|
|
|
|
147 |
|
00:15:50,450 --> 00:15:55,830 |
|
ุนูู ุดูู ุญุงุตู ุถุฑุจ ููุณูุฉ ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู |
|
|
|
148 |
|
00:15:55,830 --> 00:16:04,650 |
|
ุงูุขู ูู ุฌุฆุช ููููุณ ุงูุฃูู ูุจูู ูุฐุง Phi of GH ูุจูู ูุฐุง |
|
|
|
149 |
|
00:16:04,650 --> 00:16:16,880 |
|
Phi of GH ุงูุซุงูู ุนุจุงุฑุฉ ุนู Phi of G' ูH' ุฃุทูุน ุจุฏุฃุช |
|
|
|
150 |
|
00:16:16,880 --> 00:16:22,020 |
|
ุจุญุงุตู ุถุฑุจ ุงูููุณูู ูุตูุช ููPhi ุงูุฃูู ู
ุถุฑูุจุฉ ูู ู
ูู |
|
|
|
151 |
|
00:16:22,020 --> 00:16:26,700 |
|
ูู Phi ุงูุชุงููุฉ ูุจูู ุจูุงุก ุนููู Phi is an |
|
|
|
152 |
|
00:16:26,700 --> 00:16:29,640 |
|
isomorphism ูุจูู |
|
|
|
153 |
|
00:16:34,510 --> 00:16:42,450 |
|
Isomorphism that is ุฃู ุฃู ุงูู G1 external product |
|
|
|
154 |
|
00:16:42,450 --> 00:16:51,850 |
|
ู
ุน H1 isomorphic ู G2 external product ู
ุน G2 ููู |
|
|
|
155 |
|
00:16:51,850 --> 00:16:57,590 |
|
ุงูู
ุทููุจ ุงูุดุบู ู
ุด ุตุนุจ ุณูู ุจุณ ุทููู ุดููุฉ ูุนูู ุจุฏู |
|
|
|
156 |
|
00:16:57,590 --> 00:17:07,460 |
|
ุชู
ุดู ุจุฏูุฉ ูุจูุฑุฉ ุทูุจ ูุงู ูุฐุง ูู ุงูุณุคุงู ุฑูู
14 ุฎุฐ ูู |
|
|
|
157 |
|
00:17:07,460 --> 00:17:15,260 |
|
16 ุจูููู ูู ุงู group Z 40 Z 30 ูุงุช ูู two subgroups |
|
|
|
158 |
|
00:17:15,260 --> 00:17:20,980 |
|
of order 12 and |
|
|
|
159 |
|
00:17:20,980 --> 00:17:24,360 |
|
ูุฐุง |
|
|
|
160 |
|
00:17:24,360 --> 00:17:33,400 |
|
ุณุคุงู ูุฏู ุงูุด ูููุงุ 16 16 ูุจูู in z 40 external |
|
|
|
161 |
|
00:17:33,400 --> 00:17:42,880 |
|
product ู
ุน z 30 find two subgroups |
|
|
|
162 |
|
00:17:42,880 --> 00:17:47,780 |
|
of order 12 |
|
|
|
163 |
|
00:17:57,100 --> 00:18:02,960 |
|
ุทูุจ ุฌุงูู ูู ุงู group ูุฐู Z 30 Z 40 Extended like a |
|
|
|
164 |
|
00:18:02,960 --> 00:18:07,480 |
|
project ู
ุน Z 30 ูุงุช ูู two sub groups of order 12 |
|
|
|
165 |
|
00:18:07,480 --> 00:18:11,720 |
|
ูุง ุฌุงูู Cyclic ููุง ุบูุฑ Cyclic ููู ุงููู ุฃุณูู ููู ุฃู |
|
|
|
166 |
|
00:18:11,720 --> 00:18:17,660 |
|
ุฃุฌูุจ Cyclic ุฅู ุฌุฏุฑุชูุง ุทูุจ ุจูููู ูููุณุฉ ุทุจ ููู ุจุฏู |
|
|
|
167 |
|
00:18:17,660 --> 00:18:21,440 |
|
ุฃุฌูุจ Cyclic ุงู order ุงููู ูู ุณููุฉ 12 ุจูููู ูููุณุฉ |
|
|
|
168 |
|
00:18:21,440 --> 00:18:27,530 |
|
ุฅุฐุง ุจุชูุฏุฑูุฌุจ ุฃู ุฃุฌุฑุจ ุงูู order ูู element ูููุง |
|
|
|
169 |
|
00:18:27,530 --> 00:18:30,910 |
|
ุฃุฑุจุนุฉ ูุงูุชุงูู ุชูุงุชุฉ ูุจูู ุงูู least common |
|
|
|
170 |
|
00:18:30,910 --> 00:18:35,270 |
|
multiple ุงูู
ุฌุฏุงุด ุงุชูุงุด ูููู ุงููู ุงูู
ููุชู ูุฐุง ุงู |
|
|
|
171 |
|
00:18:35,270 --> 00:18:40,390 |
|
element ูููุฏ ุงู subgroup ู
ู ุงูู
ุทููุจ ุฅุฐุง ุฃูุง ุจุฏู |
|
|
|
172 |
|
00:18:40,390 --> 00:18:46,710 |
|
ุฃุฏูุฑ ุนูู ุนูุงุตุฑ ู
ู ุฒุฏ ุฃุฑุจุนูู ุงู order ุงููู ูููู |
|
|
|
173 |
|
00:18:46,710 --> 00:18:53,750 |
|
ุฌุฏุงุด ุฃุฑุจุนุฉ ุตุญุ ุทูุจ ู
ูู ุงูุนูุงุตุฑ ุงููู ูู Z ุฃุฑุจุนูู |
|
|
|
174 |
|
00:18:53,750 --> 00:18:59,530 |
|
ุงููู ุงู order ููู
ูุณุงูู ุฃุฑุจุนุฉ ุญุฏ ุจููุฏุฑ ูุฌูุจ ูู ููู |
|
|
|
175 |
|
00:18:59,530 --> 00:19:07,200 |
|
ุนูุตุฑ ูุงุญุฏ ุนุดุฑุฉ ู
ู
ุชุงุฒ ุฌุฏุง ูุจูู ุนุดุฑุฉ ู
ูุฌูุฏุฉ ูู Z |
|
|
|
176 |
|
00:19:07,200 --> 00:19:14,560 |
|
ุฃุฑุจุนูู ูุงู order ููุนุดุฑุฉ ุจุฏู ูุณุงูู ุฃุฑุจุนุฉ ู
ู
ุชุงุฒ ุฌุฏุง |
|
|
|
177 |
|
00:19:14,560 --> 00:19:21,220 |
|
ุฅุฐุง ุฃูุง ุจุฏู ุฃุฑูุญ ุนูู Z ุซูุงุซูู ูู
ุงู ุจุฑุถู ุนุดุฑุฉ ุทูุจ |
|
|
|
178 |
|
00:19:21,220 --> 00:19:27,980 |
|
ุงูุนุดุฑุฉ ู
ูุฌูุฏุฉ ูู Z ุซูุงุซูู and ุงู order ููุนุดุฑุฉ ุจุฏู |
|
|
|
179 |
|
00:19:27,980 --> 00:19:34,370 |
|
ูุณุงูู ูุฏูุด ุจุฏู ูุณุงูู ุซูุงุซุฉ ุฅุฐุง ุงู element ุงููู ูู |
|
|
|
180 |
|
00:19:34,370 --> 00:19:40,370 |
|
ุนุดุฑุฉ ูุนุดุฑุฉ ู
ูุฌูุฏ ูู Z ุฃุฑุจุนูู External Direct |
|
|
|
181 |
|
00:19:40,370 --> 00:19:50,070 |
|
Product ู
ุน Z ุซูุงุซูู ุงู order ููุนุดุฑุฉ ูุนุดุฑุฉ ูู ุนุจุงุฑุฉ |
|
|
|
182 |
|
00:19:50,070 --> 00:19:55,130 |
|
ุนู ุงู least common multiple ููุฃุฑุจุนุฉ ูุงูุซูุงุซุฉ ุงููู |
|
|
|
183 |
|
00:19:55,130 --> 00:20:00,470 |
|
ูู ูุณุงูู ูุฏุงุด ุงุชูุงุด ุฅุฐุง ูุฐุง ุงู element ุจูุนุทููู ุงู |
|
|
|
184 |
|
00:20:00,470 --> 00:20:02,910 |
|
cyclic subgroup of order ุงุชูุงุด |
|
|
|
185 |
|
00:20:05,800 --> 00:20:14,800 |
|
ูุจูู (ุนุดุฑุฉุุนุดุฑุฉ) (ุนุดุฑุฉุุนุดุฑุฉ) ูู ุนุจุงุฑุฉ ุนู |
|
|
|
186 |
|
00:20:14,800 --> 00:20:26,480 |
|
Cyclic Subgroup Cyclic Subgroup of order ุงุซูุง ุนุดุฑ |
|
|
|
187 |
|
00:20:26,480 --> 00:20:34,000 |
|
ุจุฏู ุฃุฏูุฑ ุนูู ุบูุฑู ุจุฏู ุฃุฏูุฑ ูู
ุงู ุนูู ุนูุตุฑ ุซุงูู |
|
|
|
188 |
|
00:20:38,630 --> 00:20:47,730 |
|
ูููุ ุงุซููู ูุณุชุฉ .. ูุง ุจุฏู .. ุณุชุฉ ูุฃุฑุจุนุฉ ู
ุงุดู .. |
|
|
|
189 |
|
00:20:47,730 --> 00:20:51,470 |
|
ุณุชุฉ ูุฃุฑุจุนุฉ ู
ุงุดู .. ูุงุญุฏ ูุงุซูุง ุนุดุฑ ู
ุงุดู .. ุจุณ ููุง |
|
|
|
190 |
|
00:20:51,470 --> 00:20:55,250 |
|
ููุงูู .. ูุจูู ุงูุขู ุจุฏู ุฃุฑูุญ ุฃุฏูุฑ ุนูู ู
ูู ุนูู |
|
|
|
191 |
|
00:20:55,250 --> 00:21:04,750 |
|
orders ุฃุฎุฑู ุทูุจ ุงู order ุชุจุน ุงูุนุดุฑุฉ ูู ุฃุฑุจุนุฉ ููุฏุฑ |
|
|
|
192 |
|
00:21:04,750 --> 00:21:10,550 |
|
ูุฌูุจ ู
ู z ุซูุงุซูู ูุงุญุฏ ุงู order ุฅูู ุณุชุฉ ุฃุฑุจุนุฉ ูุณุชุฉ |
|
|
|
193 |
|
00:21:10,550 --> 00:21:13,250 |
|
ุงู order ุงููู ู
ุตูุฑ ุงุซูุง ุนุดุฑ least common multiple |
|
|
|
194 |
|
00:21:13,250 --> 00:21:21,010 |
|
ู
ุธุจูุท ูุจูู ููุง ู
ุฑุฉ ุซุงููุฉ also ุฃูุถุง ุงูุนุดุฑุฉ ุฃู ุงู |
|
|
|
195 |
|
00:21:21,010 --> 00:21:28,440 |
|
order ููุนุดุฑุฉ ุจุฏู ูุณุงูู ุฃุฑุจุนุฉ ูู z ุฃุฑุจุนูู ุงูุขู |
|
|
|
196 |
|
00:21:28,440 --> 00:21:37,500 |
|
ุงูุฎู
ุณุฉ ุงูุฎุงู
ุณุฉ ุงู order ุฅูู ูุณุงูู ูุฏุงุดุ ุณุชุฉ ู
ุธุจูุท |
|
|
|
197 |
|
00:21:37,670 --> 00:21:45,150 |
|
ุงู order ูู ูุณุงูู ุณุชุฉ ูู Z ุซูุงุซูู ูุจูู ุฅุฐุง ุงู |
|
|
|
198 |
|
00:21:45,150 --> 00:21:51,910 |
|
order ููุนุดุฑุฉ ูุฎู
ุณุฉ ุจุฏู ูุณุงูู ุงู least common |
|
|
|
199 |
|
00:21:51,910 --> 00:21:58,630 |
|
multiple ุงููู ูู ู
ู ุงูุฃุฑุจุนุฉ ูุงูุณุชุฉ ุงููู ูู ูุฏู |
|
|
|
200 |
|
00:21:58,630 --> 00:22:04,970 |
|
ุงุซูุง ุนุดุฑ ูุจูู ุฅุฐุง ุงู sub group generated by ุนุดุฑุฉ |
|
|
|
201 |
|
00:22:04,970 --> 00:22:19,620 |
|
ูุฎู
ุณุฉ is a cyclic group of order ุงุซูุง ุนุดุฑ ูุจูู ุจูุงุก |
|
|
|
202 |
|
00:22:19,620 --> 00:22:24,000 |
|
ุนููู ูุงู ุทูุนูุง ูู ุงุซูุชูู subgroups ูุฑุบู
ุฃูู |
|
|
|
203 |
|
00:22:24,000 --> 00:22:28,120 |
|
ู
ุง ุงุดุชุฑุทุด ููุงู ูุงุช ูู subgroups ูุฎูุตูุง ูุจูู ุฃูุง |
|
|
|
204 |
|
00:22:28,120 --> 00:22:33,620 |
|
ุฌุจุช ูู subgroups ูุฌุจุชูู
ูู ุงุซูุชูู ุฒูุงุฏุฉ ุนูู ู
ูุงู ุฃูู |
|
|
|
205 |
|
00:22:33,620 --> 00:22:39,160 |
|
ุงุซูุชูู cyclic subgroups ุงู order ููู
ูุณุงูู 12 |
|
|
|
206 |
|
00:22:39,160 --> 00:22:45,120 |
|
ุงุนุชู
ุฏุช ูู ุฐูู ุนูู ู
ู ุนูู ุงู order ูู elements ููู
|
|
|
|
207 |
|
00:22:45,120 --> 00:22:48,540 |
|
ุงููู ุฑุงูุญูู ูู ู
ู ูู ุงูุญู |
|
|
|
208 |
|
00:22:51,060 --> 00:23:04,520 |
|
ุทูุจ ูุงู ูุฐุง ุณุคุงู ุณุชุฉ ุนุดุฑ ุฎุฐ ูู ุณุคุงู ุณุชุฉ ูุนุดุฑูู ุณุคุงู |
|
|
|
209 |
|
00:23:04,520 --> 00:23:12,180 |
|
ุณุชุฉ ูุนุดุฑูู ุณุชุฉ ูุนุดุฑูู ุจูููู ูู ูุงุช ูู ุงู subgroup ู
ู z |
|
|
|
210 |
|
00:23:12,180 --> 00:23:16,400 |
|
ุฃุฑุจุนุฉ ุจุฏู ู
ุซูุง subgroup |
|
|
|
211 |
|
00:23:18,720 --> 00:23:28,460 |
|
of subgroup ู
ู ู
ูู ู
ู z4 external direct product |
|
|
|
212 |
|
00:23:28,460 --> 00:23:35,640 |
|
z4 external direct product ู
ุน z ุฏู ุงุซููู that is |
|
|
|
213 |
|
00:23:35,640 --> 00:23:46,880 |
|
not of the form not in the form ุงููู ูู H external |
|
|
|
214 |
|
00:23:46,880 --> 00:23:59,480 |
|
product ู K ุญูุซ ุญูุงุชู where ุงู H subgroup ู
ู |
|
|
|
215 |
|
00:23:59,480 --> 00:24:10,530 |
|
Z4 and ุงู K subgroup ู
ู main subgroup ู
ู z2 ู ุงู k |
|
|
|
216 |
|
00:24:10,530 --> 00:24:17,230 |
|
sub group ู
ู ู
ู z2 |
|
|
|
217 |
|
00:24:17,230 --> 00:24:27,190 |
|
ุดูููุง ูุง ุณูุฏู ูุฑุฌุน ู
ุฑุฉ ุซุงููุฉ ุฃูุง ุนูุฏู ุงูุขู ุงู z4 |
|
|
|
218 |
|
00:24:27,190 --> 00:24:33,250 |
|
external direct product ู
ุน z2 ูุฐู group ุงูุขู ุจุฏู |
|
|
|
219 |
|
00:24:33,250 --> 00:24:39,410 |
|
subgroup ู
ู ูุฐู ุงู group ุจุญูุซ ู
ุง ุชูููุด ุนูู ุงูุดูู H |
|
|
|
220 |
|
00:24:39,410 --> 00:24:45,890 |
|
ุงููู ูู external product ู
ุน K ุญูุซ H subgroup ู
ู Z |
|
|
|
221 |
|
00:24:45,890 --> 00:24:51,590 |
|
ุฃุฑุจุนุฉ ูุงู K subgroup ู
ู ู
ู ู
ู Z ูุนูู ุจุฏู ุฌูุจ ูู ุงู |
|
|
|
222 |
|
00:24:51,590 --> 00:24:56,910 |
|
subgroup ุซุงููุฉ ุบูุฑ ุงู external product ุชุจุน ูุฏูู |
|
|
|
223 |
|
00:24:58,090 --> 00:25:03,850 |
|
ุชุนุงู ูุดูู ููู ุจุฏูุง ูุญู ุงูุณุคุงู ุงูุณุคุงู ูุญุชุงุฌ ุฅูู |
|
|
|
224 |
|
00:25:03,850 --> 00:25:09,720 |
|
ุชูููุฑ ูู
ู ุงูุชูููุฑ ุจููุฏุฑ ููุตู ููู
ุทูุจ Z ุฃุฑุจุนุฉ |
|
|
|
225 |
|
00:25:09,720 --> 00:25:14,100 |
|
external product ู Z ุงุซููู not in the form ููุณุช ูู |
|
|
|
226 |
|
00:25:14,100 --> 00:25:17,840 |
|
ูุฐุง ุงูุดูู ุงุญูุง ุฏู ุฌุจูุง ุงู subgroup ูุฌุจูุง ุงู |
|
|
|
227 |
|
00:25:17,840 --> 00:25:20,820 |
|
subgroup ุจูุฌูุจ ููู
ุงู external product ุจูุทูุน |
|
|
|
228 |
|
00:25:20,820 --> 00:25:25,200 |
|
subgroup ุฌุฏูุฏุฉ ุจููู ุงู subgroup ุงูุฌุฏูุฏุฉ ุจุฏูุด ุฅูุงูุง |
|
|
|
229 |
|
00:25:25,200 --> 00:25:28,830 |
|
ููุง ูุงุญุฏุฉ ู
ููุง ุฏูู ุงููู ุฃูุช ุจุชููู ุนูููู
ููุช ูู |
|
|
|
230 |
|
00:25:28,830 --> 00:25:32,410 |
|
ุชุนุงู ูุดูู ู
ูู ูู
ุงู subgroups ูุจุนุฏูู ุจุตูุฑ ุฎูุฑ |
|
|
|
231 |
|
00:25:32,410 --> 00:25:38,710 |
|
ุชู
ุงู
ุงูุขู ูู ุฌุฆุช ุนูู z4 ุจุฏู ุฃุฏูุฑ ู
ูู ูู
ุงู |
|
|
|
232 |
|
00:25:38,710 --> 00:25:44,990 |
|
subgroups ุชุจุนุงุช z4 ูุจูู ุงุฌูุจ ููููู the only |
|
|
|
233 |
|
00:25:44,990 --> 00:25:56,370 |
|
subgroups of z4 are ุงููู ุงู order ุฅููุง ูุงุญุฏ ูุงููู |
|
|
|
234 |
|
00:25:56,370 --> 00:25:59,590 |
|
ุงู order ุฅููุง ุงุซููู ูุงููู ุงู order ุฅููุง ุฃุฑุจุนุฉ |
|
|
|
235 |
|
00:25:59,590 --> 00:26:06,190 |
|
ู
ุธุจูุท ูุจูู ุงููู ุงู order ุฅููุง ูุงุญุฏ ูู ุงู identity |
|
|
|
236 |
|
00:26:06,190 --> 00:26:12,170 |
|
ูุงููู ุงู order ุฅููุง ุงุซููู ูู ุงู sub group |
|
|
|
237 |
|
00:26:12,170 --> 00:26:18,630 |
|
generated by ุงุซููู ุงูุด ุถุงู ุนูุฏูุ ูุงุญุฏ ูุซูุงุซุฉ ูุงุญุฏ |
|
|
|
238 |
|
00:26:18,630 --> 00:26:23,230 |
|
ูุซูุงุซุฉ ุจูุงูุฏููู ููุณ ุงู subgroup z ุฃุฑุจุนุฉ ูุจูู ูุฏูู |
|
|
|
239 |
|
00:26:23,230 --> 00:26:28,650 |
|
ุซูุงุซุฉ ููู ูู ุงูุญูููุฉ ูู ูุงุญุฏุฉ ุจุณ ูุจูู ุงูุซุงูุซุฉ ุงููู |
|
|
|
240 |
|
00:26:28,650 --> 00:26:37,930 |
|
ูู main z ุฃุฑุจุนุฉ itself ุชู
ุงู
ุ ุทูุจ ุงูุขู also the |
|
|
|
241 |
|
00:26:37,930 --> 00:26:51,930 |
|
only subgroups only subgroups of z2 are ุทุจุนุง ุงู |
|
|
|
242 |
|
00:26:51,930 --> 00:26:56,950 |
|
identity ูู
ูู ูู
ุงู ูุงูุงุซููู ุงููู ูู ุงู subgroup |
|
|
|
243 |
|
00:26:56,950 --> 00:27:04,350 |
|
generated by one ุงููู ูู z2 itself z2 itself ุทูุจ |
|
|
|
244 |
|
00:27:04,350 --> 00:27:09,850 |
|
ูู ุจุฏู ุฃูููู ุงู external product ูุฐุง ูุจูู ุจุฏู |
|
|
|
245 |
|
00:27:09,850 --> 00:27:18,330 |
|
ุฃูููู ุงูุฃููู ู
ุน ุงูุฃููู ุงููู ูู zero ุทุจุนุง ูุฐู ููุด |
|
|
|
246 |
|
00:27:18,330 --> 00:27:23,570 |
|
ูููุง ุฅูุง ู
ูู ุนูุตุฑ ูุงุญุฏ ุตุญูุญ ุงู cyclic ูููุด ูููุง |
|
|
|
247 |
|
00:27:23,570 --> 00:27:28,730 |
|
ุฃูู ุนูุตุฑ ูุงุญุฏ ุจุฏู ุฃู
ุณู ุงูุซุงููุฉ ุงูุซุงููุฉ ุงููู ูู ุงู |
|
|
|
248 |
|
00:27:28,730 --> 00:27:35,230 |
|
zero ููุณูุง ู
ุน ุงู subject ุงู zero ููุณูุง ู
ุน z2 |
|
|
|
249 |
|
00:27:35,230 --> 00:27:41,450 |
|
standard product ู
ุน z2 ุงูุซุงูุซุฉ ุฎูุตูุง ู
ููุง ุงููู |
|
|
|
250 |
|
00:27:41,450 --> 00:27:46,710 |
|
ูู ุงู subgroup generated by ุงุซููู external like |
|
|
|
251 |
|
00:27:46,710 --> 00:27:55,350 |
|
product ู
ุน ู
ูุ ู
ุน ุงูู zero ุงูู subgroup generated by |
|
|
|
252 |
|
00:27:55,350 --> 00:28:01,390 |
|
ุงุชููู external like product ู
ุน ู
ูุ ู
ุน ุฒุฏ ุงุชููู ุงูุขู |
|
|
|
253 |
|
00:28:01,390 --> 00:28:07,950 |
|
ุงูู z4 external product ู
ุน ุงูู zero ุขุฎุฑ ุญุงุฌุฉ ุงูู |
|
|
|
254 |
|
00:28:07,950 --> 00:28:16,830 |
|
z4 external product ู
ุน ุงูู z2 ูุคูุงุก ูู ุงูู |
|
|
|
255 |
|
00:28:16,830 --> 00:28:20,990 |
|
subgroups ุงููู ุนูู ุงูุดูู ุงููู ูุฏุงู
ู ูุฐุง ุฌุงูู ูุฐุง |
|
|
|
256 |
|
00:28:20,990 --> 00:28:25,480 |
|
ุงููู ุจุฏูุด ู
ููู
ููุง ูุงุญุฏุฉ ููุง ูุงุญุฏุฉ ู
ู ูุฏูู ูุงู ูู |
|
|
|
257 |
|
00:28:25,480 --> 00:28:29,080 |
|
ุจูุฏู ุงูู subgroup ู
ู ูุฐุง ู
ุงููุงุด ุนูู ุงูุดูู ุงููู |
|
|
|
258 |
|
00:28:29,080 --> 00:28:34,180 |
|
ุนูุฏูุง ููุง ุจูููู ุชุนุงูู ูุฏูุฑ ุงูุขู ูู ุฌุงูุณ ูู ูููู |
|
|
|
259 |
|
00:28:34,180 --> 00:28:39,780 |
|
consider ุฎุฏ ูู ุฃูู ุดูุก ุงูู subgroup ูุงุฒู
ูููู ูููุง |
|
|
|
260 |
|
00:28:39,780 --> 00:28:46,750 |
|
ุงูู identity element identity element ุชู
ุงู
ุทูุจ ูู |
|
|
|
261 |
|
00:28:46,750 --> 00:28:58,130 |
|
ุฌูุช ุฃุฎุฏ ุนูุฏู ููุง ู
ุซูุง ุงูู zero ู ุงูู one ุงูู zero |
|
|
|
262 |
|
00:28:58,130 --> 00:29:04,650 |
|
ุฃุฎุฏุชู ู
ู z ููุง ุฃุฎุฏุช ุฎููู ู
ุนุงูุง ุจุฏู ุฃุฎุฏู ุงุชููู ู |
|
|
|
263 |
|
00:29:04,650 --> 00:29:11,500 |
|
ุงูู zero ุงุชููู ูุฒูุฑู ู
ูุฌูุฏ ูู ุฒุฏ ุฃุฑุจุนุฉ external |
|
|
|
264 |
|
00:29:11,500 --> 00:29:16,300 |
|
product ูุฒูุฏ ุฏู ุงุชููู ูุฒูุฏ ุฃุฑุจุนุฉ ูุฒูุฏ ุชูุงุชุฉ |
|
|
|
265 |
|
00:29:16,300 --> 00:29:25,590 |
|
ุงุชุงูุฏ ูู ุจุงููู ุณุคุงู ุฌุฏูุฏ ุดู ูููุง ุณุชุฉ ูุนุดุฑูู.. ุณุชุฉ |
|
|
|
266 |
|
00:29:25,590 --> 00:29:32,910 |
|
ูุนุดุฑูู.. ุณุชุฉ ูุนุดุฑูู.. ุณุชุฉ ูุนุดุฑูู.. ุณุชุฉ ูุนุดุฑูู |
|
|
|
267 |
|
00:29:32,910 --> 00:29:40,130 |
|
..ุณุชุฉ ูุนุดุฑูู.. ุณุชุฉ ูุนุดุฑูู.. ุณุชุฉ ูุนุดุฑูู.. ุณุชุฉ |
|
|
|
268 |
|
00:29:40,130 --> 00:29:40,870 |
|
ูุนุดุฑูู.. ุณุชุฉ ูุนุดุฑูู.. ุณุชุฉ ูุนุดุฑูู.. ุณุชุฉ ูุนุดุฑูู |
|
|
|
269 |
|
00:29:40,870 --> 00:29:41,150 |
|
ูุนุดุฑูู.. ุณุชุฉ ูุนุดุฑูู.. ุณุชุฉ ูุนุดุฑูู.. ุณุชุฉ ูุนุดุฑูู |
|
|
|
270 |
|
00:29:41,150 --> 00:29:42,010 |
|
..ุณุชุฉ ูุนุดุฑูู.. ุณุชุฉ ูุนุดุฑูู.. ุณุชุฉ ูุนุดุฑูู.. ุณุชุฉ |
|
|
|
271 |
|
00:29:42,010 --> 00:29:47,740 |
|
ูุนุดุฑูู.. ุณุชุฉ ูุนุดุฑูู.. ุณุชุฉ ูุนุดุฑูู.. ุทูุจ ูุจูู ุงูุขู |
|
|
|
272 |
|
00:29:47,740 --> 00:29:54,880 |
|
ุจุฏู ุฃุฎุฏ ุงูู element zero ู zero ุจุฏู ุฃุฎุฏ element |
|
|
|
273 |
|
00:29:54,880 --> 00:30:01,140 |
|
ุซุงูู ุงุชููู ู zero ู
ูุฌูุฏ ูู ูุงุญุฏุฉ ู
ู ูุฏูู ุงุชููู |
|
|
|
274 |
|
00:30:01,140 --> 00:30:05,380 |
|
ู
ูุฌูุฏ ูููุง ุฏู ุงุณุชูู ุดููุฉ ูุฃ ูุฃ ุจุฏู ุฃุฌูุจ ูู ูุงู ูู |
|
|
|
275 |
|
00:30:05,380 --> 00:30:08,840 |
|
ุงูููุท ู
ุงููุงุด ูู ุงูุดูู ุงููู ุนูุฏูุง ูู ูุงุฏู ุงูู |
|
|
|
276 |
|
00:30:08,840 --> 00:30:13,480 |
|
subgroup ูุงุฏู ุงูู subgroup ุตุญูุญ ุจุณ ุงุณุชูู ูุดูููุง ูู |
|
|
|
277 |
|
00:30:13,480 --> 00:30:14,440 |
|
ูุงุฏู ููุง ูุฃ |
|
|
|
278 |
|
00:30:17,170 --> 00:30:23,010 |
|
ูุฃ ูุฃ ูุฃ ุงุณุชูู ุดูู ุจุฏูุง ูุบูุฑูุง ูู ุฌูุช ููู ูุงุญุฏ |
|
|
|
279 |
|
00:30:23,010 --> 00:30:30,790 |
|
ูุฒูุฑู ูุฒูุฑู ููุงุญุฏ ููุงุญุฏ ููุงุญุฏ ุงูุดูู ุงููู ุนูุฏูุง |
|
|
|
280 |
|
00:30:30,790 --> 00:30:38,370 |
|
ููุฌู ูุดูู ูู ูุฐู ุชุณุงูู ุฃู ูุงุญุฏุฉ ู
ู ูุฏูู ููุง ูุฃ ูุฃ |
|
|
|
281 |
|
00:30:38,370 --> 00:30:42,970 |
|
ูู ุฌูุช ููุฐู ุฎูุตูุง ู
ููุง Zero ูุงุชููู ูุนูู Zero Zero |
|
|
|
282 |
|
00:30:42,970 --> 00:30:49,360 |
|
Zero ูุงุญุฏุฉ ูุฐู ู
ุง ููุด ุฅูุง ุนูุตุฑูู ูููุง ุทูุจ ูุฐู ุจุฑุถู |
|
|
|
283 |
|
00:30:49,360 --> 00:30:57,140 |
|
ูุฐูู ู
ุง ููุด ูููุง ุฅูุง ุฒุช ุงุชููู ุจุฑุถู ุนูุตุฑูู ุทูุจ ูุฐู |
|
|
|
284 |
|
00:30:57,140 --> 00:31:02,130 |
|
ุงููู ูู ุฒุช ุงุชููู ู
ุน ุฒุช ุงุชููู ุงููุซูุฑ ุงููู ุจููุจุฑู ูู |
|
|
|
285 |
|
00:31:02,130 --> 00:31:07,050 |
|
ุงูู Z ุฃุฑุจุนุฉ ุงููู ูู ุจุงูู identity Zero ูุจุนุฏูู ุงุชููู |
|
|
|
286 |
|
00:31:07,050 --> 00:31:12,130 |
|
ุจุณ ุนูุตุฑูู ู
ุน ุนูุตุฑูู ุฃุฑุจุนุฉ ุนูุงุตุฑ ุงููู ูู
ู
ูู ุงููู ูู
|
|
|
|
287 |
|
00:31:12,130 --> 00:31:21,090 |
|
Zero ู Zero Zero ู ูุงุญุฏ ูุจุนุฏูุง ุจูุฌููู ุงุชููู ุงุชููู |
|
|
|
288 |
|
00:31:21,090 --> 00:31:27,180 |
|
ู
ุด ู
ู ูุฏูู ูุจูู ููุณุช ูุฐู ูุงูู Z ุฃุฑุจุนุฉ ูููุง ุฃุฑุจุนุฉ |
|
|
|
289 |
|
00:31:27,180 --> 00:31:31,720 |
|
ุนูุงุตุฑ ุทุจุนุง ู
ุด ูุงุฏู ูุงูู Z ุฃุฑุจุนุฉ ู
ุน Z two ุทุจุนุง |
|
|
|
290 |
|
00:31:31,720 --> 00:31:36,140 |
|
ู
ุงููุงุด ูุงุฏู ูุจูู ูุฐู ููุณุช ููุง ูุงุญุฏุฉ ู
ู ูุฏูู ุงููู |
|
|
|
291 |
|
00:31:36,140 --> 00:31:41,120 |
|
ุนูุฏูุง ูุจูู ูุฐู ูู ุงูู sub group ุงูู
ุทููุจุฉ ููู ููุณุช |
|
|
|
292 |
|
00:31:41,120 --> 00:31:43,660 |
|
ุฃู ูุงุญุฏุฉ ู
ู ุงูุณุช ุงูุฃูููู ุฃููุฉ |
|
|
|
293 |
|
00:31:49,130 --> 00:31:54,590 |
|
ูู ุจุฏู subgroup ู
ู ูุฏูู ุจููุณ ุงูุทุฑููุฉ ูุฐู ุจูุตุฉ |
|
|
|
294 |
|
00:31:54,590 --> 00:31:59,850 |
|
ุจุชุทููุ ููุดุ ุฅูู ุนูุฏู ุนูุงุตุฑ ูุซูุฑุ ุฃุฑุจุนูู ูู ุชูุงุชููุ |
|
|
|
295 |
|
00:31:59,850 --> 00:32:04,850 |
|
ุฃูู ูู
ูุชูู ุนูุตุฑุ ู
ุด ุณููุฉุ ุจุณ ุฏูู ุชู
ุงู ุนูุงุตุฑ ู
ุด |
|
|
|
296 |
|
00:32:04,850 --> 00:32:08,890 |
|
ูุซูุฑุ ุชู
ุงููุฉ ุฒู ุฃูู ูู
ูุชููุ ูู ุงูุณูู ุงููู ูู ู
ุญู |
|
|
|
297 |
|
00:32:08,890 --> 00:32:12,690 |
|
ููู
ู
ู ุงูุฅุนุฑุงุจุ ุงูู ูุนู
ุ ูุฐุง ุจุฒูุฌุ ุจุตุฏู |
|
|
|
298 |
|
00:32:17,470 --> 00:32:27,870 |
|
ุฃูุง ู
ู
ุชุงุฒ ุทุจ ุดูู ุงููุฏู |
|
|
|
299 |
|
00:32:27,870 --> 00:32:32,630 |
|
ู
ู ุฐูู ุงููุฏู ู
ู ุฐูู ุฃู ุฃูุช ู
ุง ุชูููุด ุนููู ุงูุดูู ูุฐุง |
|
|
|
300 |
|
00:32:32,630 --> 00:32:37,490 |
|
ูู ุงูุฃุดูุงู ูููุง ูุชุจูุงูุง ุจุฏู ุชุฌูุจ ุฃู subgroup ุชููู |
|
|
|
301 |
|
00:32:37,490 --> 00:32:42,490 |
|
ุชุณุชุจุนุฏ ู
ููุง ูุฐู ุงูุฃุดูุงู ุทุจุนุง ุงูู subgroup ูุงู order |
|
|
|
302 |
|
00:32:42,490 --> 00:32:47,530 |
|
ุฅูุง ูุงุญุฏ ูุง ุงุชูููุ ูุง ุฃุฑุจุนุฉุ ูุง ุชู
ุงููุฉุ ูุฃูู ุฒุฏ |
|
|
|
303 |
|
00:32:47,530 --> 00:32:51,950 |
|
ุฃุฑุจุนุฉ ูุณููุงุช ุจุชู
ุงู ุนูุงุตุฑุ ู
ุธุจูุทุ ูุจูู ุจุฏู ุชุฌูุจ ูู |
|
|
|
304 |
|
00:32:51,950 --> 00:32:57,210 |
|
ูุงุญุฏุฉ ู
ู ูุฏููุ ุฃู ูุนู
ุ ูู ุจุฏู ุชุณุงู
ุฏ ุงูุขู ุงููู ูู |
|
|
|
305 |
|
00:32:57,210 --> 00:33:02,370 |
|
ุงูู order ุงููู ูู ุณูู ุชู
ุงููุฉุ ููุดุ ูุฃู ูู ูููุ |
|
|
|
306 |
|
00:33:02,370 --> 00:33:06,630 |
|
ูุจูู ุตู ุนูู ุดุฌุฑุฉุ ุจุฏู ุชุฌู ูุงุญุฏ ุฃู ุงุชููู ุฃู ุฃุฑุจุนุ |
|
|
|
307 |
|
00:33:06,630 --> 00:33:11,430 |
|
ุงูู order ุงููู ูู ูุงุญุฏ ูููุง ูุจูู ุตู ุนูู ุดุฌุฑุฉ ูุจูู ุจุถู |
|
|
|
308 |
|
00:33:11,430 --> 00:33:14,710 |
|
ุงุชููู ูุงูุงุฑุจุนุฉ ุงุชููู ูุงู ูุงู ุจุถูุด ุฅูุง ุงูุงุฑุจุนุฉ |
|
|
|
309 |
|
00:33:14,710 --> 00:33:20,150 |
|
ุนูุงุตุฑ ูุจูู ุฅุฌุจุงุฑู ุฅููุง ุฃููุฉ ูุฐู ู
ุด ู
ุบููุฉ |
|
|
|
310 |
|
00:33:23,720 --> 00:33:27,000 |
|
ูู ุนู
ูุช ุงูุนูุตุฑ ุงูุซุงูู ู
ุน ุงูุนูุตุฑ ุงูุฃุฎูุฑ ูุชุจูู ูู |
|
|
|
311 |
|
00:33:27,000 --> 00:33:34,560 |
|
ุงุชููู ูุงุญุฏ ุงูุนูุตุฑ ุงูุซุงูู ู
ุน ุงูุฃุฎูุฑ ูุจูู ูุฐุง ุทุจุนุง |
|
|
|
312 |
|
00:33:34,560 --> 00:33:39,960 |
|
ุงูุฃู
ูุงูู ุงููู ุงุชุฌู
ุน ูุจูู ุจุตูุฑ ุงุชููู ูุงุญุฏ ุงุณุชูู |
|
|
|
313 |
|
00:33:39,960 --> 00:33:45,400 |
|
ุดููุฉ ูุฐุง ุทุจ ูู ููุช ูุฐู ุงุชููู.. ูุฃ ูู ููุช ูุฐู |
|
|
|
314 |
|
00:33:45,400 --> 00:33:51,400 |
|
ุงุชููู ูุงุญุฏ ุงูุชุงููุฉ ุทุจ |
|
|
|
315 |
|
00:33:51,400 --> 00:33:58,760 |
|
ุงุณุชูู ูุดูู ูุฐู ุงูุขู ูุงุญุฏ ู ุงุชููู ุจูุตูุฑ ุชูุงุชุฉ ู
ูุฌูุฏุฉ |
|
|
|
316 |
|
00:33:58,760 --> 00:34:04,200 |
|
ุชูุงุชุฉ ู ูุงุญุฏ ู
ุด ู
ุดููุฉ ูู
ุงู ู
ุฑุฉ ุงู ูุฐู ุจูุตูุฑ ุงููุง |
|
|
|
317 |
|
00:34:04,200 --> 00:34:13,600 |
|
ุงุชููู ู ููุช ูุฐู ุงู ุงูุด ูุฐูุ ุงุชููู ู ุตูุฑ ูุนูุง ุดูู ุทุจ |
|
|
|
318 |
|
00:34:13,600 --> 00:34:19,180 |
|
ุงุชููู ุชุฑุจูุน ุจุตูุฑ ุฃุฑุจุนุฉ ู ุฒูุฑู ู
ูุฌูุฏุฉ ุงุชููู ู ุงุชููู |
|
|
|
319 |
|
00:34:19,180 --> 00:34:25,340 |
|
ุงููู ูู ุจุตูุฑ ุฒูุฑู ูุงุญุฏ ุฒูุฑู ูุงุญุฏ ู
ูุฌูุฏ ุตุญูุญ ููุฐุง |
|
|
|
320 |
|
00:34:25,340 --> 00:34:29,260 |
|
ูู ุจุฏูุง ูุฑุจุนูุง ุจุตูุฑ ุฃุฑุจุนุฉ ู ุงุชููู ุฒูุฑู ุฒูุฑู ู
ุธุจูุท |
|
|
|
321 |
|
00:34:29,260 --> 00:34:36,500 |
|
ุตุญูุญ ุงูุด ุชูุงุชุฉ ู ูุงุญุฏ ูุฃ ูุฃ ู
ุงุดู ููู ู
ุงุดู ู
ูุจูู |
|
|
|
322 |
|
00:34:36,500 --> 00:34:41,880 |
|
ูุตุญูุญ ููู |
|
|
|
323 |
|
00:34:41,880 --> 00:34:47,260 |
|
ุตูุฑ ู ูุงุญุฏุ ุถุฑุจ ุงุชููู ู ูุงุญุฏ ููุง ุฌุงู
ุนุฉ ุฌุงู
ุนุฉ ู
ุด |
|
|
|
324 |
|
00:34:47,260 --> 00:34:51,380 |
|
ุถุงุฑุจุฉ ุงู ุงู ุงูุตูุฑ ูู ู
ูุฌูุฏ ุงู ุงูู operation ุนูููุง |
|
|
|
325 |
|
00:34:51,380 --> 00:34:59,970 |
|
ุนู
ููุฉ ุฌุงู
ุนุฉ ููู ูุฏู ุทูุจ ูุฐุง ุณุคุงู ุณุชุฉ ู ุนุดุฑูู ุฎุฏู |
|
|
|
326 |
|
00:34:59,970 --> 00:35:05,470 |
|
ุณุคุงู 28 ุจูููู ูู ูุงุช ูู ูู ุงูู subgroups ุงููู ุงูู order |
|
|
|
327 |
|
00:35:05,470 --> 00:35:12,450 |
|
ุฅููุง 4 ูู z 4 external direct product ู
ุน z 4 ูุจูู |
|
|
|
328 |
|
00:35:12,450 --> 00:35:23,690 |
|
ุณุคุงู 28 28 ุจูููู ูู find all subgroups ุจุฏูุง ุงูู all |
|
|
|
329 |
|
00:35:23,690 --> 00:35:25,970 |
|
subgroups |
|
|
|
330 |
|
00:35:28,190 --> 00:35:38,450 |
|
of order ุฃุฑุจุนุฉ in z ุฃุฑุจุนุฉ external product ู
ุน z |
|
|
|
331 |
|
00:35:38,450 --> 00:35:39,030 |
|
ุฃุฑุจุนุฉ |
|
|
|
332 |
|
00:35:41,620 --> 00:35:45,240 |
|
ุณุคุงู ู
ุฑุฉ ุซุงููุฉ ุฒุฏ ุฃุฑุจุนุฉ ูุชูุฑ ูุถุงูู ุงูู product ู
ุน |
|
|
|
333 |
|
00:35:45,240 --> 00:35:50,940 |
|
ุฒุฏ ุฃุฑุจุนุฉ ูููุง ุณุชุฉ ุนุดุฑ ุนูุตุฑุ ู
ุธุจูุทุ ุงูุขู ุจุฏู ูู ุงูู |
|
|
|
334 |
|
00:35:50,940 --> 00:35:54,520 |
|
sub groups ุงููู ุงูู order ุงููู ููู
ูุณุงูู ุฃุฑุจุนุฉ |
|
|
|
335 |
|
00:35:54,520 --> 00:36:01,040 |
|
ุชุนุงูู ูููุฑ ุงุญูุง ูุฅูุงูู
ุชูููุฑ ุจูุฐุง ุงูุดูู ุงูุขู ูู |
|
|
|
336 |
|
00:36:01,040 --> 00:36:08,500 |
|
ุฌูุช ููุนูุตุฑ ุงููู ูู ูุงุญุฏ ู zero ูุฏุงุด ุงูู order ููุ |
|
|
|
337 |
|
00:36:12,150 --> 00:36:17,190 |
|
ุฃุฑุจุนุฉ ูุจูู ูุฐุง ุจูููุฏ ูู ุงูู sub group ุงูู order ุฅููุง |
|
|
|
338 |
|
00:36:17,190 --> 00:36:24,710 |
|
ูุณุงูู ุฃุฑุจุนุฉ ุทูุจ ูู ุฌูุช ูู zero ู ูุงุญุฏ ุฃุฑุจุนุฉ ูุจูู |
|
|
|
339 |
|
00:36:24,710 --> 00:36:32,030 |
|
ุจุงูุดูู ุงููู ุนูุฏูุง ููุง ุทูุจ ูู ุฌูุช ูู
ูู ูู ุงูู ูุงุญุฏ ู |
|
|
|
340 |
|
00:36:32,030 --> 00:36:39,710 |
|
ูุงุญุฏ ุฃุฑุจุนุฉ subgroup generated by ูุงุญุฏ ููุงุญุฏ ุฃุฑุจุนุฉ |
|
|
|
341 |
|
00:36:39,710 --> 00:36:44,290 |
|
ุทุจ ูู ููุช ูู subgroup generated by ูุงุญุฏ ูุงุชููู |
|
|
|
342 |
|
00:36:44,290 --> 00:36:47,950 |
|
ุฃุฑุจุนุฉ |
|
|
|
343 |
|
00:36:47,950 --> 00:36:54,390 |
|
ุทุจ ูู ููุช ูู subgroup generated by ุงุชููู ููุงุญุฏ |
|
|
|
344 |
|
00:36:54,390 --> 00:36:55,370 |
|
ุฃุฑุจุนุฉ |
|
|
|
345 |
|
00:36:58,860 --> 00:37:06,840 |
|
ุทุจ ูู ููุช ูู subgroup generated by ูุงุญุฏ ู ุชูุงุชุฉ |
|
|
|
346 |
|
00:37:06,840 --> 00:37:15,150 |
|
ุทูุจ ูู ููุช ูู subgroup generated by ุชูุงุชุฉ ู ูุงุญุฏ ู |
|
|
|
347 |
|
00:37:15,150 --> 00:37:18,010 |
|
ููุณ ุงูู group ุฒุฏ ุฃุฑุจุน ุฒุฏ ุฃุฑุจุน ูู ููุณูุง ุงููู ุจุณูู |
|
|
|
348 |
|
00:37:18,010 --> 00:37:23,530 |
|
ุงูุนู
ููุฉ ุฃู ูุนู
ุฌุฏุงุด ุตุงุฑูุง ูุฏูู ุงุชููู ุฃุฑุจุน ุฎู
ุณุฉ ู |
|
|
|
349 |
|
00:37:23,530 --> 00:37:28,910 |
|
ุงุชููู ุณุจุนุฉ ุทูุจ ุฎุฏ ูู ูุงู group ูุฐู ู
ุด ุฒููู
cyclic |
|
|
|
350 |
|
00:37:28,910 --> 00:37:35,170 |
|
ุนุงุฏู ุฒู ู
ุง ุฌูุจูุง ูุฐู ูู ุฌูุช ููุช ูู zero ู zero ู |
|
|
|
351 |
|
00:37:35,170 --> 00:37:41,510 |
|
zero ู ุงุชููู ู ุงุชููู ู zero ู ุงุชููู ู ุงุชููู ุชุนุงู |
|
|
|
352 |
|
00:37:41,510 --> 00:37:45,370 |
|
ูู ุงูุฃูู ูุดูููุง subgroup ููุง ูุฃ ุทุจุน ุงูู order ุงููู |
|
|
|
353 |
|
00:37:45,370 --> 00:37:51,150 |
|
ูููุง ูุณุงูู ุฃุฑุจุนุฉ ุชู
ุงู
ูู ุฌุงุชู ููุฐู ุงุชููู ู ุงุชููู |
|
|
|
354 |
|
00:37:51,150 --> 00:37:58,190 |
|
ุฌู
ุนูุง ุจุตูุฑ ูุฏู ุงุชููู ู ุงุชููู ูุฑุจุนูุง ูุนูู ูู ุจุชุถุฑุจ |
|
|
|
355 |
|
00:37:58,190 --> 00:38:04,450 |
|
ุงูุนูุตุฑ ูู ููุณู ูุจูู ุจูุทูุน 00 ูู ู
ูุฌูุฏ ุทุจุนุง ุทุจ ูู |
|
|
|
356 |
|
00:38:04,450 --> 00:38:10,590 |
|
ูุฐุง ู
ุน ูุฐุง ุจุตูุฑ ุงูู zero ู ุฃุฑุจุนุฉ ูุนูู ุงุชููู ู zero |
|
|
|
357 |
|
00:38:10,590 --> 00:38:17,320 |
|
ุงุชููู ู zero ูู ู
ูุฌูุฏ ุชู
ุงู
ุ ูู ุฌูุช ููุช ูู zero ู |
|
|
|
358 |
|
00:38:17,320 --> 00:38:21,400 |
|
ุงุชููู ุฃู ุงุชููู ุฃู ุฒูุฑู ูู ูุฐุง ูุชูุงูู ู
ูุฌูุฏ ุชู
ุงู
ุ |
|
|
|
359 |
|
00:38:21,400 --> 00:38:24,640 |
|
ุทุจ ูู ูุฏู ุถุฑุจุช ุจููุณู ุฃุฑุจุนุฉ ู ุฃุฑุจุนุฉ ูู zero ู zero |
|
|
|
360 |
|
00:38:24,640 --> 00:38:29,360 |
|
ูุจูู ูู ุงูู sub group ุนูู ุทูู ุงูุฎุท ููู ูุฏู ู
ุด ุฒููู
|
|
|
|
361 |
|
00:38:29,360 --> 00:38:34,860 |
|
ู
ุงููุงุด cyclic ุชุนุงู ุงู
ุณู ุฃู element ุขุฎุฑ ุงููู ูู
ูู |
|
|
|
362 |
|
00:38:34,860 --> 00:38:39,370 |
|
ุชูุงูู ูุฌูุจู ุงูู ุงุด ุฃุฑุจุน ุนูุงุธุฑ ูู
ุซูุง ูุงุช ูู ุฃู |
|
|
|
363 |
|
00:38:39,370 --> 00:38:43,330 |
|
element ุบูุฑ ุงููู ูุฏุงู
ู ูู ุงูู group ูุฐู ูุดูู ููู
|
|
|
|
364 |
|
00:38:43,330 --> 00:38:50,030 |
|
ุนูุตุฑ ุจุฏู ูุฌูุจ ููุง ุงุฎุชุงุฑูุง ุฃู ุฑูู
ุบูุฑ ุงูุงุฑูุงู
ุฃู |
|
|
|
365 |
|
00:38:50,030 --> 00:38:56,070 |
|
ุนูุตุฑ ุบูุฑ ุงูุนูุงุตุฑ ูุฐู ุชูุงุชุฉ ู ุชูุงุชุฉ ู
ูุฌูุฏุฉ ุชูุงุชุฉ ู |
|
|
|
366 |
|
00:38:56,070 --> 00:39:03,230 |
|
ุชูุงุชุฉ ุชุฑุจูุน ูุนูู ุณุชุฉ ู ุณุชุฉ ุฌุงู
ุนุฉ ูุนูู ุณุชุฉ ู ุณุชุฉ |
|
|
|
367 |
|
00:39:03,230 --> 00:39:09,010 |
|
ูุนูู ุงุชููู ู ุงุชููู ุชูุงุชุฉ ู ุชูุงุชุฉ ูุนูุจ ูุนูู ุชุณุนุฉ |
|
|
|
368 |
|
00:39:10,910 --> 00:39:17,470 |
|
ุชุณุนุฉ ู ุชุณุนุฉ ุงููู ูู ูุงุญุฏ ู ูุงุญุฏ ู ูุงุญุฏ ู ูุงุญุฏ ุทูุจ |
|
|
|
369 |
|
00:39:17,470 --> 00:39:25,890 |
|
ูู ุฌูุช ููู ุชูุงุชุฉ ู ุชูุงุชุฉ ูุจูู ุงููู ูู ุชูุงุชุฉ |
|
|
|
370 |
|
00:39:25,890 --> 00:39:28,310 |
|
ู ุฃุฑุจุนุฉ ุงููู ูู ุงูุตูุฑ ู ุงูุตูุฑ ู
ุธุจูุท ุงููู ูู ุงูู |
|
|
|
371 |
|
00:39:28,310 --> 00:39:33,010 |
|
identity ูู
ุงู ูุฐู ู
ููู
ููุง ูุง ุงู ูุฐู ุทูุนุช ูู
ุงู |
|
|
|
372 |
|
00:39:33,010 --> 00:39:39,700 |
|
ู
ููู
ู ูุงู ูู ูู ุงูู sub group ุงููู ุงูู order ุฅููุง ุทุจ |
|
|
|
373 |
|
00:39:39,700 --> 00:39:46,380 |
|
ุงุชููู ู ุงุชููู ู
ุง ูู |
|
|
|
374 |
|
00:39:46,380 --> 00:39:49,860 |
|
ุงูุณูู ุฅูู ุชุญุท ุงูุนูุงุตุฑ ูุฏุงู
ู ู ุชุจุฏุฃ ุชุฏูุฑ ูููู
ููุด |
|
|
|
375 |
|
00:39:49,860 --> 00:39:51,200 |
|
ุดุบูุฉ ู
ุญุฏุฏุฉ |
|
|
|
376 |
|
00:40:00,460 --> 00:40:03,360 |
|
ูุฐู ุงูุฎุทูุฉ ู
ุฎุชููุฉ ุนู ูุฐู ุงูุฎุทูุฉ ููู ุณููุฉ ููุบุงูุฉ |
|
|
|
377 |
|
00:40:03,360 --> 00:40:07,620 |
|
ููู ูุฐู ุงูุฎุทูุฉ ุจุชุฌูุจูุง ู
ู ุฃููุ ุฃูุง ุจุญุท ูุฏุงู
ู ุนูุงุตุฑ |
|
|
|
378 |
|
00:40:07,620 --> 00:40:09,980 |
|
ุงูู group ุงููู ูููุง ุฒู ุฃุฑุจุนุฉ ูุณููุงุช ุฃู ุฃุฑุจุนุฉ ูุณููุงุช |
|
|
|
379 |
|
00:40:09,980 --> 00:40:10,200 |
|
ุฃู ุฃุฑุจุนุฉ ูุณููุงุช ุฃู ุฃุฑุจุนุฉ ูุณููุงุช ุฃู ุฃุฑุจุนุฉ ูุณููุงุช ุฃู |
|
|
|
380 |
|
00:40:10,200 --> 00:40:12,500 |
|
ุฃุฑุจุนุฉ ูุณููุงุช ุฃู ุฃุฑุจุนุฉ ูุณููุงุช ุฃู ุฃุฑุจุนุฉ ูุณููุงุช ุฃู |
|
|
|
381 |
|
00:40:12,500 --> 00:40:12,720 |
|
ุฃุฑุจุนุฉ ูุณููุงุช ุฃู ุฃุฑุจุนุฉ ูุณููุงุช ุฃู ุฃุฑุจุนุฉ ูุณููุงุช ุฃู |
|
|
|
382 |
|
00:40:12,720 --> 00:40:13,140 |
|
ุฃุฑุจุนุฉ ูุณููุงุช ุฃู ุฃุฑุจุนุฉ ูุณููุงุช ุฃู ุฃุฑุจุนุฉ ูุณููุงุช ุฃู |
|
|
|
383 |
|
00:40:13,140 --> 00:40:17,680 |
|
ุฃุฑุจุนุฉ ูุณููุงุช ุฃู ุฃุฑุจุนุฉ |
|
|
|
384 |
|
00:40:17,680 --> 00:40:23,570 |
|
ูุณููุงุช ุฃู ุฃุฑุจุนุฉ ูุงูุญูู ุฏูุช ู
ููุง ูุงูู ุซูุงุซุฉ ูุซูุงุซุฉ |
|
|
|
385 |
|
00:40:23,570 --> 00:40:29,030 |
|
ุงูุขู ูู
ุงู ูุฐู ุซูุงุซุฉ ูุซูุงุซุฉ ูุณููุงูุง ูุจูู ุงูู sub |
|
|
|
386 |
|
00:40:29,030 --> 00:40:33,650 |
|
group generated by ุซูุงุซุฉ ูุซูุงุซุฉ ุทูุจ ูุฃูู ููู |
|
|
|
387 |
|
00:40:33,650 --> 00:40:37,850 |
|
ูุจููุง ูุงุญุฏ ููุงุญุฏ ููู ุงุซููู ูุงุซููู ูุง ุงุซููู ุงูู |
|
|
|
388 |
|
00:40:37,850 --> 00:40:40,770 |
|
order ุฅูููุง ูุณุงูู ุงุซููู ูุจูู ูู ุงูู sub groups |
|
|
|
389 |
|
00:40:40,770 --> 00:40:47,050 |
|
ุงูู
ู
ููุฉ ุงููู ุนูุฏูุง ุทูุจ ูู ุฌุงุก ุตูุฑ ูุซูุงุซุฉ |
|
|
|
390 |
|
00:40:54,230 --> 00:40:59,930 |
|
ุฃู ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ููุด ู
ุง ุชูููุด ู
ููู
ุงูู ุตูุฑ ูุงูุซูุงุซุฉ |
|
|
|
391 |
|
00:40:59,930 --> 00:41:05,650 |
|
ูุงูุซูุงุซุฉ ูุตูุฑ ูู
ุงู ุฃู ุญุท ุนูููู
ุงูู ุตูุฑ ู |
|
|
|
392 |
|
00:41:05,650 --> 00:41:13,310 |
|
ุงูุซูุงุซุฉ and ุซูุงุซุฉ ูุตูุฑ ุทุจ ููุด ุงุฎุชุงุฑุช ุซูุงุซุฉ |
|
|
|
393 |
|
00:41:13,310 --> 00:41:17,310 |
|
ููุด ู
ุง ุงุฎุชุงุฑุช ุงุซููู ูุฃู ุซูุงุซุฉ ูุงููุงุญุฏ ูุฏูู |
|
|
|
394 |
|
00:41:17,310 --> 00:41:24,600 |
|
relatively prime ู
ุน ุงูู main ู
ุน ุงููู ูู ุฃุฑุจุนุฉ ูุจูู ูุฏูู |
|
|
|
395 |
|
00:41:24,600 --> 00:41:29,020 |
|
ูููู
ุงุด ู
ุง ุชุงุฎุฏ ุตูุฑ ูุงุญุฏ ููุงุญุฏ ูุตูุฑ ุฃุฎุฏูุงู ู
ุด |
|
|
|
396 |
|
00:41:29,020 --> 00:41:32,440 |
|
ููู ูุงู ุฃูู ู
ุจุงุฏุฆูุง ูููู
ูุจูู ู
ุง ููุด ู
ุดููุฉ ููู |
|
|
|
397 |
|
00:41:32,440 --> 00:41:36,700 |
|
ุจูููู ุฎูุตูุง ูู ุงููู ูู ุงูู subgroups ุงููู ุงูู order |
|
|
|
398 |
|
00:41:36,700 --> 00:41:40,480 |
|
ุงููู ูุณุงูู ุฃุฑุจุนุฉ ูู ุงูู group ุงููู ุนูุฏูุง |
|
|
|
399 |
|
00:41:51,560 --> 00:41:57,420 |
|
ุทูุจ ูุฐุง ุณุคุงู ุซู
ุงููุฉ ูุนุดุฑูู ุณุคุงู ุงุซููู ูุซูุงุซูู |
|
|
|
400 |
|
00:41:57,420 --> 00:42:04,380 |
|
find a subgroup ู
ู z12, z4, z15 ุงูู order ููุง ูุณุงูู |
|
|
|
401 |
|
00:42:04,380 --> 00:42:17,760 |
|
ุชุณุนุฉ ูุจูู ุณุคุงู ุงุซููู ูุซูุงุซูู ุจุฏูุง subgroup of z12 |
|
|
|
402 |
|
00:42:19,790 --> 00:42:25,210 |
|
External Direct Product ู
ุน ุฒุฏ ุฃุฑุจุนุฉ External |
|
|
|
403 |
|
00:42:25,210 --> 00:42:31,710 |
|
Direct Product ู
ุน ุฒุฏ ุฎู
ุณุฉ ุนุดุฑ |
|
|
|
404 |
|
00:42:31,710 --> 00:42:38,590 |
|
that has order |
|
|
|
405 |
|
00:42:38,590 --> 00:42:48,190 |
|
ุชุณุนุฉ ุฎูู |
|
|
|
406 |
|
00:42:48,190 --> 00:42:52,930 |
|
ุจุงูู ููุง ูููุณ ุฎูููู ุฃุณุฃููู
ุณุคุงู ุซุงููุ ูู ูู |
|
|
|
407 |
|
00:42:52,930 --> 00:42:58,470 |
|
element ููุง ุงูู order ุฅูู ุงููู ุจูุณุงูู ุชุณุนุฉุ ููุง ุจุฏู |
|
|
|
408 |
|
00:42:58,470 --> 00:43:02,850 |
|
ุฃุดููุ ุฃูุง ุจุญูู ุนููู ูุงุฏู ุจุณุ ูุฃู ุชุณุนุฉ ุฏูููุฉ ู
ุด |
|
|
|
409 |
|
00:43:02,850 --> 00:43:07,200 |
|
ุงุซูุงุด ููุง element ููุง ุงูู order ูุณุงูู ุชุณุนุฉ ููุง |
|
|
|
410 |
|
00:43:07,200 --> 00:43:11,520 |
|
element ููุง ุงูู order ูุณุงูู ุชุณุนุฉ ูุจูู ู
ุง ุนูุฏูุด ููุง |
|
|
|
411 |
|
00:43:11,520 --> 00:43:15,920 |
|
element ุงูู order ูุณุงูู ุชุณุนุฉ ูู ุฃู ู
ู ุงูู group |
|
|
|
412 |
|
00:43:15,920 --> 00:43:20,920 |
|
ุงูู
ููุฑุฏุงุช ุงูุซูุงุซุฉ ุงููู ุนูุฏูุง ูุฐู ุทูุจ ุฃูุง ู
ุด ููุฌูุจ |
|
|
|
413 |
|
00:43:20,920 --> 00:43:25,300 |
|
ุงูู order ุชุณุนุฉ ู
ุด ููุฌูุจ ุงูู order ุชุณุนุฉ ุชุจุน ูุฐู ุงูู |
|
|
|
414 |
|
00:43:25,300 --> 00:43:33,410 |
|
sub group ุจุฏู ูููู ุนูุฏู ูุฏูู ุซูุงุซุฉ ุซูุงุซุฉ ุฃู ุซูุงุซุฉ |
|
|
|
415 |
|
00:43:33,410 --> 00:43:35,850 |
|
ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู |
|
|
|
416 |
|
00:43:35,850 --> 00:43:39,370 |
|
ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ |
|
|
|
417 |
|
00:43:39,370 --> 00:43:42,410 |
|
ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู |
|
|
|
418 |
|
00:43:42,410 --> 00:43:43,570 |
|
ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ |
|
|
|
419 |
|
00:43:43,570 --> 00:43:44,930 |
|
ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู |
|
|
|
420 |
|
00:43:44,930 --> 00:43:53,390 |
|
ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ุฃู |
|
|
|
421 |
|
00:43:53,390 --> 00:43:56,850 |
|
ุซูุงุซุฉ |
|
|
|
422 |
|
00:43:57,140 --> 00:44:01,440 |
|
ูู ุฃุฎุฏุช group ุงูู order ุฅููุง ุซูุงุซุฉ ููุงุญุฏุฉ ุงูู order |
|
|
|
423 |
|
00:44:01,440 --> 00:44:05,140 |
|
ุฅููุง ูุงุญุฏ ููุงุญุฏุฉ ุงูู order ุฅููุง ุซูุงุซุฉ ุจูุตูุฑ ุนูุฏู |
|
|
|
424 |
|
00:44:05,140 --> 00:44:12,590 |
|
ูุฏ ุงูุด ุงูู order ููู external product ุชุณุนุฉ ุงูู order |
|
|
|
425 |
|
00:44:12,590 --> 00:44:17,110 |
|
ููู group ูููุง ุจุตูุฑ ุชุณุนุฉ ู
ุด ุจุงุฎุฏุด elements ุจุงุฎุฏ |
|
|
|
426 |
|
00:44:17,110 --> 00:44:21,150 |
|
group ูุงู
ูุฉ ุงูู order ููุง ุซูุงุซุฉ ุฃู sub group ุชู
ุงู
|
|
|
|
427 |
|
00:44:21,150 --> 00:44:27,370 |
|
ูุนูู ุจูุงุก ุนููู ูุง ูู
ูู ุฃูุงูู sub group ู
ู ุงูู |
|
|
|
428 |
|
00:44:27,370 --> 00:44:32,150 |
|
groups ูุฏูู ุงูู order ููุง ูุณุงูู ุชุณุนุฉ ู
ุด ุฅู
ูุงููุฉ ููู |
|
|
|
429 |
|
00:44:32,150 --> 00:44:36,750 |
|
ุจูุนู
ู ุนู
ููุฉ ุชุญุงูู ุจุงูุฏุงุฌุฉ ุงูุฃููู ุจุฏู ุฃุฎุฏ ู
ููุง ุงูู |
|
|
|
430 |
|
00:44:36,750 --> 00:44:41,020 |
|
sub group ุงูู order ููุง ูุณุงูู ุซูุงุซุฉ ูู
ู ุงูุซุงููุฉ ุงูู |
|
|
|
431 |
|
00:44:41,020 --> 00:44:45,020 |
|
subgroup ุงูู order ุฅููุง ูุณุงูู ุซูุงุซุฉ ุฃู ุซูุงุซุฉ ูู ุดูุก |
|
|
|
432 |
|
00:44:45,020 --> 00:44:48,760 |
|
ู
ู
ูู ูููู ูุงุญุฏ ู
ุซูุง ูุงูุซุงูุซุฉ ุจุชุงุฎุฏ subgroup ุงูู |
|
|
|
433 |
|
00:44:48,760 --> 00:44:51,760 |
|
order ุฅููุง ูุณุงูู ุซูุงุซุฉ ูุจูู ุฏูู ูู ุถุฑุจุชูุง ู
ููู |
|
|
|
434 |
|
00:44:51,760 --> 00:44:57,300 |
|
ุฌุฏูุด ุชุณุนุฉ ุชูุฏุฑ ุชุฌูุจ ุฃู ุจูุฏุฑ ููุด ูุฃู ุฒุฏ ุงุซูุงุด ูุฒุฏ |
|
|
|
435 |
|
00:44:57,300 --> 00:45:01,820 |
|
ุฃุฑุจุนุฉ ูุฒุฏ ุฎู
ุณุฉ ุนุดุฑ ูููู
cyclic group ููู ูุธุฑูุฉ ูุงูุช ูู |
|
|
|
436 |
|
00:45:01,820 --> 00:45:06,840 |
|
chapter ุฃุฑุจุนุฉ ุจุชูููู ุฃู subgroup ู
ู cyclic group |
|
|
|
437 |
|
00:45:06,840 --> 00:45:11,380 |
|
ุจุชููู cyclic ุชู
ุงู
ุจุงุฌู ุจูููู ูููุณุฉ ุงูุขู ูู ุฌูุช |
|
|
|
438 |
|
00:45:11,380 --> 00:45:26,980 |
|
ุฃุฎุทุท ุงูู HBA subgroup of Z12 with order ู
ุซูุง with |
|
|
|
439 |
|
00:45:26,980 --> 00:45:39,970 |
|
order ุซูุงุซุฉ and k is a subgroup ู
ู z4 with order |
|
|
|
440 |
|
00:45:39,970 --> 00:45:49,510 |
|
ูุงุญุฏ ูุงูู |
|
|
|
441 |
|
00:45:49,510 --> 00:45:59,370 |
|
subgroup ู
ู z15 with order ูุงุญุฏ ุซูุงุซุฉ ุทุจุนุง ููู ู
ู
ูู |
|
|
|
442 |
|
00:45:59,370 --> 00:46:04,030 |
|
ูุฃู ุซูุงุซุฉ ุจุชุฌุณู
ุงูุฎู
ุณุฉ ุนุดุฑ ูุงููุงุญุฏ ุจูุฌุณู
ุงูุฃุฑุจุนุฉ |
|
|
|
443 |
|
00:46:04,030 --> 00:46:11,990 |
|
ูุซูุงุซุฉ ุจุชุฌุณู
ุงูุงุซูุงุด ูุนูู for example for |
|
|
|
444 |
|
00:46:11,990 --> 00:46:17,190 |
|
example ุงูู |
|
|
|
445 |
|
00:46:17,190 --> 00:46:21,450 |
|
group generated by ุฃุฑุจุนุฉ ุงูู order ุงููู ูุฏ ุงูุด ูุณุงูู |
|
|
|
446 |
|
00:46:21,450 --> 00:46:21,810 |
|
ููุง |
|
|
|
447 |
|
00:46:24,580 --> 00:46:30,860 |
|
ุซูุงุซุฉ ุชู
ุงู
ูุงู ููุด ุฃุฑุจุนุฉ ุงูู ุตูุฑ ุฃุฑุจุนุฉ ุซู
ุงููุฉ ูุจูู |
|
|
|
448 |
|
00:46:30,860 --> 00:46:37,000 |
|
ุงูู order ููุง ุชุณุงูู ุซูุงุซุฉ ูุงูู ุตูุฑ ุงูู order ูู |
|
|
|
449 |
|
00:46:37,000 --> 00:46:43,230 |
|
ูุณุงูู ูุฏู ุงูุด ูุงุญุฏ ู
ู ุงูุซุงููุฉ ูุฐู ูุงูุซุงูุซุฉ ุจุฏุงุฎู ู
ู |
|
|
|
450 |
|
00:46:43,230 --> 00:46:48,510 |
|
ุฎู
ุณุฉ ุนุดุฑ ุจุฏุงุฎู ุงูู group generated by ุฎู
ุณุฉ ุงูู order |
|
|
|
451 |
|
00:46:48,510 --> 00:46:54,250 |
|
ูู
ุงู ูุณุงูู ูู
ุ ูุณุงูู ุซูุงุซุฉ ูุจูู ุงูู order ูุณุงูู |
|
|
|
452 |
|
00:46:54,250 --> 00:46:58,670 |
|
ุซูุงุซุฉ ุจุงูุดูู ุงููู ุนูุฏูุง ููุง ูุจูู ุงูู least ูุจูู ุงูู |
|
|
|
453 |
|
00:46:58,670 --> 00:47:04,610 |
|
order ููู external direct product ุงูู order ููู |
|
|
|
454 |
|
00:47:04,610 --> 00:47:13,540 |
|
external direct product ู
ุน ู
ูุ ู
ุน ุงูู ุตูุฑ ู
ุน ู
ูุ |
|
|
|
455 |
|
00:47:13,540 --> 00:47:18,280 |
|
ู
ุน ุงูู subgroup generated by ุฎู
ุณุฉ ุงูู order ููุง |
|
|
|
456 |
|
00:47:18,280 --> 00:47:23,140 |
|
ูุณุงูู ุงูู order ููู subgroup generated by ุฃุฑุจุนุฉ ูู
ู |
|
|
|
457 |
|
00:47:23,140 --> 00:47:28,100 |
|
ุงูู order ูู ุงูู ุตูุฑ ูู ุงูู order ููู subgroup |
|
|
|
458 |
|
00:47:28,100 --> 00:47:34,100 |
|
generated by ุฎู
ุณุฉ ููุณุงูู ุซูุงุซุฉ ูู ูุงุญุฏ ูู ุซูุงุซุฉ ู |
|
|
|
459 |
|
00:47:34,100 --> 00:47:38,660 |
|
ูุณุงูู ุชุณุนุฉ ูุจูู ูู ุฌุจุชูู subgroup ู
ู ุงูู group |
|
|
|
460 |
|
00:47:38,660 --> 00:47:44,260 |
|
ุงูุฃุตููุฉ ุงูู order ุฅููุง ูุณุงูู ุชุณุนุฉ ูุงู ูุฐุง ุณุคุงู |
|
|
|
461 |
|
00:47:44,260 --> 00:47:46,360 |
|
ุงุซููู ูุซูุงุซูู |
|
|