abdullah's picture
Add files using upload-large-folder tool
9fbc638 verified
raw
history blame
40.5 kB
1
00:00:22,140 --> 00:00:26,780
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุฃุนุทูŠู†ุง
2
00:00:26,780 --> 00:00:31,760
ุณุงุนุชูŠู† ููŠู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ chapter 7 ุงู„ู„ูŠ ุจุชุญุฏุซ ุนู†
3
00:00:31,760 --> 00:00:38,300
Cosets and Lagrange theoremุŒ ูˆ ุนุฑูู†ุง ุงู„ู€ coset ูˆ
4
00:00:38,300 --> 00:00:42,520
ุญุณุจู†ุง ุงู„ู€ cosets ู„ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ู€ subgroups ูŠุนู†ูŠ
5
00:00:42,520 --> 00:00:47,080
ุฃุนุทูŠู†ุง ุจุฏู„ ุงู„ู…ุซุงู„ ุซู„ุงุซุฉ ุซู… ุงู†ุชู‚ู„ู†ุง ุจุนุฏ ุฐู„ูƒ ุฅู„ู‰
6
00:00:47,080 --> 00:00:51,500
Lagrange theorem ูˆู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ููŠ ุงู„ุฌุจุฑ ู…ุดู‡ูˆุฑุฉ ููŠ
7
00:00:51,500 --> 00:00:56,980
ูƒู„ ูƒุชุจ ุงู„ุฌุจุฑ ู†ุธุฑูŠุฉ
8
00:00:56,980 --> 00:01:00,320
Lagrange ู…ุง ุจุนุฑู ุฅูŠุด ูƒุงู† ู†ุต ุงู„ู„ูŠ ู‚ุงุนุฏ ุจูŠู‚ุฑุง ู‡ุฐุง
9
00:01:00,320 --> 00:01:04,450
ุฅูŠุด ูƒุงู† ู†ุต Lagrange theorem ูŠุนู†ูŠุŸ ุทุจุนุง ุฌู‰ finite
10
00:01:04,450 --> 00:01:10,310
group ู‡ุฐู‡ ุงู„ุจุฏุงูŠุฉ ูˆุจุนุฏู‡ุง ุจุตุฑุดูˆ ุงู‡
11
00:01:10,310 --> 00:01:13,570
ุงุดุชุฑ
12
00:01:13,570 --> 00:01:23,130
ู†ุธุฑูŠุฉ ู„ุงุฌุฑุงู†ุฌ ุฅูŠุด ูƒุงู† ู†ุตู†ุง ุทุฑูŠู‚ุฉ LagrangeุŸ ู‡ุงูŠ
13
00:01:23,130 --> 00:01:27,570
ุจุฏุฑ ุฃุถุงุฆู„ูƒูˆุง ูŠุนู†ูŠ ุงู„ุทุฑูŠู‚ุฉ Lagrange theorem ุจูŠู‚ูˆู„
14
00:01:27,570 --> 00:01:31,870
ู„ูˆ ุฃุฎุฏุช ุฃูŠ subgroup ู…ู† ุงู„ู€ group ุงู„ู„ูŠ ุนู†ุฏูƒ ูุฅู† ุงู„ู€
15
00:01:31,870 --> 00:01:36,170
order ู„ู„ู€ subgroup ูŠู‚ุณู… ุงู„ู€ order ู„ู„ู€ group ูˆู‡ุฐุง ู…ุง
16
00:01:36,170 --> 00:01:40,560
ุจุฑู‡ู†ู‘ุงู‡ ููŠ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ูŠุนู†ูŠ ู„ูˆ ุฃู†ุง ุนู†ุฏูŠ group G
17
00:01:40,560 --> 00:01:45,360
ูˆ ุฃุฎุฏุช any subgroup ุฅู† ุดุงุก ุงู„ู„ู‡ ู„ู€ trivial subgroup
18
00:01:45,360 --> 00:01:50,060
ูƒูˆูŠุณุŸ ูŠุจู‚ู‰ ุงู„ู€ order ู„ู‡ุฐู‡ ุงู„ู€ subgroup ุจูŠู‚ุณู… ุงู„ู€
19
00:01:50,060 --> 00:01:54,760
order ู„ู„ูŠ group ุชู…ุงู…ุŸ ู‡ุฐุง ูƒุงู† ู†ุต ู†ุธุฑูŠุฉ Lagrange
20
00:01:54,760 --> 00:02:00,360
ุฃุนุทูŠู†ุง ุนู„ูŠู‡ุง ุจุฏู„ ุงู„ู…ุซุงู„ ุงุซู†ูŠู† ุงู„ุขู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ุฃูˆู„
21
00:02:00,360 --> 00:02:04,380
Corollary ุนู†ุฏู†ุง ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ู€ corollaries ุนู„ู‰ ู†ุธุฑูŠุฉ
22
00:02:04,380 --> 00:02:08,890
Lagrange ูŠุนู†ูŠ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ู†ุชุงุฆุฌ ุงู„ู†ุชูŠุฌุฉ ุงู„ุฃูˆู„ู‰ ุจูŠู‚ูˆู„
23
00:02:08,890 --> 00:02:12,950
ููŠ ุงู„ู€ finite group the order of each element of
24
00:02:12,950 --> 00:02:16,170
the group divides the order of the group that is
25
00:02:16,170 --> 00:02:21,030
ู„ูˆ ูƒุงู† ุนู†ุฏูŠ element x ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ group g ูŠุจู‚ู‰ ุงู„ู€
26
00:02:21,030 --> 00:02:26,050
order ู„ู€ x ุจุฏู‘ู‡ ูŠู‚ุณู…ูŠู† ุจุฏู‘ู‡ ูŠู‚ุณู… ุงู„ู€ order ู„ู€ g ูŠุนู†ูŠ
27
00:02:26,050 --> 00:02:30,270
ู„ุงุฌุฑุงู†ุฌ ู‚ุงู„ ู„ูŠ ุงู„ู€ order ุชุจุน ุงู„ู€ sub group ุจูŠู‚ุณู…ูŠู†
28
00:02:30,270 --> 00:02:34,370
ุงู„ู€ order ู„ู„ู€ group ุงู„ู†ุชูŠุฌุฉ ู‡ุฐู‡ ุชู‚ูˆู„ ู„ูŠ ู„ุฃ ุงู„ู€ order
29
00:02:34,370 --> 00:02:37,790
ู„ู„ู€ element ูƒุฐู„ูƒ ู„ุฃูŠ element ููŠ ุงู„ู€ group ุจุฏู‘ู‡ ูŠู‚ุณู…
30
00:02:37,790 --> 00:02:43,070
ุฅูŠุงู‡ ุจุฏู‘ู‡ ูŠู‚ุณู… ุงู„ู€ order ู„ู„ู€ group ุจุฏู†ุง ู†ุจุฑู‡ู† ุตุญุฉ ู‡ุฐุง
31
00:02:43,070 --> 00:02:48,130
ุงู„ูƒู„ุงู… ู…ุดุงู† ู†ุจุฑู‡ู† ุตุญุฉ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏูŠ ุฃู‚ูˆู„ ู„ู‡ ุงูุชุฑุถ
32
00:02:48,130 --> 00:02:54,530
ุฃู† X ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ group ุจุฏูŠ ุฃุซุจุช ุฃู† ุงู„ู€ order
33
00:02:54,530 --> 00:02:58,710
ู„ู‡ุฐุง ุงู„ู€ element ุจุฏู‘ู‡ ูŠู‚ุณู… ุฅูŠุงู‡ ุงู„ู€ order ู„ู„ู€ group
34
00:02:58,710 --> 00:03:06,550
ุจู‚ูˆู„ ู„ู‡ ู…ุงุดูŠ then ุงู„ู€ H ู‡ุฐู‡ ุงู„ู„ูŠ ุจุฏูŠ ุฃุฎุฏู‡ุง subgroup
35
00:03:06,550 --> 00:03:14,810
ุงู„ู„ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€ subgroup generated by X ุชู…ุงู… ู‡ุฐู‡
36
00:03:14,810 --> 00:03:24,610
ุงู„ุขู† subgroup ุงู„ู€ H ู‡ุฐู‡ is a subgroup of G ุทูŠุจ
37
00:03:24,610 --> 00:03:29,290
ุชู…ุงู… ุจุงู„ู€ Lagrange theorem ุงู„ู€ order ู„ู€ H ุจุฏู‘ู‡ ูŠู‚ุณู…
38
00:03:29,290 --> 00:03:36,020
ู…ู† ุงู„ู€ order ู„ู€ G ูŠุจู‚ู‰ ุจุฑูˆุญ ุจู‚ูˆู„ู‡ ู‡ู†ุง by Lagrange
39
00:03:36,020 --> 00:03:39,400
theorem
40
00:03:39,400 --> 00:03:51,300
ุงู„ู€ order ู„ู„ู€ H divides ุงู„ู€ order ู„ู€ G ุทูŠุจ ู„ู…ุง ุชุจู‚ู‰
41
00:03:51,300 --> 00:03:55,160
ู‡ุฐู‡ ุงู„ู€ cyclic ุดูˆ ุนู„ุงู‚ุฉ ู…ุง ุจูŠู† ุงู„ู€ order ู„ู€ H ูˆ ุงู„ู€
42
00:03:55,160 --> 00:04:03,270
order ู„ู€ X ู…ุชุณุงูˆูŠุฉ ุจู‚ูˆู„ู‡ ู‡ู†ุง ุจุทุก ูˆู„ูƒู† ุงู„ู€ order ู„ู€ H
43
00:04:03,270 --> 00:04:10,070
ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ุงู„ู€ order ู„ู€ X ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‘ู‡ ูŠุนุทูŠู†ูŠ ุจุฏู„ ู…ุง
44
00:04:10,070 --> 00:04:13,810
ูŠู‚ูˆู„ ุงู„ู€ order ุชุจุน ุงู„ู€ H ุจุฏู‘ู‡ ูŠู‚ุณู… ุงู„ู€ G ุจุฏู‘ู‡ ูŠุดูŠู„ ุงู„ู€
45
00:04:13,810 --> 00:04:17,970
order ุชุจุน ุงู„ู€ H ูˆ ูŠูƒุชุจ ุจุฏุงู„ู‡ ุงู„ู€ order ู„ู€ X
46
00:04:17,970 --> 00:04:24,500
divides ุงู„ู€ order ู„ู€ G ูˆูƒุงู† ุงู„ู„ู‡ ุจุงู„ุณุฑ ุนู„ูŠู†ุง ุฅุฐุง ู…ู†
47
00:04:24,500 --> 00:04:28,980
ุงู„ุขู† ุฃุณุงุนุฏ ุฅู† ุจุฏูŠูƒ ุชุนุฑู ุฅู† ู„ูˆ ุนู†ุฏูŠ group ุฎุฏุช ู…ู†ู‡ุง
48
00:04:28,980 --> 00:04:32,540
subgroup ูŠุจู‚ู‰ ุงู„ู€ order ู„ู‡ุฐุง ุงู„ู€ subgroup ูŠู‚ุณู… ู„ู€
49
00:04:32,540 --> 00:04:37,180
group ูˆููŠ ุงู„ู…ู‚ุงุจู„ ู„ูˆ ูƒุงู† ุนู†ุฏูŠ ุฃูŠ element x ู…ูˆุฌูˆุฏ
50
00:04:37,180 --> 00:04:41,920
ููŠ ุงู„ู€ group g ูŠุจู‚ู‰ ุงู„ู€ order ู„ู€ x ูƒู…ุงู† ูŠู‚ุณู… ุงู„ู€
51
00:04:41,920 --> 00:04:46,200
order ู„ู€ g ู†ูŠุฌูŠ ู„ู€ ุงู„ู€ corollary ุงู„ุซุงู†ูŠุฉ
52
00:04:50,810 --> 00:04:57,570
Corollary ุงุซู†ูŠู† ุจุชู‚ูˆู„ a group of a prime order a
53
00:04:57,570 --> 00:05:08,570
group of a prime order is
54
00:05:08,570 --> 00:05:10,230
cyclic
55
00:05:13,050 --> 00:05:19,910
ูŠุนู†ูŠ ุฃูŠ group ุงู„ู€ order ู„ู‡ุง ุจุชูƒูˆู† ุงู„ู€ prime ุงุซู†ูŠู†ุŒ
56
00:05:19,910 --> 00:05:24,450
ุซู„ุงุซุฉุŒ ุฎู…ุณุฉุŒ ุณุจุนุฉุŒ ุฃุญุฏ ุนุดุฑุŒ ุซู„ุงุซุฉ ุนุดุฑ ุฏุงุฆู…ุง ุชุจู‚ู‰
57
00:05:24,450 --> 00:05:29,710
Cyclic ูˆุฅุฐุง Cyclic ูŠุจู‚ู‰ abelian ู„ุฃู†ู‡ ุฃุฎุฏู†ุงู‡ ู‚ุจู„ ุฐู„ูƒ
58
00:05:29,710 --> 00:05:35,950
ููŠ chapter 4 ุฃู† any cyclic group is abelian ู„ูƒู† ุงู„ุนูƒุณ
59
00:05:35,950 --> 00:05:40,310
ู…ุง ู‡ูˆู‘ุงุด ุตุญูŠุญ ุทูŠุจ a group of a prime order is
60
00:05:40,310 --> 00:05:44,850
cyclic ุจุฏู†ุง ู†ุฑูˆุญ ู†ุซุจุช ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏูŠ ุฃุฌูŠ ุฃู‚ูˆู„ู‡
61
00:05:44,850 --> 00:06:02,150
assume that ุงูุชุฑุถ ุฃู† ุงู„ู€ g is a group with order P
62
00:06:02,150 --> 00:06:10,640
that is that is ุงู„ู€
63
00:06:10,640 --> 00:06:19,540
order ู„ู€ g ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ุงู„ู€ P and ุงู„ู€ P is prime
64
00:06:19,540 --> 00:06:25,600
ูŠุจู‚ู‰ ุงู„ู€ order ู„ู€ g ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุนุฏุฏ ุฃูˆู„ ุงุซู†ูŠู†
65
00:06:25,600 --> 00:06:30,520
ุซู„ุงุซุฉ ุฎู…ุณุฉ ุณุจุนุฉ ุฃุญุฏ ุนุดุฑ ุซู„ุงุซุฉ ุนุดุฑ ุณุจุนุฉ ุนุดุฑ ุชุณุนุฉ ุนุดุฑ ุฒูŠ
66
00:06:30,520 --> 00:06:37,650
ู…ุง ุจุฏู‘ูƒ ูŠุจู‚ู‰ g group with order P ูˆ ุงู„ู€ P ู‡ุฐุง ุนุจุงุฑุฉ
67
00:06:37,650 --> 00:06:42,990
ุนู† a prime number ูƒูˆูŠุณุŸ ุจุฏูŠ ุฃุซุจุช ุฃู† ู‡ุฐุง ุงู„ู€ group
68
00:06:42,990 --> 00:06:48,470
ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง ุชุจู‚ู‰ CyclicุŒ ูƒูˆูŠุณุŸ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฌูŠ ุฃู‚ูˆู„ู‡
69
00:06:48,470 --> 00:06:56,210
ุฎุฐ ู„ูŠ ุนู†ุตุฑ a ู…ูˆุฌูˆุฏ ููŠ G ุทุจ ุงู„ุนู†ุตุฑ a ู‡ุฐุง ุจูŠูˆู„ุฏ ู„ูŠ ุงู„ู€
70
00:06:56,210 --> 00:06:57,650
subgroup ูˆู„ุง ู„ุฃุŸ
71
00:07:00,140 --> 00:07:03,500
ุฃูŠ element ููŠ ุงู„ุฌุฑูˆุจ ุจูŠูˆู„ุฏ ู„ูŠู‡ subgroup ุตุญูŠุญ ูˆู„ุง
72
00:07:03,500 --> 00:07:07,240
ู„ุฃุŸ ูŠู…ูƒู† ูŠูƒูˆู† ููŠุด ููŠู‡ุง ุฅู„ุง ุงู„ู€ identity ูŠู…ูƒู† ุนู†ุตุฑูŠู†
73
00:07:07,240 --> 00:07:12,260
ูŠู…ูƒู† ุซู„ุงุซุฉ ูŠู…ูƒู† ุฃุฑุจุนุฉ ุฅู„ู‰ ุขุฎุฑู‡ ุชู…ุงู… ูŠุจู‚ู‰ little a
74
00:07:12,260 --> 00:07:23,880
belongs to g then ู‡ุฐู‡ ู‡ูŠ is a is a cyclic subgroup
75
00:07:26,920 --> 00:07:35,500
cyclic subgroup of G ูŠุจู‚ู‰
76
00:07:35,500 --> 00:07:43,660
ุงู„ู€ order ู„ู‡ุง ูŠู‚ุณู… ู…ู† ุงู„ู€ order ู„ู€ G ูŠุจู‚ู‰ then ุงู„ู€
77
00:07:43,660 --> 00:07:48,520
order ู„ู„ู€ subgroup generated by A divides
78
00:07:51,870 --> 00:07:59,770
divide ุงู„ู€ order ู„ู€ g ุงู„ู„ูŠ ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ุงู„ู€ P ุฅูŠุด ู‚ูˆุงุณู…
79
00:07:59,770 --> 00:08:08,310
ุงู„ู€ P ูˆุงุญุฏ ูˆ ุงู„ู€ P itself ูŠุจู‚ู‰ ู‡ู†ู‘ุง ู„ูˆ ู‚ู„ู†ุง little a
80
00:08:08,310 --> 00:08:14,750
belongs to g ูˆ ู‚ู„ู†ุง ุงู„ู€ a ู„ุง ูŠุณุงูˆูŠ ุงู„ู€ identity ูƒู…ุงู†
81
00:08:14,750 --> 00:08:20,410
ุฃุถูŠู ุนู„ูŠู‡ุง ุฃู† ุงู„ู€ a ู„ุง ูŠุณุงูˆูŠ ุงู„ู€ identity ุญุชู‰ ู„ุง ู†ู‚ุน
82
00:08:20,410 --> 00:08:26,920
ููŠ ุฃูŠ ู…ุดูƒู„ุฉ ุจุนุฏ ุฐู„ูƒ ุชู…ุงู… ุทูŠุจ ูŠุจู‚ู‰ ุงู„ู€ order ู„ู€ g
83
00:08:26,920 --> 00:08:33,460
ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ุงู„ู€ P ู…ุนู†ุงู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู† ุงู„ู€ order ู„ู€ ุงู„ู€
84
00:08:33,460 --> 00:08:39,920
subgroup generated by A ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ or P ูŠุจู‚ู‰
85
00:08:39,920 --> 00:08:46,060
ู‡ุงูŠ ุงู„ู‚ูˆุงุณู… ุงู„ู„ูŠ ุจุชู‚ุณู… ุงู„ู€ P ุงู„ุขู† ู‡ู„ ูŠู…ูƒู† ู„ู‡ุฐุง ุงู„ู€
86
00:08:46,060 --> 00:08:51,020
order ุฃู†ู‘ู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ ู„ุฃ ู„ุฃู†ู‡ ุงุดุชุฑุงุท ู…ุน ุฃู† ุงู„ู€ e ู„ุง
87
00:08:51,020 --> 00:08:58,970
ูŠุณุงูˆูŠ ุงู„ู€ identity ุจู‚ูˆู„ ู„ู‡ ูˆู„ูƒู† ุงู„ู€ order ู„ู„ู€ subgroup
88
00:08:58,970 --> 00:09:05,210
generated by a ู„ุง ูŠู…ูƒู† ุฃู† ูŠุณุงูˆูŠ ุงู„ูˆุงุญุฏ ุงู„ุณุจุจ ู„ุฃู†ู‘
89
00:09:05,210 --> 00:09:11,470
ุงู„ู€ a does not equal to e ูŠุจู‚ู‰ ู‡ุฐุง ุดูˆ ุจุฏู‘ู‡ ูŠุนุทูŠู†ุง
90
00:09:11,470 --> 00:09:15,530
ู‡ุฐุง ุจุฏู‘ู‡ ูŠุนุทูŠู†ุง ุฃู† ุงู„ู€ order ู„ู„ู€ subgroup generated
91
00:09:15,530 --> 00:09:21,050
by a ุจุฏู‘ู‡ ูŠุณุงูˆูŠ 100 ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ุงู„ู€ P ุทุจ ู‡ุฐุง ุฅูŠุด ุจุฏู‘ู‡
92
00:09:21,050 --> 00:09:25,750
ูŠุนุทูŠู†ุง ุตุงุฑ ุงู„ู€ order ู„ู‡ุฐู‡ ุงู„ู€ sub group ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ุงู„ู€
93
00:09:25,750 --> 00:09:29,850
P ูŠุจู‚ู‰ ุงู„ู€ sub group ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ู…ูŠู† ุนุจุงุฑุฉ ุนู† G
94
00:09:29,850 --> 00:09:36,510
itself ุชู…ุงู… ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‘ู‡ ูŠุนุทูŠู†ุง ุฃู† ุงู„ู€ sub group
95
00:09:36,510 --> 00:09:41,610
generated by A ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ูŠู† ุงู„ู€ G itself ู„ุฃู†ู‘ ุงู„ู€
96
00:09:41,610 --> 00:09:45,550
order ู„ู€ G ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ุงู„ู€ P ูˆ ุงู„ู€ order ู„ู„ู€ sub group
97
00:09:45,550 --> 00:09:50,080
ู‡ุฐุง ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ุงู„ู€ P ูŠุจู‚ู‰ ุงู„ุงุซู†ูŠู† are equal ูŠุจู‚ู‰ ู‡ุฐุง
98
00:09:50,080 --> 00:09:59,080
ู…ุนู†ุงู‡ ุฅูŠุดุŸ ู…ุนู†ุงู‡ ุฅู†ู‘ ุงู„ู€ g ู„ู€ group ุงู„ู€ G is cyclic ู„ูˆ
99
00:09:59,080 --> 00:10:02,780
ูƒุงู† ุงู„ุณุคุงู„ ุฃุซุจุชู‡ุง ุฅู†ู‡ุง abelianุŒ ุจุฏูŠ ุฃุซุจุชู‡ุง ุฅู†ู‡ุง
100
00:10:02,780 --> 00:10:08,180
ุงู„ู€ cyclic ูˆู…ู† ุซู… ุจู‚ูˆู„ ู„ู…ุง ุฏุงู… cyclicุŒ ูŠุจู‚ู‰ abelian
101
00:10:08,180 --> 00:10:12,780
ู‡ุฐู‡ ุงู„ู€ corollary ุฑู‚ู… ุงุซู†ูŠู†ุŒ ุจุฏู†ุง ู†ุฑูˆุญ ู„ู„ู€ corollary ุฑู‚ู…
102
00:10:12,780 --> 00:10:16,420
ุซู„ุงุซุฉ ูŠุจู‚ู‰ ุงู„ู€ corollary
103
00:10:18,200 --> 00:10:24,040
ุฑู‚ู… ุซู„ุงุซุฉ ุฃูˆ ุงู„ู†ุชูŠุฌุฉ ุฑู‚ู… ุซู„ุงุซุฉ ุจุชู‚ูˆู„ little g be a
104
00:10:24,040 --> 00:10:34,440
finite group little g be a finite group ูŠุจู‚ู‰
105
00:10:34,440 --> 00:10:42,020
group ู…ุญุฏูˆุฏุฉ ุงู„ุนุฏุฏ ู…ู† ุงู„ุนู†ุงุตุฑ little g be a finite
106
00:10:42,020 --> 00:10:45,220
group and let and
107
00:10:51,350 --> 00:10:57,830
ูŠุจู‚ู‰ ุงู„ู€ a ุฃุตู„ order ู„ู€ g ูŠุจู‚ู‰ ุงู„ู€ a ุฃุตู„ order
108
00:10:57,830 --> 00:11:01,430
ู„ู€ g ูŠุจู‚ู‰ ุงู„ู€ a ุฃุตู„ order ู„ู€ g
109
00:11:09,240 --> 00:11:13,740
ูŠุนู†ูŠ ู„ูˆ ุฃุฎุฏุช ุฃูŠ element ู…ู† ุงู„ู€ group ูˆ ุญุทูŠุช ู„ู‡ ุฃุณ
110
00:11:13,740 --> 00:11:18,920
ุงู„ู€ order ุชุจุน ุงู„ู€ group ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ุงู„ู€
111
00:11:18,920 --> 00:11:28,960
identity ุทูŠุจ
112
00:11:28,960 --> 00:11:34,990
ูƒูˆูŠุณ ู†ุดูˆู ู†ุคูƒุฏ ุนู„ู‰ ุตุญุฉ ู…ุง ุชูƒู„ู‘ู…ู†ุง ู†ู‚ูˆู„ ุฅูŠุด ุงุญู†ุง ุนู†ุฏู†ุง
113
00:11:34,990 --> 00:11:39,410
g finite group ูˆ ุงู„ู€ a belongs to g ู‚ุงู„ ู„ูŠ ุฃุซุจุช ุฃู†
114
00:11:39,410 --> 00:11:43,890
ุงู„ู€ a ู…ุฑููˆุนุฉ ู„ู„ุฃุฑุฏุฑ ุงู„ุณุงุจุน ุงู„ู€ g ุจุชุณุงูˆูŠ ู…ูŠู† ุงู„ู€
115
00:11:43,890 --> 00:11:47,430
identity element ุงู„ู€ a ู„ูˆ ุฌูŠุช ุนู„ู‰ ุงู„ู€ a corollary
116
00:11:47,430 --> 00:11:53,770
one ูŠุจู‚ู‰ ุงู„ู€ order ู„ู„ู€ a ุจุชู‚ุณู…ูŠู† ุงู„ู€ order ู„ู€ g ูŠุจู‚ู‰
117
00:11:53,770 --> 00:11:59,970
by a corollary one
118
00:12:01,250 --> 00:12:10,590
ุงู„ู€ order ู„ู„ู€ a divides ุงู„ู€ order ู„ู„ู€ g ู‡ุฐุง ู…ุนู†ุงุชู‡
119
00:12:10,590 --> 00:12:16,390
ุฃู† ุงู„ู€ order ู„ู„ู€ g ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ุงู„ู€ order ู„ู„ู€ a ููŠ ุฑู‚ู… ูˆ
120
00:12:16,390 --> 00:12:25,970
ู„ูŠูƒู† k for some positive integer
121
00:12:25,970 --> 00:12:27,990
k
122
00:12:29,620 --> 00:12:35,640
for some positive integer k ุงู„ุขู† ุฃู†ุง ุจุฏูŠ ุฃุซุจุช
123
00:12:35,640 --> 00:12:43,060
ุฃู† ุงู„ู€ a ู…ุฑููˆุนุฉ ู„ู„ุฃุณ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ order ู„ู„ู€ g ุจุฏู‘ู‡
124
00:12:43,060 --> 00:12:48,220
ูŠุณุงูˆูŠ ุงู„ู€ identity ุจู†ุงุก ุนู„ูŠู‡ุง ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ุฐุง ุงูŠู‡ ุงู„ู€
125
00:12:48,220 --> 00:12:54,260
order ู„ู„ู€ g ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ order ู„ู„ู€ a ู…ุถุฑูˆุจ ููŠ
126
00:12:54,260 --> 00:13:01,570
ู…ูŠู† ู…ุถุฑูˆุจ ููŠ K ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ A ู…ุฑููˆุนุฉ ู„ู„ order
127
00:13:01,570 --> 00:13:08,350
ุชุจุน ุงู„ A ูƒู„ ู‡ุฐุง ุฃุณ K ุทุจ ุงู„ A ู„ู…ุง ูŠูƒูˆู† ู…ุฑููˆุน ู„ู„
128
00:13:08,350 --> 00:13:13,070
order ุชุจุนู‡ ูƒุฏู‡ ุจูŠุนุทูŠู†ุง ุงู„ identity ูŠุจู‚ู‰ ู‡ุฐุง
129
00:13:13,070 --> 00:13:17,310
ุจูŠุนุทูŠู†ุง ุงู„ identity ุฃุณ K ุงู„ identity ุฃุณ K ุจูŠุนุทูŠู†ุง
130
00:13:17,310 --> 00:13:23,230
ู…ู† ุงู„ identity ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠ ุฃุณุงุฑ ุงู„ A ุฃุณ ุงู„ order
131
00:13:23,230 --> 00:13:27,970
ู„ู„ G ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง ุจุฏูŠ ูŠุนุทูŠู†ุง ู…ุงุฐุงุŸ ุจุฏูŠ ูŠุนุทูŠู†ุง ุงู„
132
00:13:27,970 --> 00:13:33,850
identity element ุชู…ุงู… ุจุฏูŠ ุฃุฎุงุทุฑ ู‚ุจู„ ู…ูุฑูˆุถ ู†ุนุทูŠ ุจุนุถ
133
00:13:33,850 --> 00:13:39,310
ุงู„ุฃู…ุซู„ุฉ ุนู„ู‰ ู‡ุฐู‡ ุงู„ crawlers ุจุฏู†ุง ู†ูŠุฌูŠ ู„ุฃูˆู„ ู…ุซุงู„
134
00:13:39,310 --> 00:13:42,090
examples ุงูˆ example one
135
00:13:45,840 --> 00:13:52,120
example one ุจูŠู‚ูˆู„ show that
136
00:13:52,120 --> 00:14:00,260
ุจูŠู‘ู† ู„ูŠ ุฃู† every group
137
00:14:00,260 --> 00:14:09,300
of order less than or equal to 5
138
00:14:16,890 --> 00:14:32,590
less than or equal to five is abelian ูŠุนู†ูŠ
139
00:14:32,590 --> 00:14:35,550
ุจู†ุซุจุช ุฃู† ุฃูŠ group
140
00:14:38,460 --> 00:14:43,920
ุงู„ู€ order ุชุจุนู‡ุง ุจุฏู‡ ูŠุณุงูˆูŠ ุฎู…ุณุฉ ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง ุฃูˆ ุฃู‚ู„
141
00:14:43,920 --> 00:14:47,440
ู…ู† ุฎู…ุณุฉ is abelian ูŠุนู†ูŠ ู„ูˆ ุนู†ุฏูŠ group ููŠู‡ุง ุนู†ุตุฑ
142
00:14:47,440 --> 00:14:51,540
ูˆุงุญุฏ ุฃูˆ group ููŠู‡ุง ุนู†ุตุฑูŠู† ุฃูˆ group ููŠู‡ุง ุซู„ุงุซุฉ ุนู†ุงุตุฑ
143
00:14:51,540 --> 00:14:55,880
ุฃูˆ ุฃุฑุจุนุฉ ุนู†ุงุตุฑ ุฃูˆ ุฎู…ุณุฉ ุนู†ุงุตุฑ ูƒู„ ู‡ุฐู‡ ุงู„ุฃู†ู…ูˆุนุฉ ู…ู† ุงู„
144
00:14:55,880 --> 00:15:01,600
group ุชุจู‚ู‰ ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง abelian ุทูŠุจ ุงู„ุขู† solution
145
00:15:06,050 --> 00:15:11,890
ุฃุฎุฐ ุงู„ุขู† ู„ูˆ ุงู„ order ุงู„ู„ูŠ ุฌู‰ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ูŠุนู†ูŠ
146
00:15:11,890 --> 00:15:15,930
ุงูŠุด ููŠู‡ุง ูู‚ุท ุงู„ identity element ูˆ ุงู„ identity
147
00:15:15,930 --> 00:15:21,310
ุงู„ู…ูˆุฌูˆุฏุฉ ู…ุน ู†ูุณู‡ ุตุญูŠุญ ูˆู„ุง ู„ุฃ ูŠุจู‚ู‰ ุฃุจูŠู„ ูŠุนู†ูŠ ูŠุจู‚ู‰
148
00:15:21,310 --> 00:15:27,180
ู‡ู†ุง ุจุฏุฃ ุฃุฎุฏ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ู„ูˆ ูƒุงู† ุงู„ order ู„ู„ G
149
00:15:27,180 --> 00:15:33,360
ุจุฏู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุตุญูŠุญ then ุงู„ G ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ identity
150
00:15:33,360 --> 00:15:42,340
ูู‚ุท ู„ุง ุบูŠุฑ ูˆ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง ุฃู† ุงู„ G is abelian ุทูŠุจ
151
00:15:42,340 --> 00:15:51,100
ู„ูˆ ูƒุงู† ุงู„ order ู„ู„ G ุจุฏู‡ ูŠุณุงูˆูŠ ุงุซู†ูŠู† ูˆ ุซู„ุงุซุฉ or
152
00:15:51,100 --> 00:15:59,130
ุฎู…ุณุฉ ูŠุจู‚ู‰ ูƒู„ ู‡ู…ุง ุฏูˆู„ ู…ุงู„ู‡ู… primes then ุงู„ order ู„ู„
153
00:15:59,130 --> 00:16:05,970
G is prime ููŠ ุงู„ุญุงู„ุงุช ุงู„ุซู„ุงุซุฉ ุงูŠุด ุจูŠู‚ูˆู„ ุงู„ crawler
154
00:16:05,970 --> 00:16:10,790
ุงุซู†ูŠู† ุงู„ group of prime order is cyclic ูŠุจู‚ู‰ ู‡ุฐุง
155
00:16:10,790 --> 00:16:17,250
ุจุฏู‡ ูŠุนุทูŠู†ุง ุฃู† ุงู„ G is cyclic ุทุจ ูˆ ุฅุฐุง ุงู„ G is
156
00:16:17,250 --> 00:16:18,910
cyclic ุฃุจูŠู„ูŠุงู† ูŠุนู†ูŠ
157
00:16:23,770 --> 00:16:29,690
ูŠุจู‚ู‰ ุงู„ุขู† ุงุซุจุชู†ุง ุฃู† ููŠ ุญุงู„ุฉ ุงู„ูˆุงุญุฏ ูˆ ุงู„ุงุซู†ูŠู† ูˆ ุงู„ุซู„ุงุซุฉ
158
00:16:29,690 --> 00:16:34,710
ูˆุงู„ุฎู…ุณุฉ ุฃุจูŠู„ูŠุงู† ุถู„ุช ุงูŠู‡ุŸ ุถู„ุช ุงู„ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ุจุฏุงุฌูŠ
159
00:16:34,710 --> 00:16:41,010
ุฃู‚ูˆู„ ู„ู‡ ู‡ู†ุง ู„ูˆ ูƒุงู† ุงู„ order ู„ู„ G ุจุฏู‡ ูŠุณุงูˆูŠ ุฃุฑุจุนุฉ
160
00:16:44,930 --> 00:16:51,590
ู„ูˆ ุงูุชุฑุถุช ุฃู† ุงู„ order ู„ู„ุฌูŠ ูŠูƒูˆู† 4 ู„ูˆ ุฃุฎุฐุช ุฃูŠ non
161
00:16:51,590 --> 00:16:56,470
identity element ููŠ ุงู„ group ุฌูŠ ูƒุฏู‡ ุงุญุชู…ุงู„ ุงู„
162
00:16:56,470 --> 00:17:02,890
order ูŠูƒูˆู† ู„ู‡ ูˆุงุญุฏ ุงุณุชุจุนุฏู†ุงู‡ ุฃู†ุง ู‚ู„ุช non identity
163
00:17:02,890 --> 00:17:07,750
ู„ูŠู‡ ุจูŠุจู‚ู‰ ููŠุด ุฅู„ุง ุงุซู†ูŠู† ุฃูˆ ุฃุฑุจุนุฉ ุทุจ ู„ูˆ ูƒุงู† ุงู„
164
00:17:07,750 --> 00:17:14,810
order ู„ู„ element ูŠุณุงูˆูŠ 4 ุจูŠูƒูˆู† generator ู„ู€ G ู„ุฃู† ุงู„
165
00:17:14,810 --> 00:17:17,990
order ูŠุจู‚ู‰ ุงู„ู€ G ุงู„ู€ cyclic ูˆุจุงู„ุชุงู„ูŠ ุฃุจุฏุง ุทู„ุช
166
00:17:17,990 --> 00:17:24,390
ุงู„ู…ุดูƒู„ุฉ ูˆูŠู† ุนู†ุฏ ุงุซู†ูŠู† ูุจุฏุงุด ุฃู‚ูˆู„ ู„ู‡ ู‡ู†ุง if ูŠุจู‚ู‰ if
167
00:17:24,390 --> 00:17:33,590
ุงู„ order ู„ู€ G ุจุฏู‡ ูŠุณุงูˆูŠ ุฃุฑุจุนุฉ then any non identity
168
00:17:33,590 --> 00:17:39,490
element has
169
00:17:40,760 --> 00:17:44,540
order ุงุซู†ูŠู†
170
00:17:44,540 --> 00:17:50,560
ุฃูˆ ุฃุฑุจุนุฉ if
171
00:17:50,560 --> 00:18:01,960
order ู„ุฃ ุจุฏูˆ ูŠุณุงูˆูŠ ุฃุฑุจุนุฉ then order ู„ุฃ ุจุฏูˆ ูŠุณุงูˆูŠ
172
00:18:01,960 --> 00:18:09,370
order ู„ู€ G ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู† ุงู„ู€ G ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ ู„
173
00:18:09,370 --> 00:18:16,010
group generated by A ู‡ุฐุง ูŠุนู†ูŠ ุฃู† ุงู„ู€ G ู‡ูˆ Cyclic
174
00:18:16,010 --> 00:18:25,910
ูˆ ู‡ุฐุง ูŠุนู†ูŠ ุฃู† ุงู„ู€ G ู‡ูˆ Abelian ุจู„ุช ู…ุดูƒู„ุชู†ุง ูˆูŠู†ุŸ
175
00:18:25,910 --> 00:18:40,540
ุฃูŠูˆุฉ ูŠุจู‚ู‰ ู„ูˆ ูƒุงู† ุงู„ู€ A ู…ูˆุฌูˆุฏ ููŠ G with ุงู„ order ู„ู„ู€ A
176
00:18:40,540 --> 00:18:48,760
ุจุฏู‡ ูŠุณุงูˆูŠ ุงุซู†ูŠู† then ุงู„ A ุชุฑุจูŠุน ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„
177
00:18:48,760 --> 00:18:55,660
identity ู…ุธุจูˆุท ูŠุนู†ูŠ ุงู„ A ุตุงุฑ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ A
178
00:18:55,660 --> 00:18:56,060
inverse
179
00:19:01,020 --> 00:19:07,280
ูŠุจู‚ู‰ ุฃู†ุง ุจุงุฎุฏ two elements ู…ู† G ูˆ ุฃุซุจุช ุฃู† ุงู„ X ููŠ
180
00:19:07,280 --> 00:19:12,460
Y ุจูŠุณุงูˆูŠ ุงู„ Y X ุจุงุณุชุฎุฏุงู… ุงู„ู…ุนู„ูˆู…ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
181
00:19:12,460 --> 00:19:19,100
ูŠุจู‚ู‰ ุจุฑูˆุญ ุงู‚ูˆู„ ู„ู‡ ุงูุชุฑุถ ุฃู† ุงู„ X ูˆ ุงู„ Y ุนู†ุงุตุฑ ู…ูˆุฌูˆุฏุฉ
182
00:19:19,100 --> 00:19:19,580
ุนู†ุฏู†ุง
183
00:19:37,640 --> 00:19:47,160
ุจุฏุงูŠู‡ ุงู‚ูˆู„ ู„ู‡ let ุงู„ X ูˆ ุงู„ Y ู…ูˆุฌูˆุฏุฉ ููŠ G then ุงู„ X
184
00:19:47,160 --> 00:19:56,920
Y ู…ูˆุฌูˆุฏุฉ ููŠ G if ุงู„ order ู„ู„ X Y ูŠุณุงูˆูŠ ุงุซู†ูŠู† then
185
00:19:56,920 --> 00:20:05,460
ุงู„ X Y ู„ูƒู„ ุชุฑุจูŠุน ูŠุณุงูˆูŠ ู…ู†ุŸ ูŠุณุงูˆูŠ ุงู„ identity ุทุจ ุงู„
186
00:20:05,460 --> 00:20:11,760
X Y ุชุฑุจูŠุน ู‡ุฐุง ุจู‚ุฏุฑ ุฃู‚ูˆู„ X ุชุฑุจูŠุน Y ุชุฑุจูŠุน ู„ุง ุชุจู‚ู‰
187
00:20:11,760 --> 00:20:16,980
ุจูŠู„ุง ู…ุง ู‡ูŠ ุฃุดุจุงู‡ ู„ุงู†ูŠ ุจู‚ุฏุฑุด ู…ุธุจูˆุท ู„ูƒู† ูƒู„ ุงู„ู„ูŠ ุจู‚ุฏุฑ
188
00:20:16,980 --> 00:20:23,960
ุฃู‚ูˆู„ ู„ู‡ then ุงู„ู„ูŠ ู‡ูˆ ู…ู† ุงู„ X Y ููŠ ุงู„ X Y ูŠุณุงูˆูŠ ุงู„
189
00:20:23,960 --> 00:20:31,570
identity ุชู…ุงู… ุทุจ ู„ูˆ ุถุฑุจุช ุงู„ุทุฑููŠู† ููŠ y inverse ู…ู†
190
00:20:31,570 --> 00:20:39,630
ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ูŠุจู‚ู‰ ุจูŠุตูŠุฑ ุนู†ุฏูŠ x y x ุจุฏู‡ ูŠุณุงูˆูŠ e ููŠ y
191
00:20:39,630 --> 00:20:45,010
inverse ุงู„ู„ูŠ ู‡ูˆ ุจู…ูŠู†ุŸ ุจ y inverse ุทุจ ุงุถุฑุจ ูƒู…ุงู† ููŠ
192
00:20:45,010 --> 00:20:51,350
x inverse ู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ู‡ุฐุง ูŠุนู†ูŠ ุฃู† ุงู„ x ููŠ y ุจุฏู‡
193
00:20:51,350 --> 00:20:57,090
ูŠุณุงูˆูŠ ุงู„ y inverse ููŠ ุงู„ x inverse ุงู„ุขู† ุงุญู†ุง ู‚ู„ู†ุง
194
00:20:57,090 --> 00:21:02,790
ู‡ู†ุง ุงูŠุด ุฃู† ุงู„ element ุงู„ู„ูŠ ุงู„ order ู„ู‡ ูŠุณุงูˆูŠ ุงุซู†ูŠู†
195
00:21:02,790 --> 00:21:09,650
ุงู„ element ูŠุณุงูˆูŠ ู…ุนูƒูˆุณู‡ ุชู…ุงู… ุทูŠุจ ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฐุง ุจุฏู‡
196
00:21:09,650 --> 00:21:16,030
ูŠุนุทูŠู†ุง ุฃู† ุงู„ x ููŠ ุงู„ y ุจุฏู‡ ูŠุณุงูˆูŠ ู…ู† ุงู„ y ููŠ ุงู„ x
197
00:21:17,170 --> 00:21:23,450
ูŠุนู†ูŠ ุดูŠู„ุช ูƒู„ X ูˆุญุทูŠุช ุจุฏู„ู‡ุง X ูˆุดูŠู„ุช ูƒู„ Y ูˆุญุทูŠุช
198
00:21:23,450 --> 00:21:31,830
ุจุฏู„ู‡ุง Y ู‡ุฐุง ูŠุนู†ูŠ ุฃู† ุงู„ G is abelian ูŠุจู‚ู‰ ู…ุนู†ู‰ ู‡ุฐุง
199
00:21:31,830 --> 00:21:35,950
ุงู„ูƒู„ุงู… ุฃู† ุงู„ู€ G abelian ุณูˆุงุก ูƒุงู† ุงู„ order ู„ู‡ุง
200
00:21:35,950 --> 00:21:39,470
ูˆุงุญุฏ ูˆู„ุง ุงุซู†ูŠู† ูˆู„ุง ุซู„ุงุซุฉ ูˆู„ุง ุฃุฑุจุนุฉ ูˆู„ุง ุฎู…ุณุฉ ู…ู†
201
00:21:39,470 --> 00:21:44,470
ุงู„ุขู† ูุตุงุนุฏุง ุจุฏูƒ ุชุงุฎุฏู‡ุง ู‚ุงุนุฏุฉ ุฃูŠ group ุงู„ order
202
00:21:44,470 --> 00:21:48,750
ุงู„ู„ูŠ ู‡ูŠุณุงูˆูŠ ุฎู…ุณุฉ ุฃูˆ ุฃู‚ู„ ู…ู† ุฎู…ุณุฉ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ group
203
00:21:48,750 --> 00:21:54,330
ุนุจุงุฑุฉ ุนู† abelian group ุฎุฏ ูƒู…ุงู† ู…ุซุงู„ุŒ ุงู„ู…ุซุงู„ ู‡ุฐุง ู‡ูˆ
204
00:21:54,330 --> 00:22:02,450
ุฃุญุฏ ุฃุณุฆู„ุฉ ุงู„ูƒุชุงุจ ูŠุจู‚ู‰ example two example 2 ู‡ูˆ
205
00:22:02,450 --> 00:22:10,690
ุนุจุงุฑุฉ ุนู† ุณุคุงู„ 26 ู…ู† ุงู„ูƒุชุงุจ ุจูŠู‚ูˆู„ let g
206
00:22:10,690 --> 00:22:25,890
be a group of order 25 prove that
207
00:22:25,890 --> 00:22:34,580
ุฃุซุจุช ุฃู† ุงู„ู€ G is cyclic
208
00:22:34,580 --> 00:22:40,580
or ุงู„ู€
209
00:22:40,580 --> 00:22:48,600
G ุฃุณ ุฎู…ุณุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ identity for all G ุงู„ู„ูŠ
210
00:22:48,600 --> 00:22:49,720
belongs to G
211
00:23:04,000 --> 00:23:09,320
ุฎู„ู‘ูŠู†ูŠ ุฃุจู‚ู‰ ู…ุนู†ุงู‡ ู‡ู†ุง ุงู„ุณุคุงู„ ู…ุฑุฉ ุซุงู†ูŠุฉ ุฃู†ุง ุนู†ุฏูŠ
212
00:23:09,320 --> 00:23:14,300
group ููŠู‡ุง ุฎู…ุณุฉ ูˆุนุดุฑูŠู† ุนู†ุตุฑ ุงู„ order ู„ู‡ุง ูŠุณุงูˆูŠ ุฎู…ุณุฉ
213
00:23:14,300 --> 00:23:20,800
ูˆุนุดุฑูŠู† ู‚ุงู„ ู„ูŠ ุจุชุซุจุช ุฃู† ุฌูŠ ู‡ุฐู‡ Cyclic ูŠุง ุฅู…ุง ุงู„ุฌูŠ
214
00:23:20,800 --> 00:23:24,940
ุฃุณ ุฎู…ุณุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ identity ู„ูƒู„ ุงู„ุฌูŠ ุงู„ู„ูŠ belongs
215
00:23:24,940 --> 00:23:30,640
to ุฌูŠ ุฅุฐุง ุฃู†ุง ุจุฏูŠ ุงุณุชุจุนุฏ ูˆุงุญุฏ ูˆุฃุซุจุช ู…ูŠู† ู„ุฃู†ู‡ ู‚ุงู„
216
00:23:30,640 --> 00:23:35,230
ู„ูŠ or ู‡ุฐุง ุฃูˆ ู‡ุฐุง ูŠุจู‚ู‰ ุฃู†ุง ู„ูˆ ุฑูˆุญุชู‡ ู‚ู„ุช ู„ู‡ ู‡ู†ุง
217
00:23:35,230 --> 00:23:46,330
assume ุงูุชุฑุถ ุฃู† ุงู„ G is non-cyclic ู…ุงู‡ูŠ
218
00:23:46,330 --> 00:23:54,310
cyclic and ุงู„ order ู„ู„ G ุจุฏู‡ ูŠุณุงูˆูŠ ุฎู…ุณุฉ ูˆุนุดุฑูŠู†
219
00:23:54,310 --> 00:24:01,760
ูŠุจู‚ุงุด ุจุชุซุจุช ูŠุง ุดุจุงุจ ุงู„ ุฌูŠ ุฃุณ ุฎู…ุณุฉ ูŠุณุงูˆูŠ ู…ู† ุงู„ identity
220
00:24:01,760 --> 00:24:06,500
element ุงู„ุขู† ุงู„ G ู…ูˆุฌูˆุฏ ููŠ G ูŠุจู‚ู‰ ุงู„ order ู„ู‡
221
00:24:06,500 --> 00:24:14,680
ูŠู‚ุณู… ู…ู† ุงู„ุฎู…ุณุฉ ูˆ ุงู„ุนุดุฑูŠู† ูŠุจู‚ู‰ ู‡ู†ุง since ู„ู…ุง ุฃู† ุงู„ G
222
00:24:14,680 --> 00:24:19,660
belongs to G ุงู„ order ู„ู„ G divide
223
00:24:21,710 --> 00:24:26,870
ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฎู…ุณุฉ ูˆ ุงู„ุนุดุฑูŠู† ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู† ุงู„ order
224
00:24:26,870 --> 00:24:35,230
ู„ู„ G ูŠุง ุฅู…ุง ูˆุงุญุฏ ูŠุง ุฅู…ุง ุฎู…ุณุฉ or ุฎู…ุณุฉ ูˆ ุนุดุฑูŠู† ุจู†ุณุชุจุนุฏ
225
00:24:35,230 --> 00:24:40,550
ู„ุฎู…ุณุฉ ูˆ ุนุดุฑูŠู† ู„ุฃู† ู„ูˆ ูƒุงู† ุงู„ order ุฎู…ุณุฉ ูˆ ุนุดุฑูŠู† ู„ุตุงุฑ ุงู„
226
00:24:40,550 --> 00:24:45,630
G Cyclic ู‚ุงู„ ู„ุง ู‡ูŠ ู…ุง ู‡ูŠ ุงู„ Cyclic ุฅุฐุง ู„ุง ูŠู…ูƒู†
227
00:24:45,630 --> 00:24:52,330
ู„ู„ order ุชุจุน ุงู„ element ู‡ุฐุง ุฃู†ู‡ ูŠุณุงูˆูŠ ู…ู† ุงู„ order ู„
228
00:24:52,330 --> 00:24:56,110
G small ู‡ุฐุง ูŠุง ุดุจุงุจ ู…ุด ุฌูŠ ูƒุชุฑ ุงู„ ุฌูŠ ูƒุชุฑ ู‡ูŠ ุฎู…ุณุฉ ูˆ ุนุดุฑูŠู†
229
00:24:56,110 --> 00:25:00,050
ุงู„ order ู„ู„ element ูŠุง ุจุฏู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ ูŠุง ุฅู…ุง ุฎู…ุณุฉ
230
00:25:00,050 --> 00:25:06,310
ูŠุง ุฅู…ุง ุฎู…ุณุฉ ูˆ ุนุดุฑูŠู† ุงู„ุขู† ุฃู†ุง ุจุงุฌูŠ ุจู‚ูˆู„ ู„ู‡ ุงู„ order ู„ู„
231
00:25:06,310 --> 00:25:13,770
G ุจุฏู‡ ูŠุณุงูˆูŠ ุฎู…ุณุฉ ูˆ ุนุดุฑูŠู† impossible ู‡ุฐุง ุงู„ูƒู„ุงู… ุบูŠุฑ
232
00:25:13,770 --> 00:25:26,190
ู…ู…ูƒู† because ุงู„ุณุจุจ ุฃู† ุงู„ G is not cyclic ูŠุจู‚ู‰ ุงู„ู€ G
233
00:25:26,190 --> 00:25:30,690
ู…ุง ู‡ูŠุด Cycle ุทูŠุจ ุงุณุชุจุนุฏู†ุง ู…ู†ูŠู†ุŸ ุงู„ุฎู…ุณุฉ ูˆ ุงู„ุนุดุฑูŠู†
234
00:25:30,690 --> 00:25:36,250
ุถู„ุช ุนู†ุฏู†ุง ุงู„ู€ G ุงู„ order ู„ู‡ ุจุฏู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุจุฏู‡
235
00:25:36,250 --> 00:25:45,550
ูŠุณุงูˆูŠ ุฎู…ุณุฉ ุงู„ุขู† ู„ูˆ ูƒุงู† ุงู„ order ู„ูˆ ูƒุงู† ุงู„ order ู„ู„ G
236
00:25:45,550 --> 00:25:51,260
ุจุฏู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ then ู„ู…ุง ูŠูƒูˆู† ุงู„ order ุงู„ู„ูŠ ุฌูŠ ุจุฏู‡
237
00:25:51,260 --> 00:25:54,680
ูŠุณุงูˆูŠ ูˆุงุญุฏ ูŠุจู‚ู‰ ู…ูŠู† ู‡ูŠ ุฌูŠ ู‡ุฐู‡ ุงู„ identity element
238
00:25:54,680 --> 00:26:01,260
ูŠุจู‚ู‰ then ุงู„ุฌูŠ ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ identity element ูŠุจู‚ู‰
239
00:26:01,260 --> 00:26:07,660
ุงู„ุฌูŠ ุฃุณ ุฎู…ุณุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ identity element ุฃุณ ุฎู…ุณุฉ
240
00:26:07,660 --> 00:26:12,600
ูŠุจู‚ู‰ ุฌูŠ ุฃุณ ุฎู…ุณุฉ ุงู„ identity ุฃุณ ุฎู…ุณุฉ ู…ู† ุจุงู„
241
00:26:12,600 --> 00:26:19,940
identity ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุงู„ุญุงู„ุฉ ุงู„ุซุงู†ูŠุฉ ู„ูˆ ูƒุงู† ุงู„
242
00:26:19,940 --> 00:26:26,180
order ู„ู„ู€ G ุจุฏู‡ ูŠุณุงูˆูŠ ุฎู…ุณุฉ then ุงู„ู€ G ุฃุณ ุฎู…ุณุฉ ุจุฏู‡
243
00:26:26,180 --> 00:26:32,180
ูŠุณุงูˆูŠ ุงู„ identity ูˆ ู‡ูˆ ุงู„ู…ุทู„ูˆุจ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู…ุฏุงู…
244
00:26:32,180 --> 00:26:37,200
ุงู„ู€ G non-cyclic ุงู„ู€ G ุฃุณ ุฎู…ุณุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„
245
00:26:37,200 --> 00:26:41,140
identity element ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง
246
00:27:02,160 --> 00:27:09,020
ุทุจ ู†ู†ุชู‚ู„ ุฅู„ู‰ ุชุนุฑูŠู ุฌุฏูŠุฏ ุฃูˆ ู„ูƒุฑูˆู„ุฑูŠ ุฑู‚ู… ุฃุฑุจุนุฉ ูƒุฑูˆู„ุฑูŠ
247
00:27:09,020 --> 00:27:18,180
ุฑู‚ู… ุฃุฑุจุนุฉ ุจุณู…ูˆู‡ุง
248
00:27:18,180 --> 00:27:23,420
Fermat Fermat's
249
00:27:23,420 --> 00:27:26,260
little theorem
250
00:27:31,620 --> 00:27:39,240
ู†ุตู‡ุง ูƒุงู„ุชุงู„ูŠ ุจูŠู‚ูˆู„ for every integer a for every
251
00:27:39,240 --> 00:27:56,220
integer a and every prime p and every prime p ุงู„ู€ a
252
00:27:56,220 --> 00:28:05,260
to the power p modulo p ุจุฏูˆ ูŠุณุงูˆูŠ ุงู„ู€ a modulo p
253
00:28:05,260 --> 00:28:08,480
ุจุฏู†ุง
254
00:28:08,480 --> 00:28:11,720
ู†ุจุฑู‡ู† ุตุญู‘ูŠุชู‡ุง ู„ proof
255
00:28:16,540 --> 00:28:21,300
ู‡ุฐู‡ ุณู…ู‘ูŠุช ุจุงุณู… Fermat's Little Theorem ู„ุฃู†ู‘ ุงู„ุงูƒุชุดุงู ู‡ุฐู‡ ุงู„ุดุบู„ุฉ
256
00:28:21,300 --> 00:28:26,420
ูˆุณู…ู‘ูŠุช Little ู„ุฃู†ู‘ูŠ ุจูุตุบู‘ุฑ ุงู„ุฑู‚ู… ุงู„ูƒุจูŠุฑ ุฃู†ุง ุนู†ุฏูŠ ุฑู‚ู…
257
00:28:26,420 --> 00:28:32,620
ูƒุจูŠุฑ ุถุฎู… ุจูุตุบู‘ุฑู‡ ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ูŠุนู†ูŠ ุจุฌูŠุจ ุฑู‚ู… ู…ูƒุงูุฆ ู„ู‡
258
00:28:32,620 --> 00:28:38,980
ููŠ ุญุงู„ุฉ ุฅุฐุง ูƒุงู† ุงู„ู…ู‚ูŠุงุณ ู‡ูˆ P ูุจู‚ูˆู„ ุฃูŠ integer A ูˆ
259
00:28:38,980 --> 00:28:43,630
every prime P ุงู„ู€ A to the power of P modulo P
260
00:28:43,630 --> 00:28:49,090
ุงู„ู„ุงู‘ุญุธ ุงู„ู€ modulo P ู‡ูˆ ุงู„ุฃุณ ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุฐุง ูˆ ู‡ุฐุง
261
00:28:49,090 --> 00:28:54,040
ู„ุงุฒู… ูŠูƒูˆู† ุงู„ู€ prime number ุดุฑุท ุฃุณุงุณูŠ ู…ุด ุฃูŠ ุฑู‚ู… ุฅู†
262
00:28:54,040 --> 00:28:59,300
ุญุฏุซ ุฐู„ูƒ ูŠุจู‚ู‰ ุจู‚ูˆู„ู‡ ู‡ุฐุง a modulo p ูŠุนู†ูŠ ู‡ุฐุง ุงู„ู€ p
263
00:28:59,300 --> 00:29:03,800
ุจูƒูˆู† ุงุชุฎู„ู‘ุตุช ู…ู†ู‡ุง ูˆุจุงู„ุชุงู„ูŠ ุงู„ุฑู‚ู… ุงู„ุถุฎู… ู‡ุฐุง ุตุบู‘ุฑุชู‡
264
00:29:03,800 --> 00:29:08,260
ุฅู„ู‰ ุฑู‚ู… a modulo p ุงู„ู€ a ู‡ุฐู‡ ูŠู…ูƒู† ุชูƒูˆู† ุฃูƒุจุฑ ู…ู† ุงู„ู€ p
265
00:29:08,260 --> 00:29:12,980
ูˆูŠู…ูƒู† ุชูƒูˆู† ุฃุตุบุฑ ู…ู† ุงู„ู€ p ู…ุญุทู‘ ุงู„ุดุฑุท ุนู†ุฏูŠ ูƒู„ ุงู„ู„ูŠ
266
00:29:12,980 --> 00:29:17,480
ุญุทู‘ูˆุง ุฃู†ู‘ integer ูˆ ุงู„ู€ p is a prime ู†ุฑูˆุญ ู†ุณุจุฉ ุตุญุฉ
267
00:29:17,480 --> 00:29:22,090
ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฃู†ูŠ ุจุฏูŠ ุฃุฎุฏ ุญุงู„ุชูŠู† ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ ู„ูˆ ูƒุงู†
268
00:29:22,090 --> 00:29:27,790
ุงู„ู€ A ุฃู‚ู„ ู…ู† P ูˆ ุงู„ุญุงู„ุฉ ุงู„ุซุงู†ูŠุฉ ู„ูˆ ูƒุงู† ุงู„ู€ A ุฃูƒุจุฑ ู…ู†
269
00:29:27,790 --> 00:29:34,610
P ุจุฏูŠ ุฃุฏุฑุณ ุฅูŠู‡ ุงู„ุญุงู„ุฉ ุงู„ุซุงู†ูŠุฉ ุทุจ ู„ูˆ ูŠุณุงูˆูŠ ู„ูˆ ุงู„ู€ A ูŠุณุงูˆูŠ
270
00:29:34,610 --> 00:29:38,790
ุงู„ู€ P ูŠุจู‚ู‰ ู…ู† 100 ู„ู…ุง ูŠุจู‚ู‰ Zero ุจุฏูŠ ุฃุณุงูˆูŠ Zero ุนู„ู‰
271
00:29:38,790 --> 00:29:43,710
ุทูˆู„ ุงู„ุฎุทู‘ ุทูŠุจ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฌูŠ ูŠุจู‚ู‰ ู…ุง ุนู†ุฏูŠุด ู…ุดูƒู„ุฉ ููŠ
272
00:29:43,710 --> 00:29:47,930
ุญุงู„ุฉ ุงู„ู€ Zero ู„ูŠุด ุจุตุฑุงุญุฉ ุฎู„ุงุต Zero ุจุณุงูˆูŠ Zero ุทูŠุจ
273
00:29:47,930 --> 00:29:59,460
ุจุฏูŠ ุฃุฎุฏ F ุงู„ู€ P less than 0 ู„ุฃ
274
00:29:59,460 --> 00:30:08,740
ู„ูˆ ูƒุงู† less than A ู„ูˆ ูƒุงู† F ุงู„ู€ A less than P ู„ูˆ
275
00:30:08,740 --> 00:30:19,080
ูƒุงู† ุงู„ู€ A ุฃู‚ู„ ู…ู† P then ุงู„ู€ P ุงู„ู€ .. ุงู„ู€ A ู‡ุฐู‡ ุจุชูƒูˆู†
276
00:30:19,080 --> 00:30:25,500
ู…ูˆุฌูˆุฏุฉ ููŠ ู…ุฌู…ูˆุนุฉ ุงู„ุฃุนุฏุงุฏ 1 ูˆ 2 ูˆ 3 ูˆ
277
00:30:25,500 --> 00:30:33,740
ู„ุบุงูŠุฉ P minus ุงู„ู€ 1 ุฃูƒูŠุฏ ู…ูŠุฉ ุงู„ู…ูŠุฉ ู…ุฏุงู… A integer
278
00:30:33,740 --> 00:30:38,820
ุฃุตุบุฑ ู…ู† P ูŠุจู‚ู‰ A ู…ูˆุฌูˆุฏ ููŠ ุงู„ู…ุฌู…ูˆุนุฉ ู‡ุฐู‡ ุทุจ ู…ูŠู† ู‡ูŠ
279
00:30:38,820 --> 00:30:46,580
ุงู„ู…ุฌู…ูˆุนุฉ ู‡ุฐู‡ ู…ุด UP ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุชุณุงูˆูŠ UP
280
00:30:49,020 --> 00:30:59,020
ูŠุจู‚ู‰ ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู†ู‘ ุงู„ู€ a ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ U P ุทูŠุจ
281
00:30:59,020 --> 00:31:08,500
ูŠุจู‚ู‰ ู‚ุฏุงุด ุงู„ู€ order ู„ู€ U P ู†ู‚ุต ูˆุงุญุฏุŒ ูƒูˆูŠุณ ู‡ุฐุง ุจูŠู‚ูŠู†
282
00:31:08,500 --> 00:31:20,930
ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ู€ order ู„ู€ U P ุจูŠุณุงูˆูŠ P ู†ุงู‚ุต ูˆุงุญุฏ ุทุจุนู‹ุง ุทูŠุจ
283
00:31:20,930 --> 00:31:26,950
ุงู„ุขู† ุฃู†ู‘ ูŠุฃุชูŠ crawler ููŠู‡ู… ู‡ุฐู‡ ุงู„ู„ูŠ ู‚ุงู„ุช ู„ูŠ ุงู‡
284
00:31:26,950 --> 00:31:31,070
ู…ุดุญู†ุงู‡ุง ุงู„ู„ูŠ ู‡ูˆ a ุฃูˆ ุฒูŠ ู…ุง ุฃุธู†ู‘ ุงู„ู€ crawler ุฑู‚ู… 3
285
00:31:31,070 --> 00:31:36,270
ุงู„ู€ a ุฃูˆ ุงู„ู€ order ู„ู„ู€ a ุจุฏูˆ ูŠุณุงูˆูŠ ุงู„ู€ ID 3 ุทูŠุจ
286
00:31:36,270 --> 00:31:43,790
ู‡ู†ุง from crawler ุซู„ุงุซุฉ
287
00:31:43,790 --> 00:31:52,450
ุฃูŠ element ุจุฏูŠ ุฃุฎุฏ ู…ุฑููˆุน ู„ู„ู€ order ุชุจุน ุงู„ู€ U P ุจุฏูŠ
288
00:31:52,450 --> 00:32:00,810
ูŠุณุงูˆูŠ ุงู„ู€ identity ุงู„ู„ูŠ ู‡ูˆ 1 ู‡ุฐุง ุงู„ูƒู„ุงู…
289
00:32:00,810 --> 00:32:06,510
ุฅูŠุด ู…ุนู†ุงู‡ุŸ ู…ุนู†ุงู‡ ุงู„ู€ A ุฃุณ ุงู„ู€ P ู†ุงู‚ุต 1 ุจุฏูˆ ูŠุณุงูˆูŠ
290
00:32:06,510 --> 00:32:15,030
1 ุทูŠุจ ู„ูˆ ุถุฑุจุช ุงู„ุทุฑููŠู† ููŠ A ุฅูŠุด ุจูŠุตูŠุฑ ุนู†ุฏูŠุŸ A ุฃุณ
291
00:32:15,030 --> 00:32:21,900
P ุจุฏูˆ ูŠุณุงูˆูŠ ุงู„ู€ A ูŠุจู‚ู‰ ู…ุนู†ุงู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู†ู‘ a is p
292
00:32:21,900 --> 00:32:28,960
modulo p ุจุฏูˆ ูŠุณุงูˆูŠ a modulo p ู…ุงุฏุฉ ู…ุง ุงู„ุฑู‚ู…ูŠู† ู‡ุฐุง
293
00:32:28,960 --> 00:32:33,320
ุงู„ู„ูŠ ุจูŠุณุงูˆูˆุง ุจุนุถ ุฅุฐุง ุจุฏูŠ ูŠูƒูˆู† ู‡ุฐุง modulo p ุจุฏูˆ ูŠุณุงูˆูŠ
294
00:32:33,320 --> 00:32:38,060
ู‡ุฐุง modulo p ุชู…ุงู…ู‹ุง ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ู‡ุฐุง ู„ูˆ ูƒุงู†ุช ุฅูŠุด ุงู„ู€
295
00:32:38,060 --> 00:32:44,840
a ุฃู‚ู„ ู…ู† p ุทุจ ู„ูˆ ูƒุงู†ุช ุงู„ู€ a ุฃูƒุจุฑ ู…ู† p ูŠุจู‚ู‰ f ุงู„ู€ a
296
00:32:44,840 --> 00:32:46,940
greater than p
297
00:32:51,570 --> 00:32:57,570
ูŠุนู†ูŠ ุงู„ู€ A ู‡ุฐู‡ P ุฒุงุฆุฏ ุดูˆูŠุฉ 2 P ุฒุงุฆุฏ ุดูˆูŠุฉ 3 P
298
00:32:57,570 --> 00:33:01,970
20 P ุฒุงุฆุฏ ุฒุงุฆุฏ ุดูˆูŠุฉ ุชู…ุงู… ูŠุจู‚ู‰ ุจุงู„ู€ division
299
00:33:01,970 --> 00:33:09,730
algorithm ุจู‚ูˆู„ ู„ู‡ then ุงู„ู€ A ู‡ุฐุง ุจุฏูˆ ูŠุณุงูˆูŠ ุงู„ู€ M P
300
00:33:09,730 --> 00:33:15,870
ุฒุงุฆุฏ ุงู„ู€ R ูŠุนู†ูŠ ู…ุถุงุนูุฉ ุงู„ู€ P ุฒุงุฆุฏ ุงู„ู€ R ูˆ ุงู„ู€ R ู‡ุฐู‡
301
00:33:15,870 --> 00:33:25,010
ุฃูƒุจุฑ ู…ู† ุฃูˆ ุชุณุงูˆูŠ Zero ุฃู‚ู„ ู…ู† ู…ูŠู†ุŸ ุฃู‚ู„ ู…ู† P ุทูŠุจ ู„ูˆ
302
00:33:25,010 --> 00:33:31,190
ุฌูŠุช ู…ุฏุงู… ุนุฑูุช ุฒูŠูƒ ุงู„ู„ูŠ ู‡ูˆ ุฃุฎุฏุช ุงู„ุขู† ุงู„ู€ A modulo P
303
00:33:31,190 --> 00:33:39,730
ูƒุฏู‡ ุฅูŠุด ุจุฏูˆ ูŠุณุงูˆูŠุŸ R ุฃู†ุง ุนู†ุฏูŠ ุงู„ู€ A ุจุฏูˆ ูŠุณุงูˆูŠ MP ุฒูŠ
304
00:33:39,730 --> 00:33:43,630
ุฏู‡ ุฃู†ุง ุฃุฎุฏุช ุงู„ู€ A modulo P ุจู‚ู‰ ู…ุถุงุนูุงุช ุงู„ู€ P ุจุทูŠู‘ุฑู‡ุง
305
00:33:43,630 --> 00:33:49,810
ุฅูŠุด ุจูŠุธู‡ุฑ ุนู†ุฏูŠุŸ ุจูŠุธู‡ุฑ ุนู†ุฏูŠ R ูŠุจู‚ู‰ ู‡ุฐุง ุจูŠุจู‚ู‰ ุนู†ุฏูŠ ู…ูŠู†ุŸ
306
00:33:49,810 --> 00:33:56,570
ุจูŠุจู‚ู‰ ุนู†ุฏูŠ R ูู‚ุท ู„ุง ุบูŠุฑ ุทูŠุจ ุงู„ุขู† ุงู„ู€ R ู…ุญุตูˆุฑุฉ ู…ู†
307
00:33:56,570 --> 00:34:01,590
ุฃูŠู† ุฅู„ู‰ ุฃูŠู†ุŸ ู…ู† Zero ุฅู„ู‰ P ูˆุฃู†ุง ุฌุงูŠู„ ุฃู†ู‘ ุงู„ู€ A
308
00:34:01,590 --> 00:34:08,210
modulo P ุจุฏูˆ ูŠุณุงูˆูŠ ุงู„ู€ R ุงู„ู€ R ูŠุนู†ูŠ ู…ูˆุฌูˆุฏุฉ ูˆูŠู†ุŸ ููŠ ุงู„ู€
309
00:34:08,210 --> 00:34:17,490
U P ุตุญ ูˆู„ุง ู„ุงุŸ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ U P ู„ูŠุดุŸ ู„ุฃู†ู‘ู‡ุง ู…ุญุตูˆุฑุฉ
310
00:34:17,490 --> 00:34:25,050
ู…ู† ุตูุฑ ุฅู„ู‰ P ุทุจุนู‹ุง ุทูŠุจ ู…ุฏุงู… ู…ุญุตูˆุฑุฉ ู‡ุฐู‡ ุชุณุงูˆูŠ ู‡ุฐู‡
311
00:34:25,050 --> 00:34:31,030
ูˆู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ุฅุฐุง automatic ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ุฅูŠุด ู‚ู„ู†ุง
312
00:34:31,030 --> 00:34:35,970
ู‡ู†ุง ู„ูˆ ูƒุงู† ููŠ ุงู„ุจุฑู‡ุงู† ุงู„ุฃูˆู„ ุจู‚ูˆู„ ู„ู…ุง ุชุจู‚ู‰ ุงู„ู€ a
313
00:34:35,970 --> 00:34:41,750
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ U P ุงุณุชู†ุชุฌู†ุง ุฃู†ู‘ ู‡ุฐุง ุงู„ูƒู„ุงู… ู…ุง ู„ู‡ ุตุญูŠุญ
314
00:34:41,750 --> 00:34:52,610
ุชู…ุงู… ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ from the above from ู…ู† ุงู„ุจุฑู‡ุงู†
315
00:34:52,610 --> 00:35:00,500
ุฃุนู„ุงู‡ ูŠุจู‚ู‰ ุงู„ู€ a modulo p modulo p ุจุฏูˆ ูŠุณุงูˆูŠ a ุฃุณ p
316
00:35:00,500 --> 00:35:07,300
modulo p ูˆุงู†ุชู‡ูŠู†ุง ู…ู†ู‡ุง ูŠุจู‚ู‰ ุนู„ู‰ ูƒู„ู‘ ุงู„ุฃู…ุฑ ูŠุนู†ูŠ ุณูˆุงุก
317
00:35:07,300 --> 00:35:12,360
ูƒุงู† ุงู„ู€ a ุฃูƒุจุฑ ู…ู† p ูˆู„ุง ุฃุตุบุฑ ู…ู† p ูุฅู†ู‘ ุงู„ู€ a to the
318
00:35:12,360 --> 00:35:18,220
power p modulo p ุจุฏูˆ ูŠุณุงูˆูŠ ู…ู†ู‡ุง ุงู„ู€ a modulo p ุญุฏ
319
00:35:18,220 --> 00:35:24,110
ูŠู„ุงู‚ูŠ ุฃูŠู‘ ุงุณุชูุณุงุฑ ู‡ู†ุง ุทุจ ู†ุญุงูˆู„ ู†ุนุทูŠ ุฃูƒุซุฑ ู…ู† ู…ุซุงู„ ุนู„ู‰
320
00:35:24,110 --> 00:35:30,770
ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุงู„ู…ุซุงู„ ุงู„ุฃูˆู„ ูŠุจู‚ู‰
321
00:35:30,770 --> 00:35:41,150
examples find
322
00:35:41,150 --> 00:35:54,640
the exact value ู…ุชุฌุฏู‘ุฏุด ุงู„ู‚ูŠู…ุฉ ุงู„ุญู‚ูŠู‚ูŠุฉ of 15
323
00:35:54,640 --> 00:36:04,480
ุฃุณ 11 modulo 11 of ูˆู‡ุฐุง ูŠุฌุจ ุฃู† ุฃุนุชุจุฑู‡ุง ุฅูŠู‡
324
00:36:04,480 --> 00:36:11,760
ูˆูŠุฌุจ ุฃู† ู†ุฃุชูŠ ุฅู„ู‰ ุงู„ู€ B ูŠุฌุจ ุฃู† ูŠูƒูˆู† 7 ุฃุณ 13
325
00:36:11,760 --> 00:36:15,880
modulo 11
326
00:36:29,550 --> 00:36:35,690
ุฎู„ู‘ูŠ ุฃุจู‚ู‰ ู„ูƒ ู‡ู†ุง ุจู‚ูˆู„ ู‡ุงุช ู„ู„ู‚ูŠู…ุฉ ุงู„ุญู‚ูŠู‚ูŠุฉ ู„ู„ู€ 15
327
00:36:35,690 --> 00:36:41,550
ุฃุณ 11 modulo 11 ูˆูƒุฐู„ูƒ 7 ุฃุณ 13 modulo
328
00:36:41,550 --> 00:36:47,610
11 ุงู„ุญู„ ูƒุงู„ุชุงู„ูŠ ุจูŠุฑูˆุญ ุฃุฎุฏ ุฅูŠู‡ุŸ ู†ู…ุฑ ุฅูŠู‡ุŸ ู†ู…ุฑ
329
00:36:47,610 --> 00:36:54,530
ุฅูŠู‡ุŸ ุจุฏูŠ ุฃุฎุฏ ู„ู‡ ุงู„ู€ 15 ุฃุณ 11 modulo 11
330
00:36:54,530 --> 00:37:01,420
ุงู„ู†ุชุฌ 15 modulo 11 ุตุญู‘ูŠูƒ ูŠุง ุดุจุงุจ
331
00:37:05,780 --> 00:37:11,120
ู„ูˆ ูƒุงู† ู‡ุฐุง P ูˆ ู‡ุฐุง P ูŠุชู…ุงุซู„ ู†ูุณ ุจุนุถ ูŠุจู‚ู‰ ู‡ุฐุง ูŠู‚ูˆู„
332
00:37:11,120 --> 00:37:17,060
ุฅู„ู‰ E modulo P ูŠุจู‚ู‰ ุฃู†ุง ุนู†ุฏูŠ 15 ูˆ 11 modulo
333
00:37:17,060 --> 00:37:20,380
11 ูŠุจู‚ู‰ ุฃู†ุง ุนู†ุฏูŠ 15 modulo 11 ูŠุจู‚ู‰ ุฃู†ุง
334
00:37:20,380 --> 00:37:20,420
ุนู†ุฏูŠ 15 modulo 11 ูŠุจู‚ู‰ ุฃู†ุง ุนู†ุฏูŠ 15
335
00:37:20,420 --> 00:37:23,320
modulo 11 ู‡ูŠ 15 modulo 11 15 modulo
336
00:37:23,320 --> 00:37:28,240
11 ุฃูƒุจุฑ ู…ู† ุงู„ู€ 11 ุฅุฐุง ุจุฏูŠ ุฃุดูŠู„ ู…ู†ู‡ุง ุงู„ู€ 11 ุฃูˆ
337
00:37:28,240 --> 00:37:32,840
ู…ุถุงุนูุงุช ุงู„ู€ 11 ูƒุฏู‡ุด ุจุทู„ุน ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ุชุณุงูˆูŠ 4
338
00:37:33,130 --> 00:37:39,010
ูŠุจู‚ู‰ ู‡ุฐุง ุณุคุงู„ direct ู…ุจุงุดุฑ ู„ูƒู† ู‚ุฏ ูŠูƒูˆู† ุงู„ุณุคุงู„ ุบูŠุฑ
339
00:37:39,010 --> 00:37:46,030
ู…ุจุงุดุฑ ุบูŠุฑ ู…ุจุงุดุฑ ูƒูŠูุŸ ุฒูŠ ู…ุง ู‚ุงู„ ู„ูŠ 7 ุฃุณ 13
340
00:37:46,030 --> 00:37:56,510
modulo 11 ุจุฏูˆ ูŠุณุงูˆูŠ ูŠุนู†ูŠ
341
00:37:56,510 --> 00:37:59,850
ู…ุง ู†ูุนุด ุฃู‚ูˆู„ ุงู„ุฌูˆุงุจ ุงู„ู„ูŠ ู‡ูˆ 7 modulo 11ุŸ
342
00:37:59,850 --> 00:38:02,290
ุฎู„ุทุŸ
343
00:38:03,320 --> 00:38:09,060
ุบู„ุท ูˆู†ุตู ุจุฏูˆ ูŠูƒูˆู† ุงู„ุฑู‚ู… ู‡ุฐุง ุงู„ุฃุณ ู‡ูˆ ุงู„ู…ู‚ูŠุงุณ ุงู„ู„ูŠ
344
00:38:09,060 --> 00:38:15,220
ุนู†ุฏูŠ ุทูŠุจ ูŠุนู†ูŠ ุฅูŠุดุŸ ูŠุนู†ูŠ 7 ุฃุณ 13 ุจุฏูŠ ุฃูƒุชุจู‡ุง
345
00:38:15,220 --> 00:38:21,920
ุจุฏู„ุงู„ุฉ 7 ุฃุณ 11 ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ 7 ุฃุณ
346
00:38:21,920 --> 00:38:30,490
11 ูƒุฏู‡ุด ุจูŠุธู„ู‘ 7 ุชุฑุจูŠุน ูƒู„ู‘ modulo 11 ู‡ุฐู‡ ู‡ูŠ
347
00:38:30,490 --> 00:38:37,810
ุนุจุงุฑุฉ ุนู† 7 ุฃุณ 11 modulo 11 ู…ุถุฑูˆุจุฉ ููŠ
348
00:38:37,810 --> 00:38:46,530
ู…ู† ููŠ 7 ุชุฑุจูŠุน modulo 11 ูŠุจู‚ู‰ ุญูˆู„ุชู‡ุง ุฅู„ู‰ ุญุตู„
349
00:38:46,530 --> 00:38:50,850
ุถุฑุจ ุงู„ุฑู‚ู…ูŠู† ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ุขู† ู…ู† Fermat's Little Theorem ู‡ุฐู‡
350
00:38:50,850 --> 00:38:55,210
ุดูƒู„ู‡ุง ุดูƒู„ Fermat's Little Theorem ูŠุจู‚ู‰ ู‡ุฐุง 7 modulo
351
00:38:55,210 --> 00:39:01,570
11 ูŠุจู‚ู‰ ู‡ู†ุง 7 modulo 11 ู…ู† Fermat's
352
00:39:01,570 --> 00:39:07,610
Little Theorem ูˆู‡ุฐู‡ 7 ุชุฑุจูŠุน ูŠุนู†ูŠ 49 modulo
353
00:39:07,610 --> 00:39:14,600
ู…ู† 11 ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุงู„ุขู† ู‡ุฐู‡ ุงู„ู€ 7
354
00:39:14,600 --> 00:39:20,400
modulo 11 ู„ุฃู†ู‘ 49 modulo 11 ููŠู‡ุง
355
00:39:20,400 --> 00:39:27,020
ู‚ุฏุงุดุŸ ู„ุฃู†ู‘ 11 ููŠ 4 ู…ู† 49 ุจูŠุธู„ู‘ 5
356
00:39:27,020 --> 00:39:34,180
ูŠุจู‚ู‰ ู…ุถุฑูˆุจุฉ ููŠ ู…ู†ุŸ ู…ุถุฑูˆุจุฉ ููŠ 5 modulo 11
357
00:39:37,280 --> 00:39:44,860
35 ุนุจุงุฑุฉ
358
00:39:44,860 --> 00:39:51,290
ุนู† 11 ููŠ 3 33 ุฒุงุฆุฏ 2 ูŠุจู‚ู‰
359
00:39:51,290 --> 00:39:56,130
ุงู„ู†ุชุฌ ูƒู„ู‡ ูŠุณุงูˆูŠ 2 ูŠุจู‚ู‰ ู‡ุงู„ุฑู‚ู… ุงู„ุถุฎู… ุงู„ู„ูŠ
360
00:39:56,130 --> 00:40:00,650
ุนู†ุฏู†ุง ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ 7 ุฃุณ 13 ูŠุนู†ูŠ ุจุฏูŠ ุฃุถุฑุจ
361
00:40:00,650 --> 00:40:04,990
7 ููŠ ู†ูุณู‡ุง 13 ู…ุฑุฉ ูˆุฃุฌูŠุจู„ู‡ุง ุงู„ู…ูˆุฏูŠู„
362
00:40:04,990 --> 00:40:09,150
11 ุงุฎุชุตุฑู†ุงู‡ุง ูˆู‚ู„ู†ุง ู†ุงุชุฌ ูŠุณุงูˆูŠ ู‚ุฏุงุดุŸ ูŠุณุงูˆูŠ
363
00:40:09,150 --> 00:40:11,490
2 ุนู„ู‰ ุทูˆู„ ุงู„ุฎุทู‘
364
00:40:16,940 --> 00:40:24,100
ุชุญุณุจ ุดูˆ ู…ุง ุนู„ูŠูƒุด ู‚ูŠูˆุฏ ู…ุฏุงู… ุฃู†ุช ู…ุงุดูŠ ุณู„ูŠู… ูŠุจู‚ู‰ ุงุญุณุจ
365
00:40:24,100 --> 00:40:29,680
ุงู„ู„ูŠ ุจุฏูƒ ูŠุงู‡ ู…ุชู‰ ู„ุงุฒู… ุงู„ู‚ู…ุน ุนุงุฑู ู‚ุตุฏู‡ ู„ูˆ ุญุทูŠู†ุง
366
00:40:29,680 --> 00:40:35,960
element ูˆุญุทูŠู†ุง ู„ู‡ ู‚ูˆู‘ุฉ ูƒุจูŠุฑ ูˆุจุชุตุบู‘ุฑ ู‡ุฐุง ุงู„ู‚ูˆู‘ุฉ ู‚ุตุฏู‡ ุงู‡
367
00:40:35,960 --> 00:40:43,830
ุทูŠุจ ููŠ ุนู†ุฏู†ุง ุฎุฏ ุจุงู„ูƒ ุดุบู„ุฉ ุจุฏูŠ ุฃุดูŠุฑ ุฅู„ูŠู‡ุง ู†ุธุฑูŠุฉ
368
00:40:43,830 --> 00:40:50,950
Lagrange ุจุชู‚ูˆู„ ุงู„ู€ order ู„ู„ู€ subgroup ุจูŠู‚ุณู… ู…ู†ุŸ
369
00:40:50,950 --> 00:40:57,230
ุจูŠู‚ุณู… ู„ู€ group ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ููŠ ู‡ุฐู‡ ุงู„ุญู„ู‚ุฉ ูƒู„ู‘ ู‚ุงุณู…
370
00:40:57,230 --> 00:41:03,490
ู„ู€ group ุจุฏูŠู‘ู‡ ุฌุงุจ ู„ู‡ subgroupุŸ ุจุงู„ุชุฃูƒูŠุฏุŸ ูŠุนู†ูŠ ุนูƒุณ
371
00:41:03,490 --> 00:41:08,550
ุงู„ู†ุธุฑูŠุฉ ุตุญูŠุฉุŸ ููŠ ุดูุชุฑ 4 ู‡ูŠูƒุŸ ุทูŠุจ
372
00:41:13,820 --> 00:41:20,700
ู‡ุฐุง ูƒู„ุงู…ูƒ ู…ุด ุตุญูŠุญ ุจุฏู„ูŠู„ ู…ุซุงู„ 5 ุนู„ู‰ ุงู„ู€ section
373
00:41:20,700 --> 00:41:25,480
ุงู„ุขู† ูˆุตู„ู†ุง ู„ู‡ ู„ุฃู†ู‘ ุนูƒุณ ู†ุธุฑูŠุฉ Lagrange ุบูŠุฑ ุตุญูŠุญ
374
00:41:25,480 --> 00:41:30,100
ูˆุนู†ุฏูƒ ู…ุซุงู„ ุชุทู„ุน ุนู„ูŠู‡ ููŠ ุงู„ูƒุชุงุจ ุงู„ู„ูŠ ู‡ูˆ ู…ุซุงู„ 5
375
00:41:30,100 --> 00:41:37,280
ุจุงู„ูƒุชุงุจ ูŠุนู†ูŠ .. ูŠุนู†ูŠ .. ูŠุนู†ูŠ ู„ูˆ ุนู†ุฏูŠ ู‚ูˆุงุณู… ู„ู„ู€ order
376
00:41:37,280 --> 00:41:41,780
ุชุจุน ุงู„ู€ .. ุชุจุน ุงู„ู€ group ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุฃู†ู‡ ุงู„ุฐูŠ ูŠุฃุชูŠ ุงู„ู€
377
00:41:41,780 --> 00:41:47,220
sub group ุงู„ู€ order ุงู„ุฐูŠ ู‡ูŠุณูˆูŠ ู‡ุฐุง ุงู„ู‚ูˆุงุณู… ู‚ุฏ .. ูŠุง
378
00:41:47,220 --> 00:41:53,010
ุดูŠุฎ ุฃู†ุช ุงุณู…ุนู†ูŠ ุดูˆูŠุฉ ุจู‚ู‰ ..ุฃุญู†ุง ุจูŠู‚ูˆู„ ู…ุง ูŠุฃุชูŠ ุฃู†ุง
379
00:41:53,010 --> 00:41:56,750
ูˆูƒ ุชูู‡ู… ุฃู† ุนูƒุณ ู†ุธุฑูŠุฉ ู„ุงุฌุฑุงู†ุฌ ู„ูŠุณ ุตุญูŠุญ ููŠ ุญุงู„ุฉ ู…ุง ู‡ูˆ
380
00:41:56,750 --> 00:42:01,310
ุนูƒุณ ู†ุธุฑูŠุฉ ู„ุงุฌุฑุงู†ุฌ ู„ูˆ ุฌุจุช ู‚ูˆุงุณู… ุงู„ู€ order ู„ูŠู„ูŠ ุฌุฑูˆุจ
381
00:42:01,310 --> 00:42:07,090
ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ูƒู„ ู‚ุงุณู… ูŠุฌูŠุจ ู„ู‡ sub group ู‚ุฏ ูŠูƒูˆู† ูˆ ู‚ุฏ
382
00:42:07,090 --> 00:42:11,110
ู„ุง ูŠูƒูˆู† ู…ู…ูƒู† ุจุนุถ ุงู„ู‚ูˆุงุณู… ูŠุฌูŠู„ู‡ู… sub group ูŠุญู…ู„ ู†ูุณ
383
00:42:11,110 --> 00:42:15,200
ุงู„ู€ order ู„ูƒู† ุจุนุถ ุงู„ุขุฎุฑ ู…ู…ูƒู† ู…ุง ูŠุฌูŠ ู„ู‡ ุฃุนุทู‰ ู…ุซุงู„
384
00:42:15,200 --> 00:42:20,940
ุนู†ุฏูƒ ุงู„ู€ ุงู„ู„ูŠ ู‡ูˆ ุนู„ู‰ ุงู„ู€ A4 ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู…ุง ุนู„ูŠูƒ ุฅู„ุง ุฃู†
385
00:42:20,940 --> 00:42:26,320
ุชุทู„ุน ุนู„ู‰ ู‡ุฐุง ุงู„ู…ุซุงู„ ูˆ ู„ู†ุง ุฅู„ู‰ ุฐู„ูƒ ุนูˆุฏุฉ ุฅู† ุดุงุก ุงู„ู„ู‡
386
00:42:26,320 --> 00:42:28,500
ุนู„ู‰ ู†ูุณ ุงู„ู…ูˆุถูˆุน ููŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‚ุงุฏู…ุฉ