|
1 |
|
00:00:22,140 --> 00:00:26,780 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูู
ุฑุฉ ุงููู ูุงุชุช ุฃุนุทููุง |
|
|
|
2 |
|
00:00:26,780 --> 00:00:31,760 |
|
ุณุงุนุชูู ููู ุงููู ูู ุงูู chapter 7 ุงููู ุจุชุญุฏุซ ุนู |
|
|
|
3 |
|
00:00:31,760 --> 00:00:38,300 |
|
Cosets and Lagrange theoremุ ู ุนุฑููุง ุงูู coset ู |
|
|
|
4 |
|
00:00:38,300 --> 00:00:42,520 |
|
ุญุณุจูุง ุงูู cosets ูู
ุฌู
ูุนุฉ ู
ู ุงูู subgroups ูุนูู |
|
|
|
5 |
|
00:00:42,520 --> 00:00:47,080 |
|
ุฃุนุทููุง ุจุฏู ุงูู
ุซุงู ุซูุงุซุฉ ุซู
ุงูุชูููุง ุจุนุฏ ุฐูู ุฅูู |
|
|
|
6 |
|
00:00:47,080 --> 00:00:51,500 |
|
Lagrange theorem ููุฐู ุงููุธุฑูุฉ ูู ุงูุฌุจุฑ ู
ุดููุฑุฉ ูู |
|
|
|
7 |
|
00:00:51,500 --> 00:00:56,980 |
|
ูู ูุชุจ ุงูุฌุจุฑ ูุธุฑูุฉ |
|
|
|
8 |
|
00:00:56,980 --> 00:01:00,320 |
|
Lagrange ู
ุง ุจุนุฑู ุฅูุด ูุงู ูุต ุงููู ูุงุนุฏ ุจููุฑุง ูุฐุง |
|
|
|
9 |
|
00:01:00,320 --> 00:01:04,450 |
|
ุฅูุด ูุงู ูุต Lagrange theorem ูุนููุ ุทุจุนุง ุฌู finite |
|
|
|
10 |
|
00:01:04,450 --> 00:01:10,310 |
|
group ูุฐู ุงูุจุฏุงูุฉ ูุจุนุฏูุง ุจุตุฑุดู ุงู |
|
|
|
11 |
|
00:01:10,310 --> 00:01:13,570 |
|
ุงุดุชุฑ |
|
|
|
12 |
|
00:01:13,570 --> 00:01:23,130 |
|
ูุธุฑูุฉ ูุงุฌุฑุงูุฌ ุฅูุด ูุงู ูุตูุง ุทุฑููุฉ Lagrangeุ ูุงู |
|
|
|
13 |
|
00:01:23,130 --> 00:01:27,570 |
|
ุจุฏุฑ ุฃุถุงุฆูููุง ูุนูู ุงูุทุฑููุฉ Lagrange theorem ุจูููู |
|
|
|
14 |
|
00:01:27,570 --> 00:01:31,870 |
|
ูู ุฃุฎุฏุช ุฃู subgroup ู
ู ุงูู group ุงููู ุนูุฏู ูุฅู ุงูู |
|
|
|
15 |
|
00:01:31,870 --> 00:01:36,170 |
|
order ููู subgroup ููุณู
ุงูู order ููู group ููุฐุง ู
ุง |
|
|
|
16 |
|
00:01:36,170 --> 00:01:40,560 |
|
ุจุฑูููุงู ูู ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ูุนูู ูู ุฃูุง ุนูุฏู group G |
|
|
|
17 |
|
00:01:40,560 --> 00:01:45,360 |
|
ู ุฃุฎุฏุช any subgroup ุฅู ุดุงุก ุงููู ูู trivial subgroup |
|
|
|
18 |
|
00:01:45,360 --> 00:01:50,060 |
|
ูููุณุ ูุจูู ุงูู order ููุฐู ุงูู subgroup ุจููุณู
ุงูู |
|
|
|
19 |
|
00:01:50,060 --> 00:01:54,760 |
|
order ููู group ุชู
ุงู
ุ ูุฐุง ูุงู ูุต ูุธุฑูุฉ Lagrange |
|
|
|
20 |
|
00:01:54,760 --> 00:02:00,360 |
|
ุฃุนุทููุง ุนูููุง ุจุฏู ุงูู
ุซุงู ุงุซููู ุงูุขู ุจุฏูุง ููุฌู ูุฃูู |
|
|
|
21 |
|
00:02:00,360 --> 00:02:04,380 |
|
Corollary ุนูุฏูุง ู
ุฌู
ูุนุฉ ู
ู ุงูู corollaries ุนูู ูุธุฑูุฉ |
|
|
|
22 |
|
00:02:04,380 --> 00:02:08,890 |
|
Lagrange ูุนูู ู
ุฌู
ูุนุฉ ู
ู ุงููุชุงุฆุฌ ุงููุชูุฌุฉ ุงูุฃููู ุจูููู |
|
|
|
23 |
|
00:02:08,890 --> 00:02:12,950 |
|
ูู ุงูู finite group the order of each element of |
|
|
|
24 |
|
00:02:12,950 --> 00:02:16,170 |
|
the group divides the order of the group that is |
|
|
|
25 |
|
00:02:16,170 --> 00:02:21,030 |
|
ูู ูุงู ุนูุฏู element x ู
ูุฌูุฏ ูู ุงูู group g ูุจูู ุงูู |
|
|
|
26 |
|
00:02:21,030 --> 00:02:26,050 |
|
order ูู x ุจุฏูู ููุณู
ูู ุจุฏูู ููุณู
ุงูู order ูู g ูุนูู |
|
|
|
27 |
|
00:02:26,050 --> 00:02:30,270 |
|
ูุงุฌุฑุงูุฌ ูุงู ูู ุงูู order ุชุจุน ุงูู sub group ุจููุณู
ูู |
|
|
|
28 |
|
00:02:30,270 --> 00:02:34,370 |
|
ุงูู order ููู group ุงููุชูุฌุฉ ูุฐู ุชููู ูู ูุฃ ุงูู order |
|
|
|
29 |
|
00:02:34,370 --> 00:02:37,790 |
|
ููู element ูุฐูู ูุฃู element ูู ุงูู group ุจุฏูู ููุณู
|
|
|
|
30 |
|
00:02:37,790 --> 00:02:43,070 |
|
ุฅูุงู ุจุฏูู ููุณู
ุงูู order ููู group ุจุฏูุง ูุจุฑูู ุตุญุฉ ูุฐุง |
|
|
|
31 |
|
00:02:43,070 --> 00:02:48,130 |
|
ุงูููุงู
ู
ุดุงู ูุจุฑูู ุตุญุฉ ูุฐุง ุงูููุงู
ุจุฏู ุฃููู ูู ุงูุชุฑุถ |
|
|
|
32 |
|
00:02:48,130 --> 00:02:54,530 |
|
ุฃู X ูุฐุง ู
ูุฌูุฏ ูู ุงูู group ุจุฏู ุฃุซุจุช ุฃู ุงูู order |
|
|
|
33 |
|
00:02:54,530 --> 00:02:58,710 |
|
ููุฐุง ุงูู element ุจุฏูู ููุณู
ุฅูุงู ุงูู order ููู group |
|
|
|
34 |
|
00:02:58,710 --> 00:03:06,550 |
|
ุจููู ูู ู
ุงุดู then ุงูู H ูุฐู ุงููู ุจุฏู ุฃุฎุฏูุง subgroup |
|
|
|
35 |
|
00:03:06,550 --> 00:03:14,810 |
|
ุงููู ุนุจุงุฑุฉ ุนู ุงูู subgroup generated by X ุชู
ุงู
ูุฐู |
|
|
|
36 |
|
00:03:14,810 --> 00:03:24,610 |
|
ุงูุขู subgroup ุงูู H ูุฐู is a subgroup of G ุทูุจ |
|
|
|
37 |
|
00:03:24,610 --> 00:03:29,290 |
|
ุชู
ุงู
ุจุงูู Lagrange theorem ุงูู order ูู H ุจุฏูู ููุณู
|
|
|
|
38 |
|
00:03:29,290 --> 00:03:36,020 |
|
ู
ู ุงูู order ูู G ูุจูู ุจุฑูุญ ุจูููู ููุง by Lagrange |
|
|
|
39 |
|
00:03:36,020 --> 00:03:39,400 |
|
theorem |
|
|
|
40 |
|
00:03:39,400 --> 00:03:51,300 |
|
ุงูู order ููู H divides ุงูู order ูู G ุทูุจ ูู
ุง ุชุจูู |
|
|
|
41 |
|
00:03:51,300 --> 00:03:55,160 |
|
ูุฐู ุงูู cyclic ุดู ุนูุงูุฉ ู
ุง ุจูู ุงูู order ูู H ู ุงูู |
|
|
|
42 |
|
00:03:55,160 --> 00:04:03,270 |
|
order ูู X ู
ุชุณุงููุฉ ุจูููู ููุง ุจุทุก ูููู ุงูู order ูู H |
|
|
|
43 |
|
00:04:03,270 --> 00:04:10,070 |
|
ุจุฏูู ูุณุงูู ุงูู order ูู X ูุจูู ูุฐุง ุจุฏูู ูุนุทููู ุจุฏู ู
ุง |
|
|
|
44 |
|
00:04:10,070 --> 00:04:13,810 |
|
ูููู ุงูู order ุชุจุน ุงูู H ุจุฏูู ููุณู
ุงูู G ุจุฏูู ูุดูู ุงูู |
|
|
|
45 |
|
00:04:13,810 --> 00:04:17,970 |
|
order ุชุจุน ุงูู H ู ููุชุจ ุจุฏุงูู ุงูู order ูู X |
|
|
|
46 |
|
00:04:17,970 --> 00:04:24,500 |
|
divides ุงูู order ูู G ููุงู ุงููู ุจุงูุณุฑ ุนูููุง ุฅุฐุง ู
ู |
|
|
|
47 |
|
00:04:24,500 --> 00:04:28,980 |
|
ุงูุขู ุฃุณุงุนุฏ ุฅู ุจุฏูู ุชุนุฑู ุฅู ูู ุนูุฏู group ุฎุฏุช ู
ููุง |
|
|
|
48 |
|
00:04:28,980 --> 00:04:32,540 |
|
subgroup ูุจูู ุงูู order ููุฐุง ุงูู subgroup ููุณู
ูู |
|
|
|
49 |
|
00:04:32,540 --> 00:04:37,180 |
|
group ููู ุงูู
ูุงุจู ูู ูุงู ุนูุฏู ุฃู element x ู
ูุฌูุฏ |
|
|
|
50 |
|
00:04:37,180 --> 00:04:41,920 |
|
ูู ุงูู group g ูุจูู ุงูู order ูู x ูู
ุงู ููุณู
ุงูู |
|
|
|
51 |
|
00:04:41,920 --> 00:04:46,200 |
|
order ูู g ููุฌู ูู ุงูู corollary ุงูุซุงููุฉ |
|
|
|
52 |
|
00:04:50,810 --> 00:04:57,570 |
|
Corollary ุงุซููู ุจุชููู a group of a prime order a |
|
|
|
53 |
|
00:04:57,570 --> 00:05:08,570 |
|
group of a prime order is |
|
|
|
54 |
|
00:05:08,570 --> 00:05:10,230 |
|
cyclic |
|
|
|
55 |
|
00:05:13,050 --> 00:05:19,910 |
|
ูุนูู ุฃู group ุงูู order ููุง ุจุชููู ุงูู prime ุงุซูููุ |
|
|
|
56 |
|
00:05:19,910 --> 00:05:24,450 |
|
ุซูุงุซุฉุ ุฎู
ุณุฉุ ุณุจุนุฉุ ุฃุญุฏ ุนุดุฑุ ุซูุงุซุฉ ุนุดุฑ ุฏุงุฆู
ุง ุชุจูู |
|
|
|
57 |
|
00:05:24,450 --> 00:05:29,710 |
|
Cyclic ูุฅุฐุง Cyclic ูุจูู abelian ูุฃูู ุฃุฎุฏูุงู ูุจู ุฐูู |
|
|
|
58 |
|
00:05:29,710 --> 00:05:35,950 |
|
ูู chapter 4 ุฃู any cyclic group is abelian ููู ุงูุนูุณ |
|
|
|
59 |
|
00:05:35,950 --> 00:05:40,310 |
|
ู
ุง ูููุงุด ุตุญูุญ ุทูุจ a group of a prime order is |
|
|
|
60 |
|
00:05:40,310 --> 00:05:44,850 |
|
cyclic ุจุฏูุง ูุฑูุญ ูุซุจุช ูุฐุง ุงูููุงู
ุจุฏู ุฃุฌู ุฃูููู |
|
|
|
61 |
|
00:05:44,850 --> 00:06:02,150 |
|
assume that ุงูุชุฑุถ ุฃู ุงูู g is a group with order P |
|
|
|
62 |
|
00:06:02,150 --> 00:06:10,640 |
|
that is that is ุงูู |
|
|
|
63 |
|
00:06:10,640 --> 00:06:19,540 |
|
order ูู g ุจุฏูู ูุณุงูู ุงูู P and ุงูู P is prime |
|
|
|
64 |
|
00:06:19,540 --> 00:06:25,600 |
|
ูุจูู ุงูู order ูู g ูู ุนุจุงุฑุฉ ุนู ุนุฏุฏ ุฃูู ุงุซููู |
|
|
|
65 |
|
00:06:25,600 --> 00:06:30,520 |
|
ุซูุงุซุฉ ุฎู
ุณุฉ ุณุจุนุฉ ุฃุญุฏ ุนุดุฑ ุซูุงุซุฉ ุนุดุฑ ุณุจุนุฉ ุนุดุฑ ุชุณุนุฉ ุนุดุฑ ุฒู |
|
|
|
66 |
|
00:06:30,520 --> 00:06:37,650 |
|
ู
ุง ุจุฏูู ูุจูู g group with order P ู ุงูู P ูุฐุง ุนุจุงุฑุฉ |
|
|
|
67 |
|
00:06:37,650 --> 00:06:42,990 |
|
ุนู a prime number ูููุณุ ุจุฏู ุฃุซุจุช ุฃู ูุฐุง ุงูู group |
|
|
|
68 |
|
00:06:42,990 --> 00:06:48,470 |
|
ุฏุงุฆู
ุง ู ุฃุจุฏุง ุชุจูู Cyclicุ ูููุณุ ูุจูู ุจุฏู ุฃุฌู ุฃูููู |
|
|
|
69 |
|
00:06:48,470 --> 00:06:56,210 |
|
ุฎุฐ ูู ุนูุตุฑ a ู
ูุฌูุฏ ูู G ุทุจ ุงูุนูุตุฑ a ูุฐุง ุจูููุฏ ูู ุงูู |
|
|
|
70 |
|
00:06:56,210 --> 00:06:57,650 |
|
subgroup ููุง ูุฃุ |
|
|
|
71 |
|
00:07:00,140 --> 00:07:03,500 |
|
ุฃู element ูู ุงูุฌุฑูุจ ุจูููุฏ ููู subgroup ุตุญูุญ ููุง |
|
|
|
72 |
|
00:07:03,500 --> 00:07:07,240 |
|
ูุฃุ ูู
ูู ูููู ููุด ูููุง ุฅูุง ุงูู identity ูู
ูู ุนูุตุฑูู |
|
|
|
73 |
|
00:07:07,240 --> 00:07:12,260 |
|
ูู
ูู ุซูุงุซุฉ ูู
ูู ุฃุฑุจุนุฉ ุฅูู ุขุฎุฑู ุชู
ุงู
ูุจูู little a |
|
|
|
74 |
|
00:07:12,260 --> 00:07:23,880 |
|
belongs to g then ูุฐู ูู is a is a cyclic subgroup |
|
|
|
75 |
|
00:07:26,920 --> 00:07:35,500 |
|
cyclic subgroup of G ูุจูู |
|
|
|
76 |
|
00:07:35,500 --> 00:07:43,660 |
|
ุงูู order ููุง ููุณู
ู
ู ุงูู order ูู G ูุจูู then ุงูู |
|
|
|
77 |
|
00:07:43,660 --> 00:07:48,520 |
|
order ููู subgroup generated by A divides |
|
|
|
78 |
|
00:07:51,870 --> 00:07:59,770 |
|
divide ุงูู order ูู g ุงููู ุจุฏูู ูุณุงูู ุงูู P ุฅูุด ููุงุณู
|
|
|
|
79 |
|
00:07:59,770 --> 00:08:08,310 |
|
ุงูู P ูุงุญุฏ ู ุงูู P itself ูุจูู ูููุง ูู ูููุง little a |
|
|
|
80 |
|
00:08:08,310 --> 00:08:14,750 |
|
belongs to g ู ูููุง ุงูู a ูุง ูุณุงูู ุงูู identity ูู
ุงู |
|
|
|
81 |
|
00:08:14,750 --> 00:08:20,410 |
|
ุฃุถูู ุนูููุง ุฃู ุงูู a ูุง ูุณุงูู ุงูู identity ุญุชู ูุง ููุน |
|
|
|
82 |
|
00:08:20,410 --> 00:08:26,920 |
|
ูู ุฃู ู
ุดููุฉ ุจุนุฏ ุฐูู ุชู
ุงู
ุทูุจ ูุจูู ุงูู order ูู g |
|
|
|
83 |
|
00:08:26,920 --> 00:08:33,460 |
|
ุจุฏูู ูุณุงูู ุงูู P ู
ุนูุงู ูุฐุง ุงูููุงู
ุฃู ุงูู order ูู ุงูู |
|
|
|
84 |
|
00:08:33,460 --> 00:08:39,920 |
|
subgroup generated by A ุจุฏูู ูุณุงูู ูุงุญุฏ or P ูุจูู |
|
|
|
85 |
|
00:08:39,920 --> 00:08:46,060 |
|
ูุงู ุงูููุงุณู
ุงููู ุจุชูุณู
ุงูู P ุงูุขู ูู ูู
ูู ููุฐุง ุงูู |
|
|
|
86 |
|
00:08:46,060 --> 00:08:51,020 |
|
order ุฃููู ูุณุงูู ูุงุญุฏ ูุฃ ูุฃูู ุงุดุชุฑุงุท ู
ุน ุฃู ุงูู e ูุง |
|
|
|
87 |
|
00:08:51,020 --> 00:08:58,970 |
|
ูุณุงูู ุงูู identity ุจููู ูู ูููู ุงูู order ููู subgroup |
|
|
|
88 |
|
00:08:58,970 --> 00:09:05,210 |
|
generated by a ูุง ูู
ูู ุฃู ูุณุงูู ุงููุงุญุฏ ุงูุณุจุจ ูุฃูู |
|
|
|
89 |
|
00:09:05,210 --> 00:09:11,470 |
|
ุงูู a does not equal to e ูุจูู ูุฐุง ุดู ุจุฏูู ูุนุทููุง |
|
|
|
90 |
|
00:09:11,470 --> 00:09:15,530 |
|
ูุฐุง ุจุฏูู ูุนุทููุง ุฃู ุงูู order ููู subgroup generated |
|
|
|
91 |
|
00:09:15,530 --> 00:09:21,050 |
|
by a ุจุฏูู ูุณุงูู 100 ุจุฏูู ูุณุงูู ุงูู P ุทุจ ูุฐุง ุฅูุด ุจุฏูู |
|
|
|
92 |
|
00:09:21,050 --> 00:09:25,750 |
|
ูุนุทููุง ุตุงุฑ ุงูู order ููุฐู ุงูู sub group ุจุฏูู ูุณุงูู ุงูู |
|
|
|
93 |
|
00:09:25,750 --> 00:09:29,850 |
|
P ูุจูู ุงูู sub group ูุฐู ุนุจุงุฑุฉ ุนู ู
ูู ุนุจุงุฑุฉ ุนู G |
|
|
|
94 |
|
00:09:29,850 --> 00:09:36,510 |
|
itself ุชู
ุงู
ูุจูู ูุฐุง ุจุฏูู ูุนุทููุง ุฃู ุงูู sub group |
|
|
|
95 |
|
00:09:36,510 --> 00:09:41,610 |
|
generated by A ูู ุนุจุงุฑุฉ ุนู ู
ูู ุงูู G itself ูุฃูู ุงูู |
|
|
|
96 |
|
00:09:41,610 --> 00:09:45,550 |
|
order ูู G ุจุฏูู ูุณุงูู ุงูู P ู ุงูู order ููู sub group |
|
|
|
97 |
|
00:09:45,550 --> 00:09:50,080 |
|
ูุฐุง ุจุฏูู ูุณุงูู ุงูู P ูุจูู ุงูุงุซููู are equal ูุจูู ูุฐุง |
|
|
|
98 |
|
00:09:50,080 --> 00:09:59,080 |
|
ู
ุนูุงู ุฅูุดุ ู
ุนูุงู ุฅูู ุงูู g ูู group ุงูู G is cyclic ูู |
|
|
|
99 |
|
00:09:59,080 --> 00:10:02,780 |
|
ูุงู ุงูุณุคุงู ุฃุซุจุชูุง ุฅููุง abelianุ ุจุฏู ุฃุซุจุชูุง ุฅููุง |
|
|
|
100 |
|
00:10:02,780 --> 00:10:08,180 |
|
ุงูู cyclic ูู
ู ุซู
ุจููู ูู
ุง ุฏุงู
cyclicุ ูุจูู abelian |
|
|
|
101 |
|
00:10:08,180 --> 00:10:12,780 |
|
ูุฐู ุงูู corollary ุฑูู
ุงุซูููุ ุจุฏูุง ูุฑูุญ ููู corollary ุฑูู
|
|
|
|
102 |
|
00:10:12,780 --> 00:10:16,420 |
|
ุซูุงุซุฉ ูุจูู ุงูู corollary |
|
|
|
103 |
|
00:10:18,200 --> 00:10:24,040 |
|
ุฑูู
ุซูุงุซุฉ ุฃู ุงููุชูุฌุฉ ุฑูู
ุซูุงุซุฉ ุจุชููู little g be a |
|
|
|
104 |
|
00:10:24,040 --> 00:10:34,440 |
|
finite group little g be a finite group ูุจูู |
|
|
|
105 |
|
00:10:34,440 --> 00:10:42,020 |
|
group ู
ุญุฏูุฏุฉ ุงูุนุฏุฏ ู
ู ุงูุนูุงุตุฑ little g be a finite |
|
|
|
106 |
|
00:10:42,020 --> 00:10:45,220 |
|
group and let and |
|
|
|
107 |
|
00:10:51,350 --> 00:10:57,830 |
|
ูุจูู ุงูู a ุฃุตู order ูู g ูุจูู ุงูู a ุฃุตู order |
|
|
|
108 |
|
00:10:57,830 --> 00:11:01,430 |
|
ูู g ูุจูู ุงูู a ุฃุตู order ูู g |
|
|
|
109 |
|
00:11:09,240 --> 00:11:13,740 |
|
ูุนูู ูู ุฃุฎุฏุช ุฃู element ู
ู ุงูู group ู ุญุทูุช ูู ุฃุณ |
|
|
|
110 |
|
00:11:13,740 --> 00:11:18,920 |
|
ุงูู order ุชุจุน ุงูู group ุฏุงุฆู
ุง ู ุฃุจุฏุง ุจุฏูู ูุณุงูู ุงูู |
|
|
|
111 |
|
00:11:18,920 --> 00:11:28,960 |
|
identity ุทูุจ |
|
|
|
112 |
|
00:11:28,960 --> 00:11:34,990 |
|
ูููุณ ูุดูู ูุคูุฏ ุนูู ุตุญุฉ ู
ุง ุชูููู
ูุง ูููู ุฅูุด ุงุญูุง ุนูุฏูุง |
|
|
|
113 |
|
00:11:34,990 --> 00:11:39,410 |
|
g finite group ู ุงูู a belongs to g ูุงู ูู ุฃุซุจุช ุฃู |
|
|
|
114 |
|
00:11:39,410 --> 00:11:43,890 |
|
ุงูู a ู
ุฑููุนุฉ ููุฃุฑุฏุฑ ุงูุณุงุจุน ุงูู g ุจุชุณุงูู ู
ูู ุงูู |
|
|
|
115 |
|
00:11:43,890 --> 00:11:47,430 |
|
identity element ุงูู a ูู ุฌูุช ุนูู ุงูู a corollary |
|
|
|
116 |
|
00:11:47,430 --> 00:11:53,770 |
|
one ูุจูู ุงูู order ููู a ุจุชูุณู
ูู ุงูู order ูู g ูุจูู |
|
|
|
117 |
|
00:11:53,770 --> 00:11:59,970 |
|
by a corollary one |
|
|
|
118 |
|
00:12:01,250 --> 00:12:10,590 |
|
ุงูู order ููู a divides ุงูู order ููู g ูุฐุง ู
ุนูุงุชู |
|
|
|
119 |
|
00:12:10,590 --> 00:12:16,390 |
|
ุฃู ุงูู order ููู g ุจุฏูู ูุณุงูู ุงูู order ููู a ูู ุฑูู
ู |
|
|
|
120 |
|
00:12:16,390 --> 00:12:25,970 |
|
ูููู k for some positive integer |
|
|
|
121 |
|
00:12:25,970 --> 00:12:27,990 |
|
k |
|
|
|
122 |
|
00:12:29,620 --> 00:12:35,640 |
|
for some positive integer k ุงูุขู ุฃูุง ุจุฏู ุฃุซุจุช |
|
|
|
123 |
|
00:12:35,640 --> 00:12:43,060 |
|
ุฃู ุงูู a ู
ุฑููุนุฉ ููุฃุณ ุงููู ูู ุงูู order ููู g ุจุฏูู |
|
|
|
124 |
|
00:12:43,060 --> 00:12:48,220 |
|
ูุณุงูู ุงูู identity ุจูุงุก ุนูููุง ุจูุฏุฑ ุฃููู ูุฐุง ุงูู ุงูู |
|
|
|
125 |
|
00:12:48,220 --> 00:12:54,260 |
|
order ููู g ุงููู ูู ุนุจุงุฑุฉ ุนู ุงูู order ููู a ู
ุถุฑูุจ ูู |
|
|
|
126 |
|
00:12:54,260 --> 00:13:01,570 |
|
ู
ูู ู
ุถุฑูุจ ูู K ูุฐุง ู
ุนูุงู ุฃู ุงู A ู
ุฑููุนุฉ ูู order |
|
|
|
127 |
|
00:13:01,570 --> 00:13:08,350 |
|
ุชุจุน ุงู A ูู ูุฐุง ุฃุณ K ุทุจ ุงู A ูู
ุง ูููู ู
ุฑููุน ูู |
|
|
|
128 |
|
00:13:08,350 --> 00:13:13,070 |
|
order ุชุจุนู ูุฏู ุจูุนุทููุง ุงู identity ูุจูู ูุฐุง |
|
|
|
129 |
|
00:13:13,070 --> 00:13:17,310 |
|
ุจูุนุทููุง ุงู identity ุฃุณ K ุงู identity ุฃุณ K ุจูุนุทููุง |
|
|
|
130 |
|
00:13:17,310 --> 00:13:23,230 |
|
ู
ู ุงู identity ูุจูู ุจูุงุก ุนูู ุฃุณุงุฑ ุงู A ุฃุณ ุงู order |
|
|
|
131 |
|
00:13:23,230 --> 00:13:27,970 |
|
ูู G ุฏุงุฆู
ุง ู ุฃุจุฏุง ุจุฏู ูุนุทููุง ู
ุงุฐุงุ ุจุฏู ูุนุทููุง ุงู |
|
|
|
132 |
|
00:13:27,970 --> 00:13:33,850 |
|
identity element ุชู
ุงู
ุจุฏู ุฃุฎุงุทุฑ ูุจู ู
ูุฑูุถ ูุนุทู ุจุนุถ |
|
|
|
133 |
|
00:13:33,850 --> 00:13:39,310 |
|
ุงูุฃู
ุซูุฉ ุนูู ูุฐู ุงู crawlers ุจุฏูุง ููุฌู ูุฃูู ู
ุซุงู |
|
|
|
134 |
|
00:13:39,310 --> 00:13:42,090 |
|
examples ุงู example one |
|
|
|
135 |
|
00:13:45,840 --> 00:13:52,120 |
|
example one ุจูููู show that |
|
|
|
136 |
|
00:13:52,120 --> 00:14:00,260 |
|
ุจููู ูู ุฃู every group |
|
|
|
137 |
|
00:14:00,260 --> 00:14:09,300 |
|
of order less than or equal to 5 |
|
|
|
138 |
|
00:14:16,890 --> 00:14:32,590 |
|
less than or equal to five is abelian ูุนูู |
|
|
|
139 |
|
00:14:32,590 --> 00:14:35,550 |
|
ุจูุซุจุช ุฃู ุฃู group |
|
|
|
140 |
|
00:14:38,460 --> 00:14:43,920 |
|
ุงูู order ุชุจุนูุง ุจุฏู ูุณุงูู ุฎู
ุณุฉ ุฏุงุฆู
ุง ู ุฃุจุฏุง ุฃู ุฃูู |
|
|
|
141 |
|
00:14:43,920 --> 00:14:47,440 |
|
ู
ู ุฎู
ุณุฉ is abelian ูุนูู ูู ุนูุฏู group ูููุง ุนูุตุฑ |
|
|
|
142 |
|
00:14:47,440 --> 00:14:51,540 |
|
ูุงุญุฏ ุฃู group ูููุง ุนูุตุฑูู ุฃู group ูููุง ุซูุงุซุฉ ุนูุงุตุฑ |
|
|
|
143 |
|
00:14:51,540 --> 00:14:55,880 |
|
ุฃู ุฃุฑุจุนุฉ ุนูุงุตุฑ ุฃู ุฎู
ุณุฉ ุนูุงุตุฑ ูู ูุฐู ุงูุฃูู
ูุนุฉ ู
ู ุงู |
|
|
|
144 |
|
00:14:55,880 --> 00:15:01,600 |
|
group ุชุจูู ุฏุงุฆู
ุง ู ุฃุจุฏุง abelian ุทูุจ ุงูุขู solution |
|
|
|
145 |
|
00:15:06,050 --> 00:15:11,890 |
|
ุฃุฎุฐ ุงูุขู ูู ุงู order ุงููู ุฌู ูู ุนุจุงุฑุฉ ุนู ูุงุญุฏ ูุนูู |
|
|
|
146 |
|
00:15:11,890 --> 00:15:15,930 |
|
ุงูุด ูููุง ููุท ุงู identity element ู ุงู identity |
|
|
|
147 |
|
00:15:15,930 --> 00:15:21,310 |
|
ุงูู
ูุฌูุฏุฉ ู
ุน ููุณู ุตุญูุญ ููุง ูุฃ ูุจูู ุฃุจูู ูุนูู ูุจูู |
|
|
|
148 |
|
00:15:21,310 --> 00:15:27,180 |
|
ููุง ุจุฏุฃ ุฃุฎุฏ ุงูููุทุฉ ุงูุฃููู ูู ูุงู ุงู order ูู G |
|
|
|
149 |
|
00:15:27,180 --> 00:15:33,360 |
|
ุจุฏู ูุณุงูู ูุงุญุฏ ุตุญูุญ then ุงู G ุจุฏู ูุณุงูู ุงู identity |
|
|
|
150 |
|
00:15:33,360 --> 00:15:42,340 |
|
ููุท ูุง ุบูุฑ ู ูุฐุง ุจุฏู ูุนุทููุง ุฃู ุงู G is abelian ุทูุจ |
|
|
|
151 |
|
00:15:42,340 --> 00:15:51,100 |
|
ูู ูุงู ุงู order ูู G ุจุฏู ูุณุงูู ุงุซููู ู ุซูุงุซุฉ or |
|
|
|
152 |
|
00:15:51,100 --> 00:15:59,130 |
|
ุฎู
ุณุฉ ูุจูู ูู ูู
ุง ุฏูู ู
ุงููู
primes then ุงู order ูู |
|
|
|
153 |
|
00:15:59,130 --> 00:16:05,970 |
|
G is prime ูู ุงูุญุงูุงุช ุงูุซูุงุซุฉ ุงูุด ุจูููู ุงู crawler |
|
|
|
154 |
|
00:16:05,970 --> 00:16:10,790 |
|
ุงุซููู ุงู group of prime order is cyclic ูุจูู ูุฐุง |
|
|
|
155 |
|
00:16:10,790 --> 00:16:17,250 |
|
ุจุฏู ูุนุทููุง ุฃู ุงู G is cyclic ุทุจ ู ุฅุฐุง ุงู G is |
|
|
|
156 |
|
00:16:17,250 --> 00:16:18,910 |
|
cyclic ุฃุจูููุงู ูุนูู |
|
|
|
157 |
|
00:16:23,770 --> 00:16:29,690 |
|
ูุจูู ุงูุขู ุงุซุจุชูุง ุฃู ูู ุญุงูุฉ ุงููุงุญุฏ ู ุงูุงุซููู ู ุงูุซูุงุซุฉ |
|
|
|
158 |
|
00:16:29,690 --> 00:16:34,710 |
|
ูุงูุฎู
ุณุฉ ุฃุจูููุงู ุถูุช ุงููุ ุถูุช ุงูุฃุฑุจุนุฉ ูุจูู ุจุฏุงุฌู |
|
|
|
159 |
|
00:16:34,710 --> 00:16:41,010 |
|
ุฃููู ูู ููุง ูู ูุงู ุงู order ูู G ุจุฏู ูุณุงูู ุฃุฑุจุนุฉ |
|
|
|
160 |
|
00:16:44,930 --> 00:16:51,590 |
|
ูู ุงูุชุฑุถุช ุฃู ุงู order ููุฌู ูููู 4 ูู ุฃุฎุฐุช ุฃู non |
|
|
|
161 |
|
00:16:51,590 --> 00:16:56,470 |
|
identity element ูู ุงู group ุฌู ูุฏู ุงุญุชู
ุงู ุงู |
|
|
|
162 |
|
00:16:56,470 --> 00:17:02,890 |
|
order ูููู ูู ูุงุญุฏ ุงุณุชุจุนุฏูุงู ุฃูุง ููุช non identity |
|
|
|
163 |
|
00:17:02,890 --> 00:17:07,750 |
|
ููู ุจูุจูู ููุด ุฅูุง ุงุซููู ุฃู ุฃุฑุจุนุฉ ุทุจ ูู ูุงู ุงู |
|
|
|
164 |
|
00:17:07,750 --> 00:17:14,810 |
|
order ูู element ูุณุงูู 4 ุจูููู generator ูู G ูุฃู ุงู |
|
|
|
165 |
|
00:17:14,810 --> 00:17:17,990 |
|
order ูุจูู ุงูู G ุงูู cyclic ูุจุงูุชุงูู ุฃุจุฏุง ุทูุช |
|
|
|
166 |
|
00:17:17,990 --> 00:17:24,390 |
|
ุงูู
ุดููุฉ ููู ุนูุฏ ุงุซููู ูุจุฏุงุด ุฃููู ูู ููุง if ูุจูู if |
|
|
|
167 |
|
00:17:24,390 --> 00:17:33,590 |
|
ุงู order ูู G ุจุฏู ูุณุงูู ุฃุฑุจุนุฉ then any non identity |
|
|
|
168 |
|
00:17:33,590 --> 00:17:39,490 |
|
element has |
|
|
|
169 |
|
00:17:40,760 --> 00:17:44,540 |
|
order ุงุซููู |
|
|
|
170 |
|
00:17:44,540 --> 00:17:50,560 |
|
ุฃู ุฃุฑุจุนุฉ if |
|
|
|
171 |
|
00:17:50,560 --> 00:18:01,960 |
|
order ูุฃ ุจุฏู ูุณุงูู ุฃุฑุจุนุฉ then order ูุฃ ุจุฏู ูุณุงูู |
|
|
|
172 |
|
00:18:01,960 --> 00:18:09,370 |
|
order ูู G ู
ุนูู ูุฐุง ุงูููุงู
ุฃู ุงูู G ูุฐู ุจุฏูุง ุชุณุงูู ู |
|
|
|
173 |
|
00:18:09,370 --> 00:18:16,010 |
|
group generated by A ูุฐุง ูุนูู ุฃู ุงูู G ูู Cyclic |
|
|
|
174 |
|
00:18:16,010 --> 00:18:25,910 |
|
ู ูุฐุง ูุนูู ุฃู ุงูู G ูู Abelian ุจูุช ู
ุดููุชูุง ูููุ |
|
|
|
175 |
|
00:18:25,910 --> 00:18:40,540 |
|
ุฃููุฉ ูุจูู ูู ูุงู ุงูู A ู
ูุฌูุฏ ูู G with ุงู order ููู A |
|
|
|
176 |
|
00:18:40,540 --> 00:18:48,760 |
|
ุจุฏู ูุณุงูู ุงุซููู then ุงู A ุชุฑุจูุน ุจุฏู ูุณุงูู ุงู |
|
|
|
177 |
|
00:18:48,760 --> 00:18:55,660 |
|
identity ู
ุธุจูุท ูุนูู ุงู A ุตุงุฑ ุจุฏู ูุณุงูู ุงู A |
|
|
|
178 |
|
00:18:55,660 --> 00:18:56,060 |
|
inverse |
|
|
|
179 |
|
00:19:01,020 --> 00:19:07,280 |
|
ูุจูู ุฃูุง ุจุงุฎุฏ two elements ู
ู G ู ุฃุซุจุช ุฃู ุงู X ูู |
|
|
|
180 |
|
00:19:07,280 --> 00:19:12,460 |
|
Y ุจูุณุงูู ุงู Y X ุจุงุณุชุฎุฏุงู
ุงูู
ุนููู
ุฉ ุงููู ุนูุฏูุง ูุฐุง |
|
|
|
181 |
|
00:19:12,460 --> 00:19:19,100 |
|
ูุจูู ุจุฑูุญ ุงููู ูู ุงูุชุฑุถ ุฃู ุงู X ู ุงู Y ุนูุงุตุฑ ู
ูุฌูุฏุฉ |
|
|
|
182 |
|
00:19:19,100 --> 00:19:19,580 |
|
ุนูุฏูุง |
|
|
|
183 |
|
00:19:37,640 --> 00:19:47,160 |
|
ุจุฏุงูู ุงููู ูู let ุงู X ู ุงู Y ู
ูุฌูุฏุฉ ูู G then ุงู X |
|
|
|
184 |
|
00:19:47,160 --> 00:19:56,920 |
|
Y ู
ูุฌูุฏุฉ ูู G if ุงู order ูู X Y ูุณุงูู ุงุซููู then |
|
|
|
185 |
|
00:19:56,920 --> 00:20:05,460 |
|
ุงู X Y ููู ุชุฑุจูุน ูุณุงูู ู
ูุ ูุณุงูู ุงู identity ุทุจ ุงู |
|
|
|
186 |
|
00:20:05,460 --> 00:20:11,760 |
|
X Y ุชุฑุจูุน ูุฐุง ุจูุฏุฑ ุฃููู X ุชุฑุจูุน Y ุชุฑุจูุน ูุง ุชุจูู |
|
|
|
187 |
|
00:20:11,760 --> 00:20:16,980 |
|
ุจููุง ู
ุง ูู ุฃุดุจุงู ูุงูู ุจูุฏุฑุด ู
ุธุจูุท ููู ูู ุงููู ุจูุฏุฑ |
|
|
|
188 |
|
00:20:16,980 --> 00:20:23,960 |
|
ุฃููู ูู then ุงููู ูู ู
ู ุงู X Y ูู ุงู X Y ูุณุงูู ุงู |
|
|
|
189 |
|
00:20:23,960 --> 00:20:31,570 |
|
identity ุชู
ุงู
ุทุจ ูู ุถุฑุจุช ุงูุทุฑููู ูู y inverse ู
ู |
|
|
|
190 |
|
00:20:31,570 --> 00:20:39,630 |
|
ุฌูุฉ ุงููู
ูู ูุจูู ุจูุตูุฑ ุนูุฏู x y x ุจุฏู ูุณุงูู e ูู y |
|
|
|
191 |
|
00:20:39,630 --> 00:20:45,010 |
|
inverse ุงููู ูู ุจู
ููุ ุจ y inverse ุทุจ ุงุถุฑุจ ูู
ุงู ูู |
|
|
|
192 |
|
00:20:45,010 --> 00:20:51,350 |
|
x inverse ู
ู ุฌูุฉ ุงููู
ูู ูุฐุง ูุนูู ุฃู ุงู x ูู y ุจุฏู |
|
|
|
193 |
|
00:20:51,350 --> 00:20:57,090 |
|
ูุณุงูู ุงู y inverse ูู ุงู x inverse ุงูุขู ุงุญูุง ูููุง |
|
|
|
194 |
|
00:20:57,090 --> 00:21:02,790 |
|
ููุง ุงูุด ุฃู ุงู element ุงููู ุงู order ูู ูุณุงูู ุงุซููู |
|
|
|
195 |
|
00:21:02,790 --> 00:21:09,650 |
|
ุงู element ูุณุงูู ู
ุนููุณู ุชู
ุงู
ุทูุจ ุจูุงุก ุนููู ูุฐุง ุจุฏู |
|
|
|
196 |
|
00:21:09,650 --> 00:21:16,030 |
|
ูุนุทููุง ุฃู ุงู x ูู ุงู y ุจุฏู ูุณุงูู ู
ู ุงู y ูู ุงู x |
|
|
|
197 |
|
00:21:17,170 --> 00:21:23,450 |
|
ูุนูู ุดููุช ูู X ูุญุทูุช ุจุฏููุง X ูุดููุช ูู Y ูุญุทูุช |
|
|
|
198 |
|
00:21:23,450 --> 00:21:31,830 |
|
ุจุฏููุง Y ูุฐุง ูุนูู ุฃู ุงู G is abelian ูุจูู ู
ุนูู ูุฐุง |
|
|
|
199 |
|
00:21:31,830 --> 00:21:35,950 |
|
ุงูููุงู
ุฃู ุงูู G abelian ุณูุงุก ูุงู ุงู order ููุง |
|
|
|
200 |
|
00:21:35,950 --> 00:21:39,470 |
|
ูุงุญุฏ ููุง ุงุซููู ููุง ุซูุงุซุฉ ููุง ุฃุฑุจุนุฉ ููุง ุฎู
ุณุฉ ู
ู |
|
|
|
201 |
|
00:21:39,470 --> 00:21:44,470 |
|
ุงูุขู ูุตุงุนุฏุง ุจุฏู ุชุงุฎุฏูุง ูุงุนุฏุฉ ุฃู group ุงู order |
|
|
|
202 |
|
00:21:44,470 --> 00:21:48,750 |
|
ุงููู ููุณุงูู ุฎู
ุณุฉ ุฃู ุฃูู ู
ู ุฎู
ุณุฉ ูุจูู ูุฐู ุงู group |
|
|
|
203 |
|
00:21:48,750 --> 00:21:54,330 |
|
ุนุจุงุฑุฉ ุนู abelian group ุฎุฏ ูู
ุงู ู
ุซุงูุ ุงูู
ุซุงู ูุฐุง ูู |
|
|
|
204 |
|
00:21:54,330 --> 00:22:02,450 |
|
ุฃุญุฏ ุฃุณุฆูุฉ ุงููุชุงุจ ูุจูู example two example 2 ูู |
|
|
|
205 |
|
00:22:02,450 --> 00:22:10,690 |
|
ุนุจุงุฑุฉ ุนู ุณุคุงู 26 ู
ู ุงููุชุงุจ ุจูููู let g |
|
|
|
206 |
|
00:22:10,690 --> 00:22:25,890 |
|
be a group of order 25 prove that |
|
|
|
207 |
|
00:22:25,890 --> 00:22:34,580 |
|
ุฃุซุจุช ุฃู ุงูู G is cyclic |
|
|
|
208 |
|
00:22:34,580 --> 00:22:40,580 |
|
or ุงูู |
|
|
|
209 |
|
00:22:40,580 --> 00:22:48,600 |
|
G ุฃุณ ุฎู
ุณุฉ ุจุฏู ูุณุงูู ุงู identity for all G ุงููู |
|
|
|
210 |
|
00:22:48,600 --> 00:22:49,720 |
|
belongs to G |
|
|
|
211 |
|
00:23:04,000 --> 00:23:09,320 |
|
ุฎููููู ุฃุจูู ู
ุนูุงู ููุง ุงูุณุคุงู ู
ุฑุฉ ุซุงููุฉ ุฃูุง ุนูุฏู |
|
|
|
212 |
|
00:23:09,320 --> 00:23:14,300 |
|
group ูููุง ุฎู
ุณุฉ ูุนุดุฑูู ุนูุตุฑ ุงู order ููุง ูุณุงูู ุฎู
ุณุฉ |
|
|
|
213 |
|
00:23:14,300 --> 00:23:20,800 |
|
ูุนุดุฑูู ูุงู ูู ุจุชุซุจุช ุฃู ุฌู ูุฐู Cyclic ูุง ุฅู
ุง ุงูุฌู |
|
|
|
214 |
|
00:23:20,800 --> 00:23:24,940 |
|
ุฃุณ ุฎู
ุณุฉ ุจุฏู ูุณุงูู ุงู identity ููู ุงูุฌู ุงููู belongs |
|
|
|
215 |
|
00:23:24,940 --> 00:23:30,640 |
|
to ุฌู ุฅุฐุง ุฃูุง ุจุฏู ุงุณุชุจุนุฏ ูุงุญุฏ ูุฃุซุจุช ู
ูู ูุฃูู ูุงู |
|
|
|
216 |
|
00:23:30,640 --> 00:23:35,230 |
|
ูู or ูุฐุง ุฃู ูุฐุง ูุจูู ุฃูุง ูู ุฑูุญุชู ููุช ูู ููุง |
|
|
|
217 |
|
00:23:35,230 --> 00:23:46,330 |
|
assume ุงูุชุฑุถ ุฃู ุงู G is non-cyclic ู
ุงูู |
|
|
|
218 |
|
00:23:46,330 --> 00:23:54,310 |
|
cyclic and ุงู order ูู G ุจุฏู ูุณุงูู ุฎู
ุณุฉ ูุนุดุฑูู |
|
|
|
219 |
|
00:23:54,310 --> 00:24:01,760 |
|
ูุจูุงุด ุจุชุซุจุช ูุง ุดุจุงุจ ุงู ุฌู ุฃุณ ุฎู
ุณุฉ ูุณุงูู ู
ู ุงู identity |
|
|
|
220 |
|
00:24:01,760 --> 00:24:06,500 |
|
element ุงูุขู ุงู G ู
ูุฌูุฏ ูู G ูุจูู ุงู order ูู |
|
|
|
221 |
|
00:24:06,500 --> 00:24:14,680 |
|
ููุณู
ู
ู ุงูุฎู
ุณุฉ ู ุงูุนุดุฑูู ูุจูู ููุง since ูู
ุง ุฃู ุงู G |
|
|
|
222 |
|
00:24:14,680 --> 00:24:19,660 |
|
belongs to G ุงู order ูู G divide |
|
|
|
223 |
|
00:24:21,710 --> 00:24:26,870 |
|
ุงููู ูู ุงูุฎู
ุณุฉ ู ุงูุนุดุฑูู ู
ุนูู ูุฐุง ุงูููุงู
ุฃู ุงู order |
|
|
|
224 |
|
00:24:26,870 --> 00:24:35,230 |
|
ูู G ูุง ุฅู
ุง ูุงุญุฏ ูุง ุฅู
ุง ุฎู
ุณุฉ or ุฎู
ุณุฉ ู ุนุดุฑูู ุจูุณุชุจุนุฏ |
|
|
|
225 |
|
00:24:35,230 --> 00:24:40,550 |
|
ูุฎู
ุณุฉ ู ุนุดุฑูู ูุฃู ูู ูุงู ุงู order ุฎู
ุณุฉ ู ุนุดุฑูู ูุตุงุฑ ุงู |
|
|
|
226 |
|
00:24:40,550 --> 00:24:45,630 |
|
G Cyclic ูุงู ูุง ูู ู
ุง ูู ุงู Cyclic ุฅุฐุง ูุง ูู
ูู |
|
|
|
227 |
|
00:24:45,630 --> 00:24:52,330 |
|
ูู order ุชุจุน ุงู element ูุฐุง ุฃูู ูุณุงูู ู
ู ุงู order ู |
|
|
|
228 |
|
00:24:52,330 --> 00:24:56,110 |
|
G small ูุฐุง ูุง ุดุจุงุจ ู
ุด ุฌู ูุชุฑ ุงู ุฌู ูุชุฑ ูู ุฎู
ุณุฉ ู ุนุดุฑูู |
|
|
|
229 |
|
00:24:56,110 --> 00:25:00,050 |
|
ุงู order ูู element ูุง ุจุฏู ูุณุงูู ูุงุญุฏ ูุง ุฅู
ุง ุฎู
ุณุฉ |
|
|
|
230 |
|
00:25:00,050 --> 00:25:06,310 |
|
ูุง ุฅู
ุง ุฎู
ุณุฉ ู ุนุดุฑูู ุงูุขู ุฃูุง ุจุงุฌู ุจููู ูู ุงู order ูู |
|
|
|
231 |
|
00:25:06,310 --> 00:25:13,770 |
|
G ุจุฏู ูุณุงูู ุฎู
ุณุฉ ู ุนุดุฑูู impossible ูุฐุง ุงูููุงู
ุบูุฑ |
|
|
|
232 |
|
00:25:13,770 --> 00:25:26,190 |
|
ู
ู
ูู because ุงูุณุจุจ ุฃู ุงู G is not cyclic ูุจูู ุงูู G |
|
|
|
233 |
|
00:25:26,190 --> 00:25:30,690 |
|
ู
ุง ููุด Cycle ุทูุจ ุงุณุชุจุนุฏูุง ู
ูููุ ุงูุฎู
ุณุฉ ู ุงูุนุดุฑูู |
|
|
|
234 |
|
00:25:30,690 --> 00:25:36,250 |
|
ุถูุช ุนูุฏูุง ุงูู G ุงู order ูู ุจุฏู ูุณุงูู ูุงุญุฏ ุจุฏู |
|
|
|
235 |
|
00:25:36,250 --> 00:25:45,550 |
|
ูุณุงูู ุฎู
ุณุฉ ุงูุขู ูู ูุงู ุงู order ูู ูุงู ุงู order ูู G |
|
|
|
236 |
|
00:25:45,550 --> 00:25:51,260 |
|
ุจุฏู ูุณุงูู ูุงุญุฏ then ูู
ุง ูููู ุงู order ุงููู ุฌู ุจุฏู |
|
|
|
237 |
|
00:25:51,260 --> 00:25:54,680 |
|
ูุณุงูู ูุงุญุฏ ูุจูู ู
ูู ูู ุฌู ูุฐู ุงู identity element |
|
|
|
238 |
|
00:25:54,680 --> 00:26:01,260 |
|
ูุจูู then ุงูุฌู ุจุฏูุง ุชุณุงูู ุงู identity element ูุจูู |
|
|
|
239 |
|
00:26:01,260 --> 00:26:07,660 |
|
ุงูุฌู ุฃุณ ุฎู
ุณุฉ ุจุฏู ูุณุงูู ุงู identity element ุฃุณ ุฎู
ุณุฉ |
|
|
|
240 |
|
00:26:07,660 --> 00:26:12,600 |
|
ูุจูู ุฌู ุฃุณ ุฎู
ุณุฉ ุงู identity ุฃุณ ุฎู
ุณุฉ ู
ู ุจุงู |
|
|
|
241 |
|
00:26:12,600 --> 00:26:19,940 |
|
identity ููู ุงูู
ุทููุจ ุงูุญุงูุฉ ุงูุซุงููุฉ ูู ูุงู ุงู |
|
|
|
242 |
|
00:26:19,940 --> 00:26:26,180 |
|
order ููู G ุจุฏู ูุณุงูู ุฎู
ุณุฉ then ุงูู G ุฃุณ ุฎู
ุณุฉ ุจุฏู |
|
|
|
243 |
|
00:26:26,180 --> 00:26:32,180 |
|
ูุณุงูู ุงู identity ู ูู ุงูู
ุทููุจ ูุจูู ุจูุงุก ุนููู ู
ุฏุงู
|
|
|
|
244 |
|
00:26:32,180 --> 00:26:37,200 |
|
ุงูู G non-cyclic ุงูู G ุฃุณ ุฎู
ุณุฉ ุจุฏู ูุณุงูู ุงู |
|
|
|
245 |
|
00:26:37,200 --> 00:26:41,140 |
|
identity element ุฏุงุฆู
ุง ู ุฃุจุฏุง |
|
|
|
246 |
|
00:27:02,160 --> 00:27:09,020 |
|
ุทุจ ููุชูู ุฅูู ุชุนุฑูู ุฌุฏูุฏ ุฃู ููุฑููุฑู ุฑูู
ุฃุฑุจุนุฉ ูุฑููุฑู |
|
|
|
247 |
|
00:27:09,020 --> 00:27:18,180 |
|
ุฑูู
ุฃุฑุจุนุฉ ุจุณู
ููุง |
|
|
|
248 |
|
00:27:18,180 --> 00:27:23,420 |
|
Fermat Fermat's |
|
|
|
249 |
|
00:27:23,420 --> 00:27:26,260 |
|
little theorem |
|
|
|
250 |
|
00:27:31,620 --> 00:27:39,240 |
|
ูุตูุง ูุงูุชุงูู ุจูููู for every integer a for every |
|
|
|
251 |
|
00:27:39,240 --> 00:27:56,220 |
|
integer a and every prime p and every prime p ุงูู a |
|
|
|
252 |
|
00:27:56,220 --> 00:28:05,260 |
|
to the power p modulo p ุจุฏู ูุณุงูู ุงูู a modulo p |
|
|
|
253 |
|
00:28:05,260 --> 00:28:08,480 |
|
ุจุฏูุง |
|
|
|
254 |
|
00:28:08,480 --> 00:28:11,720 |
|
ูุจุฑูู ุตุญููุชูุง ู proof |
|
|
|
255 |
|
00:28:16,540 --> 00:28:21,300 |
|
ูุฐู ุณู
ููุช ุจุงุณู
Fermat's Little Theorem ูุฃูู ุงูุงูุชุดุงู ูุฐู ุงูุดุบูุฉ |
|
|
|
256 |
|
00:28:21,300 --> 00:28:26,420 |
|
ูุณู
ููุช Little ูุฃููู ุจูุตุบูุฑ ุงูุฑูู
ุงููุจูุฑ ุฃูุง ุนูุฏู ุฑูู
|
|
|
|
257 |
|
00:28:26,420 --> 00:28:32,620 |
|
ูุจูุฑ ุถุฎู
ุจูุตุบูุฑู ุนูู ุทูู ุงูุฎุท ูุนูู ุจุฌูุจ ุฑูู
ู
ูุงูุฆ ูู |
|
|
|
258 |
|
00:28:32,620 --> 00:28:38,980 |
|
ูู ุญุงูุฉ ุฅุฐุง ูุงู ุงูู
ููุงุณ ูู P ูุจููู ุฃู integer A ู |
|
|
|
259 |
|
00:28:38,980 --> 00:28:43,630 |
|
every prime P ุงูู A to the power of P modulo P |
|
|
|
260 |
|
00:28:43,630 --> 00:28:49,090 |
|
ุงููุงูุญุธ ุงูู modulo P ูู ุงูุฃุณ ุงููู ุนูุฏู ูุฐุง ู ูุฐุง |
|
|
|
261 |
|
00:28:49,090 --> 00:28:54,040 |
|
ูุงุฒู
ูููู ุงูู prime number ุดุฑุท ุฃุณุงุณู ู
ุด ุฃู ุฑูู
ุฅู |
|
|
|
262 |
|
00:28:54,040 --> 00:28:59,300 |
|
ุญุฏุซ ุฐูู ูุจูู ุจูููู ูุฐุง a modulo p ูุนูู ูุฐุง ุงูู p |
|
|
|
263 |
|
00:28:59,300 --> 00:29:03,800 |
|
ุจููู ุงุชุฎููุตุช ู
ููุง ูุจุงูุชุงูู ุงูุฑูู
ุงูุถุฎู
ูุฐุง ุตุบูุฑุชู |
|
|
|
264 |
|
00:29:03,800 --> 00:29:08,260 |
|
ุฅูู ุฑูู
a modulo p ุงูู a ูุฐู ูู
ูู ุชููู ุฃูุจุฑ ู
ู ุงูู p |
|
|
|
265 |
|
00:29:08,260 --> 00:29:12,980 |
|
ููู
ูู ุชููู ุฃุตุบุฑ ู
ู ุงูู p ู
ุญุทู ุงูุดุฑุท ุนูุฏู ูู ุงููู |
|
|
|
266 |
|
00:29:12,980 --> 00:29:17,480 |
|
ุญุทููุง ุฃูู integer ู ุงูู p is a prime ูุฑูุญ ูุณุจุฉ ุตุญุฉ |
|
|
|
267 |
|
00:29:17,480 --> 00:29:22,090 |
|
ูุฐุง ุงูููุงู
ุจุฃูู ุจุฏู ุฃุฎุฏ ุญุงูุชูู ุงูุญุงูุฉ ุงูุฃููู ูู ูุงู |
|
|
|
268 |
|
00:29:22,090 --> 00:29:27,790 |
|
ุงูู A ุฃูู ู
ู P ู ุงูุญุงูุฉ ุงูุซุงููุฉ ูู ูุงู ุงูู A ุฃูุจุฑ ู
ู |
|
|
|
269 |
|
00:29:27,790 --> 00:29:34,610 |
|
P ุจุฏู ุฃุฏุฑุณ ุฅูู ุงูุญุงูุฉ ุงูุซุงููุฉ ุทุจ ูู ูุณุงูู ูู ุงูู A ูุณุงูู |
|
|
|
270 |
|
00:29:34,610 --> 00:29:38,790 |
|
ุงูู P ูุจูู ู
ู 100 ูู
ุง ูุจูู Zero ุจุฏู ุฃุณุงูู Zero ุนูู |
|
|
|
271 |
|
00:29:38,790 --> 00:29:43,710 |
|
ุทูู ุงูุฎุทู ุทูุจ ูุจูู ุจุฏู ุฃุฌู ูุจูู ู
ุง ุนูุฏูุด ู
ุดููุฉ ูู |
|
|
|
272 |
|
00:29:43,710 --> 00:29:47,930 |
|
ุญุงูุฉ ุงูู Zero ููุด ุจุตุฑุงุญุฉ ุฎูุงุต Zero ุจุณุงูู Zero ุทูุจ |
|
|
|
273 |
|
00:29:47,930 --> 00:29:59,460 |
|
ุจุฏู ุฃุฎุฏ F ุงูู P less than 0 ูุฃ |
|
|
|
274 |
|
00:29:59,460 --> 00:30:08,740 |
|
ูู ูุงู less than A ูู ูุงู F ุงูู A less than P ูู |
|
|
|
275 |
|
00:30:08,740 --> 00:30:19,080 |
|
ูุงู ุงูู A ุฃูู ู
ู P then ุงูู P ุงูู .. ุงูู A ูุฐู ุจุชููู |
|
|
|
276 |
|
00:30:19,080 --> 00:30:25,500 |
|
ู
ูุฌูุฏุฉ ูู ู
ุฌู
ูุนุฉ ุงูุฃุนุฏุงุฏ 1 ู 2 ู 3 ู |
|
|
|
277 |
|
00:30:25,500 --> 00:30:33,740 |
|
ูุบุงูุฉ P minus ุงูู 1 ุฃููุฏ ู
ูุฉ ุงูู
ูุฉ ู
ุฏุงู
A integer |
|
|
|
278 |
|
00:30:33,740 --> 00:30:38,820 |
|
ุฃุตุบุฑ ู
ู P ูุจูู A ู
ูุฌูุฏ ูู ุงูู
ุฌู
ูุนุฉ ูุฐู ุทุจ ู
ูู ูู |
|
|
|
279 |
|
00:30:38,820 --> 00:30:46,580 |
|
ุงูู
ุฌู
ูุนุฉ ูุฐู ู
ุด UP ูุจูู ูุฐู ุงููู ูู ุชุณุงูู UP |
|
|
|
280 |
|
00:30:49,020 --> 00:30:59,020 |
|
ูุจูู ู
ุนูู ูุฐุง ุงูููุงู
ุฃูู ุงูู a ู
ูุฌูุฏ ูู ุงูู U P ุทูุจ |
|
|
|
281 |
|
00:30:59,020 --> 00:31:08,500 |
|
ูุจูู ูุฏุงุด ุงูู order ูู U P ููุต ูุงุญุฏุ ูููุณ ูุฐุง ุจูููู |
|
|
|
282 |
|
00:31:08,500 --> 00:31:20,930 |
|
ุงููู ุนูุฏู ุงูู order ูู U P ุจูุณุงูู P ูุงูุต ูุงุญุฏ ุทุจุนูุง ุทูุจ |
|
|
|
283 |
|
00:31:20,930 --> 00:31:26,950 |
|
ุงูุขู ุฃูู ูุฃุชู crawler ูููู
ูุฐู ุงููู ูุงูุช ูู ุงู |
|
|
|
284 |
|
00:31:26,950 --> 00:31:31,070 |
|
ู
ุดุญูุงูุง ุงููู ูู a ุฃู ุฒู ู
ุง ุฃุธูู ุงูู crawler ุฑูู
3 |
|
|
|
285 |
|
00:31:31,070 --> 00:31:36,270 |
|
ุงูู a ุฃู ุงูู order ููู a ุจุฏู ูุณุงูู ุงูู ID 3 ุทูุจ |
|
|
|
286 |
|
00:31:36,270 --> 00:31:43,790 |
|
ููุง from crawler ุซูุงุซุฉ |
|
|
|
287 |
|
00:31:43,790 --> 00:31:52,450 |
|
ุฃู element ุจุฏู ุฃุฎุฏ ู
ุฑููุน ููู order ุชุจุน ุงูู U P ุจุฏู |
|
|
|
288 |
|
00:31:52,450 --> 00:32:00,810 |
|
ูุณุงูู ุงูู identity ุงููู ูู 1 ูุฐุง ุงูููุงู
|
|
|
|
289 |
|
00:32:00,810 --> 00:32:06,510 |
|
ุฅูุด ู
ุนูุงูุ ู
ุนูุงู ุงูู A ุฃุณ ุงูู P ูุงูุต 1 ุจุฏู ูุณุงูู |
|
|
|
290 |
|
00:32:06,510 --> 00:32:15,030 |
|
1 ุทูุจ ูู ุถุฑุจุช ุงูุทุฑููู ูู A ุฅูุด ุจูุตูุฑ ุนูุฏูุ A ุฃุณ |
|
|
|
291 |
|
00:32:15,030 --> 00:32:21,900 |
|
P ุจุฏู ูุณุงูู ุงูู A ูุจูู ู
ุนูุงู ูุฐุง ุงูููุงู
ุฃูู a is p |
|
|
|
292 |
|
00:32:21,900 --> 00:32:28,960 |
|
modulo p ุจุฏู ูุณุงูู a modulo p ู
ุงุฏุฉ ู
ุง ุงูุฑูู
ูู ูุฐุง |
|
|
|
293 |
|
00:32:28,960 --> 00:32:33,320 |
|
ุงููู ุจูุณุงููุง ุจุนุถ ุฅุฐุง ุจุฏู ูููู ูุฐุง modulo p ุจุฏู ูุณุงูู |
|
|
|
294 |
|
00:32:33,320 --> 00:32:38,060 |
|
ูุฐุง modulo p ุชู
ุงู
ูุง ููู ุงูู
ุทููุจ ูุฐุง ูู ูุงูุช ุฅูุด ุงูู |
|
|
|
295 |
|
00:32:38,060 --> 00:32:44,840 |
|
a ุฃูู ู
ู p ุทุจ ูู ูุงูุช ุงูู a ุฃูุจุฑ ู
ู p ูุจูู f ุงูู a |
|
|
|
296 |
|
00:32:44,840 --> 00:32:46,940 |
|
greater than p |
|
|
|
297 |
|
00:32:51,570 --> 00:32:57,570 |
|
ูุนูู ุงูู A ูุฐู P ุฒุงุฆุฏ ุดููุฉ 2 P ุฒุงุฆุฏ ุดููุฉ 3 P |
|
|
|
298 |
|
00:32:57,570 --> 00:33:01,970 |
|
20 P ุฒุงุฆุฏ ุฒุงุฆุฏ ุดููุฉ ุชู
ุงู
ูุจูู ุจุงูู division |
|
|
|
299 |
|
00:33:01,970 --> 00:33:09,730 |
|
algorithm ุจููู ูู then ุงูู A ูุฐุง ุจุฏู ูุณุงูู ุงูู M P |
|
|
|
300 |
|
00:33:09,730 --> 00:33:15,870 |
|
ุฒุงุฆุฏ ุงูู R ูุนูู ู
ุถุงุนูุฉ ุงูู P ุฒุงุฆุฏ ุงูู R ู ุงูู R ูุฐู |
|
|
|
301 |
|
00:33:15,870 --> 00:33:25,010 |
|
ุฃูุจุฑ ู
ู ุฃู ุชุณุงูู Zero ุฃูู ู
ู ู
ููุ ุฃูู ู
ู P ุทูุจ ูู |
|
|
|
302 |
|
00:33:25,010 --> 00:33:31,190 |
|
ุฌูุช ู
ุฏุงู
ุนุฑูุช ุฒูู ุงููู ูู ุฃุฎุฏุช ุงูุขู ุงูู A modulo P |
|
|
|
303 |
|
00:33:31,190 --> 00:33:39,730 |
|
ูุฏู ุฅูุด ุจุฏู ูุณุงููุ R ุฃูุง ุนูุฏู ุงูู A ุจุฏู ูุณุงูู MP ุฒู |
|
|
|
304 |
|
00:33:39,730 --> 00:33:43,630 |
|
ุฏู ุฃูุง ุฃุฎุฏุช ุงูู A modulo P ุจูู ู
ุถุงุนูุงุช ุงูู P ุจุทููุฑูุง |
|
|
|
305 |
|
00:33:43,630 --> 00:33:49,810 |
|
ุฅูุด ุจูุธูุฑ ุนูุฏูุ ุจูุธูุฑ ุนูุฏู R ูุจูู ูุฐุง ุจูุจูู ุนูุฏู ู
ููุ |
|
|
|
306 |
|
00:33:49,810 --> 00:33:56,570 |
|
ุจูุจูู ุนูุฏู R ููุท ูุง ุบูุฑ ุทูุจ ุงูุขู ุงูู R ู
ุญุตูุฑุฉ ู
ู |
|
|
|
307 |
|
00:33:56,570 --> 00:34:01,590 |
|
ุฃูู ุฅูู ุฃููุ ู
ู Zero ุฅูู P ูุฃูุง ุฌุงูู ุฃูู ุงูู A |
|
|
|
308 |
|
00:34:01,590 --> 00:34:08,210 |
|
modulo P ุจุฏู ูุณุงูู ุงูู R ุงูู R ูุนูู ู
ูุฌูุฏุฉ ูููุ ูู ุงูู |
|
|
|
309 |
|
00:34:08,210 --> 00:34:17,490 |
|
U P ุตุญ ููุง ูุงุ ู
ูุฌูุฏุฉ ูู ุงูู U P ููุดุ ูุฃูููุง ู
ุญุตูุฑุฉ |
|
|
|
310 |
|
00:34:17,490 --> 00:34:25,050 |
|
ู
ู ุตูุฑ ุฅูู P ุทุจุนูุง ุทูุจ ู
ุฏุงู
ู
ุญุตูุฑุฉ ูุฐู ุชุณุงูู ูุฐู |
|
|
|
311 |
|
00:34:25,050 --> 00:34:31,030 |
|
ููุฐู ู
ูุฌูุฏุฉ ููุง ุฅุฐุง automatic ุนูู ุทูู ุงูุฎุท ุฅูุด ูููุง |
|
|
|
312 |
|
00:34:31,030 --> 00:34:35,970 |
|
ููุง ูู ูุงู ูู ุงูุจุฑูุงู ุงูุฃูู ุจููู ูู
ุง ุชุจูู ุงูู a |
|
|
|
313 |
|
00:34:35,970 --> 00:34:41,750 |
|
ู
ูุฌูุฏุฉ ูู ุงูู U P ุงุณุชูุชุฌูุง ุฃูู ูุฐุง ุงูููุงู
ู
ุง ูู ุตุญูุญ |
|
|
|
314 |
|
00:34:41,750 --> 00:34:52,610 |
|
ุชู
ุงู
ูุจูู ุจุงุฌู ุจููู from the above from ู
ู ุงูุจุฑูุงู |
|
|
|
315 |
|
00:34:52,610 --> 00:35:00,500 |
|
ุฃุนูุงู ูุจูู ุงูู a modulo p modulo p ุจุฏู ูุณุงูู a ุฃุณ p |
|
|
|
316 |
|
00:35:00,500 --> 00:35:07,300 |
|
modulo p ูุงูุชูููุง ู
ููุง ูุจูู ุนูู ููู ุงูุฃู
ุฑ ูุนูู ุณูุงุก |
|
|
|
317 |
|
00:35:07,300 --> 00:35:12,360 |
|
ูุงู ุงูู a ุฃูุจุฑ ู
ู p ููุง ุฃุตุบุฑ ู
ู p ูุฅูู ุงูู a to the |
|
|
|
318 |
|
00:35:12,360 --> 00:35:18,220 |
|
power p modulo p ุจุฏู ูุณุงูู ู
ููุง ุงูู a modulo p ุญุฏ |
|
|
|
319 |
|
00:35:18,220 --> 00:35:24,110 |
|
ููุงูู ุฃูู ุงุณุชูุณุงุฑ ููุง ุทุจ ูุญุงูู ูุนุทู ุฃูุซุฑ ู
ู ู
ุซุงู ุนูู |
|
|
|
320 |
|
00:35:24,110 --> 00:35:30,770 |
|
ูุฐู ุงูููุทุฉ ุงูู
ุซุงู ุงูุฃูู ูุจูู |
|
|
|
321 |
|
00:35:30,770 --> 00:35:41,150 |
|
examples find |
|
|
|
322 |
|
00:35:41,150 --> 00:35:54,640 |
|
the exact value ู
ุชุฌุฏูุฏุด ุงูููู
ุฉ ุงูุญููููุฉ of 15 |
|
|
|
323 |
|
00:35:54,640 --> 00:36:04,480 |
|
ุฃุณ 11 modulo 11 of ููุฐุง ูุฌุจ ุฃู ุฃุนุชุจุฑูุง ุฅูู |
|
|
|
324 |
|
00:36:04,480 --> 00:36:11,760 |
|
ููุฌุจ ุฃู ูุฃุชู ุฅูู ุงูู B ูุฌุจ ุฃู ูููู 7 ุฃุณ 13 |
|
|
|
325 |
|
00:36:11,760 --> 00:36:15,880 |
|
modulo 11 |
|
|
|
326 |
|
00:36:29,550 --> 00:36:35,690 |
|
ุฎููู ุฃุจูู ูู ููุง ุจููู ูุงุช ููููู
ุฉ ุงูุญููููุฉ ููู 15 |
|
|
|
327 |
|
00:36:35,690 --> 00:36:41,550 |
|
ุฃุณ 11 modulo 11 ููุฐูู 7 ุฃุณ 13 modulo |
|
|
|
328 |
|
00:36:41,550 --> 00:36:47,610 |
|
11 ุงูุญู ูุงูุชุงูู ุจูุฑูุญ ุฃุฎุฏ ุฅููุ ูู
ุฑ ุฅููุ ูู
ุฑ |
|
|
|
329 |
|
00:36:47,610 --> 00:36:54,530 |
|
ุฅููุ ุจุฏู ุฃุฎุฏ ูู ุงูู 15 ุฃุณ 11 modulo 11 |
|
|
|
330 |
|
00:36:54,530 --> 00:37:01,420 |
|
ุงููุชุฌ 15 modulo 11 ุตุญููู ูุง ุดุจุงุจ |
|
|
|
331 |
|
00:37:05,780 --> 00:37:11,120 |
|
ูู ูุงู ูุฐุง P ู ูุฐุง P ูุชู
ุงุซู ููุณ ุจุนุถ ูุจูู ูุฐุง ูููู |
|
|
|
332 |
|
00:37:11,120 --> 00:37:17,060 |
|
ุฅูู E modulo P ูุจูู ุฃูุง ุนูุฏู 15 ู 11 modulo |
|
|
|
333 |
|
00:37:17,060 --> 00:37:20,380 |
|
11 ูุจูู ุฃูุง ุนูุฏู 15 modulo 11 ูุจูู ุฃูุง |
|
|
|
334 |
|
00:37:20,380 --> 00:37:20,420 |
|
ุนูุฏู 15 modulo 11 ูุจูู ุฃูุง ุนูุฏู 15 |
|
|
|
335 |
|
00:37:20,420 --> 00:37:23,320 |
|
modulo 11 ูู 15 modulo 11 15 modulo |
|
|
|
336 |
|
00:37:23,320 --> 00:37:28,240 |
|
11 ุฃูุจุฑ ู
ู ุงูู 11 ุฅุฐุง ุจุฏู ุฃุดูู ู
ููุง ุงูู 11 ุฃู |
|
|
|
337 |
|
00:37:28,240 --> 00:37:32,840 |
|
ู
ุถุงุนูุงุช ุงูู 11 ูุฏูุด ุจุทูุน ูุจูู ุงููุชูุฌุฉ ุชุณุงูู 4 |
|
|
|
338 |
|
00:37:33,130 --> 00:37:39,010 |
|
ูุจูู ูุฐุง ุณุคุงู direct ู
ุจุงุดุฑ ููู ูุฏ ูููู ุงูุณุคุงู ุบูุฑ |
|
|
|
339 |
|
00:37:39,010 --> 00:37:46,030 |
|
ู
ุจุงุดุฑ ุบูุฑ ู
ุจุงุดุฑ ูููุ ุฒู ู
ุง ูุงู ูู 7 ุฃุณ 13 |
|
|
|
340 |
|
00:37:46,030 --> 00:37:56,510 |
|
modulo 11 ุจุฏู ูุณุงูู ูุนูู |
|
|
|
341 |
|
00:37:56,510 --> 00:37:59,850 |
|
ู
ุง ููุนุด ุฃููู ุงูุฌูุงุจ ุงููู ูู 7 modulo 11ุ |
|
|
|
342 |
|
00:37:59,850 --> 00:38:02,290 |
|
ุฎูุทุ |
|
|
|
343 |
|
00:38:03,320 --> 00:38:09,060 |
|
ุบูุท ููุตู ุจุฏู ูููู ุงูุฑูู
ูุฐุง ุงูุฃุณ ูู ุงูู
ููุงุณ ุงููู |
|
|
|
344 |
|
00:38:09,060 --> 00:38:15,220 |
|
ุนูุฏู ุทูุจ ูุนูู ุฅูุดุ ูุนูู 7 ุฃุณ 13 ุจุฏู ุฃูุชุจูุง |
|
|
|
345 |
|
00:38:15,220 --> 00:38:21,920 |
|
ุจุฏูุงูุฉ 7 ุฃุณ 11 ูุจูู ูุฐู ุจุฏูุง ุชุณุงูู 7 ุฃุณ |
|
|
|
346 |
|
00:38:21,920 --> 00:38:30,490 |
|
11 ูุฏูุด ุจูุธูู 7 ุชุฑุจูุน ููู modulo 11 ูุฐู ูู |
|
|
|
347 |
|
00:38:30,490 --> 00:38:37,810 |
|
ุนุจุงุฑุฉ ุนู 7 ุฃุณ 11 modulo 11 ู
ุถุฑูุจุฉ ูู |
|
|
|
348 |
|
00:38:37,810 --> 00:38:46,530 |
|
ู
ู ูู 7 ุชุฑุจูุน modulo 11 ูุจูู ุญููุชูุง ุฅูู ุญุตู |
|
|
|
349 |
|
00:38:46,530 --> 00:38:50,850 |
|
ุถุฑุจ ุงูุฑูู
ูู ุงููู ุนูุฏูุง ุงูุขู ู
ู Fermat's Little Theorem ูุฐู |
|
|
|
350 |
|
00:38:50,850 --> 00:38:55,210 |
|
ุดูููุง ุดูู Fermat's Little Theorem ูุจูู ูุฐุง 7 modulo |
|
|
|
351 |
|
00:38:55,210 --> 00:39:01,570 |
|
11 ูุจูู ููุง 7 modulo 11 ู
ู Fermat's |
|
|
|
352 |
|
00:39:01,570 --> 00:39:07,610 |
|
Little Theorem ููุฐู 7 ุชุฑุจูุน ูุนูู 49 modulo |
|
|
|
353 |
|
00:39:07,610 --> 00:39:14,600 |
|
ู
ู 11 ูุจูู ูุฐุง ุงูููุงู
ูุณุงูู ุงูุขู ูุฐู ุงูู 7 |
|
|
|
354 |
|
00:39:14,600 --> 00:39:20,400 |
|
modulo 11 ูุฃูู 49 modulo 11 ูููุง |
|
|
|
355 |
|
00:39:20,400 --> 00:39:27,020 |
|
ูุฏุงุดุ ูุฃูู 11 ูู 4 ู
ู 49 ุจูุธูู 5 |
|
|
|
356 |
|
00:39:27,020 --> 00:39:34,180 |
|
ูุจูู ู
ุถุฑูุจุฉ ูู ู
ูุ ู
ุถุฑูุจุฉ ูู 5 modulo 11 |
|
|
|
357 |
|
00:39:37,280 --> 00:39:44,860 |
|
35 ุนุจุงุฑุฉ |
|
|
|
358 |
|
00:39:44,860 --> 00:39:51,290 |
|
ุนู 11 ูู 3 33 ุฒุงุฆุฏ 2 ูุจูู |
|
|
|
359 |
|
00:39:51,290 --> 00:39:56,130 |
|
ุงููุชุฌ ููู ูุณุงูู 2 ูุจูู ูุงูุฑูู
ุงูุถุฎู
ุงููู |
|
|
|
360 |
|
00:39:56,130 --> 00:40:00,650 |
|
ุนูุฏูุง ูุฐุง ุงููู ูู 7 ุฃุณ 13 ูุนูู ุจุฏู ุฃุถุฑุจ |
|
|
|
361 |
|
00:40:00,650 --> 00:40:04,990 |
|
7 ูู ููุณูุง 13 ู
ุฑุฉ ูุฃุฌูุจููุง ุงูู
ูุฏูู |
|
|
|
362 |
|
00:40:04,990 --> 00:40:09,150 |
|
11 ุงุฎุชุตุฑูุงูุง ููููุง ูุงุชุฌ ูุณุงูู ูุฏุงุดุ ูุณุงูู |
|
|
|
363 |
|
00:40:09,150 --> 00:40:11,490 |
|
2 ุนูู ุทูู ุงูุฎุทู |
|
|
|
364 |
|
00:40:16,940 --> 00:40:24,100 |
|
ุชุญุณุจ ุดู ู
ุง ุนูููุด ูููุฏ ู
ุฏุงู
ุฃูุช ู
ุงุดู ุณููู
ูุจูู ุงุญุณุจ |
|
|
|
365 |
|
00:40:24,100 --> 00:40:29,680 |
|
ุงููู ุจุฏู ูุงู ู
ุชู ูุงุฒู
ุงููู
ุน ุนุงุฑู ูุตุฏู ูู ุญุทููุง |
|
|
|
366 |
|
00:40:29,680 --> 00:40:35,960 |
|
element ูุญุทููุง ูู ูููุฉ ูุจูุฑ ูุจุชุตุบูุฑ ูุฐุง ุงููููุฉ ูุตุฏู ุงู |
|
|
|
367 |
|
00:40:35,960 --> 00:40:43,830 |
|
ุทูุจ ูู ุนูุฏูุง ุฎุฏ ุจุงูู ุดุบูุฉ ุจุฏู ุฃุดูุฑ ุฅูููุง ูุธุฑูุฉ |
|
|
|
368 |
|
00:40:43,830 --> 00:40:50,950 |
|
Lagrange ุจุชููู ุงูู order ููู subgroup ุจููุณู
ู
ูุ |
|
|
|
369 |
|
00:40:50,950 --> 00:40:57,230 |
|
ุจููุณู
ูู group ุงูุณุคุงู ูู ูู ูู ูุฐู ุงูุญููุฉ ููู ูุงุณู
|
|
|
|
370 |
|
00:40:57,230 --> 00:41:03,490 |
|
ูู group ุจุฏููู ุฌุงุจ ูู subgroupุ ุจุงูุชุฃููุฏุ ูุนูู ุนูุณ |
|
|
|
371 |
|
00:41:03,490 --> 00:41:08,550 |
|
ุงููุธุฑูุฉ ุตุญูุฉุ ูู ุดูุชุฑ 4 ูููุ ุทูุจ |
|
|
|
372 |
|
00:41:13,820 --> 00:41:20,700 |
|
ูุฐุง ููุงู
ู ู
ุด ุตุญูุญ ุจุฏููู ู
ุซุงู 5 ุนูู ุงูู section |
|
|
|
373 |
|
00:41:20,700 --> 00:41:25,480 |
|
ุงูุขู ูุตููุง ูู ูุฃูู ุนูุณ ูุธุฑูุฉ Lagrange ุบูุฑ ุตุญูุญ |
|
|
|
374 |
|
00:41:25,480 --> 00:41:30,100 |
|
ูุนูุฏู ู
ุซุงู ุชุทูุน ุนููู ูู ุงููุชุงุจ ุงููู ูู ู
ุซุงู 5 |
|
|
|
375 |
|
00:41:30,100 --> 00:41:37,280 |
|
ุจุงููุชุงุจ ูุนูู .. ูุนูู .. ูุนูู ูู ุนูุฏู ููุงุณู
ููู order |
|
|
|
376 |
|
00:41:37,280 --> 00:41:41,780 |
|
ุชุจุน ุงูู .. ุชุจุน ุงูู group ููุณ ุจุงูุถุฑูุฑุฉ ุฃูู ุงูุฐู ูุฃุชู ุงูู |
|
|
|
377 |
|
00:41:41,780 --> 00:41:47,220 |
|
sub group ุงูู order ุงูุฐู ููุณูู ูุฐุง ุงูููุงุณู
ูุฏ .. ูุง |
|
|
|
378 |
|
00:41:47,220 --> 00:41:53,010 |
|
ุดูุฎ ุฃูุช ุงุณู
ุนูู ุดููุฉ ุจูู ..ุฃุญูุง ุจูููู ู
ุง ูุฃุชู ุฃูุง |
|
|
|
379 |
|
00:41:53,010 --> 00:41:56,750 |
|
ูู ุชููู
ุฃู ุนูุณ ูุธุฑูุฉ ูุงุฌุฑุงูุฌ ููุณ ุตุญูุญ ูู ุญุงูุฉ ู
ุง ูู |
|
|
|
380 |
|
00:41:56,750 --> 00:42:01,310 |
|
ุนูุณ ูุธุฑูุฉ ูุงุฌุฑุงูุฌ ูู ุฌุจุช ููุงุณู
ุงูู order ูููู ุฌุฑูุจ |
|
|
|
381 |
|
00:42:01,310 --> 00:42:07,090 |
|
ููุณ ุจุงูุถุฑูุฑุฉ ูู ูุงุณู
ูุฌูุจ ูู sub group ูุฏ ูููู ู ูุฏ |
|
|
|
382 |
|
00:42:07,090 --> 00:42:11,110 |
|
ูุง ูููู ู
ู
ูู ุจุนุถ ุงูููุงุณู
ูุฌูููู
sub group ูุญู
ู ููุณ |
|
|
|
383 |
|
00:42:11,110 --> 00:42:15,200 |
|
ุงูู order ููู ุจุนุถ ุงูุขุฎุฑ ู
ู
ูู ู
ุง ูุฌู ูู ุฃุนุทู ู
ุซุงู |
|
|
|
384 |
|
00:42:15,200 --> 00:42:20,940 |
|
ุนูุฏู ุงูู ุงููู ูู ุนูู ุงูู A4 ุชู
ุงู
ุ ูุจูู ู
ุง ุนููู ุฅูุง ุฃู |
|
|
|
385 |
|
00:42:20,940 --> 00:42:26,320 |
|
ุชุทูุน ุนูู ูุฐุง ุงูู
ุซุงู ู ููุง ุฅูู ุฐูู ุนูุฏุฉ ุฅู ุดุงุก ุงููู |
|
|
|
386 |
|
00:42:26,320 --> 00:42:28,500 |
|
ุนูู ููุณ ุงูู
ูุถูุน ูู ุงูู
ุญุงุถุฑุฉ ุงููุงุฏู
ุฉ |
|
|