abdullah's picture
Add files using upload-large-folder tool
9fbc638 verified
raw
history blame
47.5 kB
1
00:00:21,330 --> 00:00:26,210
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุขุฎุฑ ุญุงุฌุฉ
2
00:00:26,210 --> 00:00:29,750
ุชูƒู„ู…ู†ุง ููŠู‡ุง ุฃุนุทูŠู†ุง definition ู„ู„ู€ center ู„ู„ู€ group
3
00:00:30,390 --> 00:00:36,030
ู†ุนูŠุฏ ู‡ุฐุง ุงู„ู€ definition ูˆู…ู† ุซู… ู†ุฃุฎุฐ ู†ุธุฑูŠุฉ ุนู„ูŠู‡
4
00:00:36,030 --> 00:00:41,050
ูู‚ู„ู†ุง ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุฃู† ุงู„ู€ center ุชุจุน ุงู„ู€ group G
5
00:00:41,050 --> 00:00:47,610
ู†ุฏูŠู„ู‡ ุฑู…ุฒ Z of G ูˆู‚ู„ู†ุง ู‡ูˆ ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู€ A ุงู„ู„ูŠ
6
00:00:47,610 --> 00:00:55,510
ู…ูˆุฌูˆุฏุฉ ููŠ G ุจุญูŠุซ ุฃู† ุงู„ู€ AX ุจูŠุณุงูˆูŠ ุงู„ู€ XA ู„ูƒู„ ุงู„ู€ X
7
00:00:55,510 --> 00:01:02,150
ุงู„ู„ูŠ belongs to the group G ุฅุฐุง ู…ุง ู…ุนู†ู‰ ุงู„ู€
8
00:01:02,150 --> 00:01:05,510
Center ุชุจุน ุงู„ู€ GroupุŸ ู…ุนู†ู‰ ุงู„ู€ Center ุชุจุน ุงู„ู€
9
00:01:05,510 --> 00:01:11,070
Group ู‡ูˆ ูƒู„ ุงู„ู€ elements ุงู„ู„ูŠ ูƒู…ูŠูˆุชุณ ู…ุน ุจู‚ูŠุฉ
10
00:01:11,070 --> 00:01:15,090
ุนู†ุงุตุฑ ุงู„ู€ Group ูŠุนู†ูŠ ู„ูˆ ุฃุฎุฐุช element ูˆุฌูŠุชู‡ ูƒู…ูŠูˆุชุณ
11
00:01:15,090 --> 00:01:18,030
ู…ุน ุฌู…ูŠุน ุนู†ุงุตุฑ ุงู„ู€ Group ุจู‚ูˆู„ ู‡ุฐุง ู…ู† ุงู„ู€ Center
12
00:01:18,030 --> 00:01:22,970
ุงู„ู„ูŠ ุจุนุฏู‡ ุงู„ู„ูŠ ุจุนุฏู‡ ู„ุบุงูŠุฉ ู…ุง ูŠุทู„ุน ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ
13
00:01:22,970 --> 00:01:28,500
ุจุชูƒูˆู† ูƒู…ูŠูˆุชุณ ู…ุน ุฌู…ูŠุน ุนู†ุงุตุฑ ุงู„ู€ Group ูŠุจู‚ู‰ ู‡ุฐูˆู„
14
00:01:28,500 --> 00:01:32,560
ุจูŠูƒูˆู†ูˆุง ู…ูŠู†ุŸ ุจูŠูƒูˆู†ูˆุง ุงู„ู€ center ุชุจุน ุงู„ู€ group ุฃุจุณุท
15
00:01:32,560 --> 00:01:37,380
ุงู„ุฃุดูŠุงุก ุงู„ู€ identity element ู…ูˆุฌูˆุฏ ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ู€
16
00:01:37,380 --> 00:01:40,260
center ุชุจุน ุงู„ู€ group ู„ุฃู† ุงู„ู€ identity elements
17
00:01:40,260 --> 00:01:45,740
commutes with all elements of G ูŠุจู‚ู‰ ูƒู„ ุงู„ุนู†ุงุตุฑ
18
00:01:45,740 --> 00:01:51,520
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ G ูˆุงู„ู„ูŠ ุจุชุจู‚ู‰ commutes ู…ุน ุฃูŠ ุนู†ุตุฑ
19
00:01:51,520 --> 00:01:56,490
ู…ูˆุฌูˆุฏ ููŠ G ูŠุจู‚ู‰ ู‡ุฐุง ุจุณู…ูŠู‡ ุงู„ู€ center of G ุงู„ุขู† ููŠ
20
00:01:56,490 --> 00:02:01,530
ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ุงู„ู€ center ู‡ุฐุง ู‡ูˆ ุงู„ู€ subgroup ูุจุฏู†ุง
21
00:02:01,530 --> 00:02:06,670
ู†ุฑูˆุญ ู†ุจุฑู‡ู† ุตุญุฉ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุจู‚ู‰ ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู…ุง
22
00:02:06,670 --> 00:02:13,070
ูŠุฃุชูŠ theorem Z
23
00:02:13,070 --> 00:02:18,430
of G the
24
00:02:18,430 --> 00:02:23,570
center of
25
00:02:23,570 --> 00:02:33,340
a group G is a
26
00:02:33,340 --> 00:02:39,720
subgroup of
27
00:02:39,720 --> 00:02:41,020
G
28
00:02:51,670 --> 00:02:56,290
ูŠุจู‚ู‰ ุฃู†ุง ู…ุดุงู† ุฃุซุจุช ุฃู† ุงู„ู€ Z ุงู„ู…ุนุฑูุฉ ุจุงู„ุดูƒู„ ู‡ู†ุง
29
00:02:56,290 --> 00:03:02,490
subgroup ู…ู† ุงู„ู€ group ุงู„ุฃุณุงุณูŠุฉ ุฏูŠ ุจุฏูŠ ุฃุซุจุช ุงู„ู†ู‚ุทุชูŠู†
30
00:03:02,490 --> 00:03:08,810
ุฃูˆู„ ุดูŠุก ุฃู† Z of G non-empty ุงู„ุฃู…ุฑ ุงู„ุซุงู†ูŠ ุจุฏูŠ ุฃุซุจุช
31
00:03:08,810 --> 00:03:15,350
ุฃู† ุฃูŠ ุนู†ุตุฑ ู„ูˆ ุฃุฎุฐุชู‡ ุฃูˆ ุฃูŠ ุนู†ุตุฑูŠู† ู„ูˆ ุฃุฎุฐุชู‡ ู…ู†
32
00:03:15,350 --> 00:03:18,750
ุงู„ู€ center ุจุฏูŠ ูŠูƒูˆู† ุงู„ุฃูˆู„ ููŠ ู…ุนูƒูˆุณ ุงู„ุซุงู†ูŠ ู…ูˆุฌูˆุฏ
33
00:03:18,750 --> 00:03:25,220
ูˆูŠู†ุŸ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ center ูŠุจู‚ู‰ ุฃูˆู„ ุดูŠุก ุฃู†ุง ุฃุฏุนูŠ ุฃู† ุงู„ู€
34
00:03:25,220 --> 00:03:32,400
Z of G is non-empty ูˆู‡ุฐู‡ ู‡ูŠ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ููŠ
35
00:03:32,400 --> 00:03:40,150
ุงู„ุจุฑู‡ุงู† non-empty ู„ูŠุดุŸ because ุงู„ู€ E ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ Z
36
00:03:40,150 --> 00:03:47,610
of G ู„ุฅูŠุดุŸ ู„ุฃู† ุงู„ู€ EX ุจูŠุณุงูˆูŠ X E ู„ูƒู„ ุงู„ู€ X
37
00:03:47,610 --> 00:03:56,650
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ู„ุฃู† ุงู„ู€ EX ุจูŠุณุงูˆูŠ ุงู„ู€ X ููŠ ุงู„ู€ E
38
00:03:56,650 --> 00:04:04,040
ู„ูƒู„ ุงู„ู€ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ G ุจู„ุง ุงุณุชุซู†ุงุก ูŠุจู‚ู‰ ู†ุธุฑุง
39
00:04:04,040 --> 00:04:07,780
ู„ุฃู†ู‡ ูŠุญู‚ู‚ ุงู„ุฎุงุตูŠุฉ ุชุจุน ุงู„ู€ center ุชุจุน ุงู„ู€ group ุฅุฐุง
40
00:04:07,780 --> 00:04:13,680
ุนู„ู‰ ุงู„ุฃู‚ู„ ููŠู‡ุง element ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ E ุงู„ุขู†
41
00:04:13,680 --> 00:04:20,700
ุจุชุฑูˆุญ ุชุฃุฎุฐ two elements ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ let a ูˆ b
42
00:04:20,700 --> 00:04:27,960
belongs to Z of G ู„ู…ุง ุฃู‚ูˆู„ two elements ู‡ุฐูˆู„
43
00:04:27,960 --> 00:04:34,760
ู…ูˆุฌูˆุฏุงุช ููŠ Z of G ูŠุจู‚ู‰ ุจุฏ ูŠูƒูˆู† ุนู†ุฏู†ุง ุงู„ู€ AX ุจุฏ
44
00:04:34,760 --> 00:04:44,800
ูŠุณุงูˆูŠ ุงู„ู€ XA and ุงู„ู€ BX ุจูŠุณุงูˆูŠ X B ู„ูƒู„ ุงู„ู€ X ุงู„ู„ูŠ
45
00:04:44,800 --> 00:04:47,400
ู…ูˆุฌูˆุฏ ููŠ G ุจูŠ less ุชุชู†ุนู‰
46
00:04:50,150 --> 00:04:54,250
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€ element ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ center ุฅุฐุง ุจุฏูŠ
47
00:04:54,250 --> 00:04:58,790
ุฃุญู‚ู‚ ู„ู„ุฎุงุตูŠุฉ ุงู„ู„ูŠ ููˆู‚ ุชุจุนุช ุงู„ู€ center ุจูŠ ู…ูˆุฌูˆุฏ ููŠ
48
00:04:58,790 --> 00:05:03,590
ุงู„ู€ center ุฅุฐุง ุจุฏูŠ ุฃุญู‚ู‚ ู„ู†ูุณ ุงู„ุฎุงุตูŠุฉ ูŠุจู‚ู‰ ุฃู†ุง ุฃุฎุฐุช
49
00:05:03,590 --> 00:05:08,050
ุนู†ุตุฑูŠู† ู…ูˆุฌูˆุฏุงุช ููŠ ุงู„ู€ center ุชุจุน ุงู„ู€ group ุจุฏูŠ ุฃุซุจุช
50
00:05:08,050 --> 00:05:13,350
ุฅู† ุงู„ุฃูˆู„ ููŠ ู…ุนูƒูˆุณู‡ ุงู„ุซุงู†ูŠ ู…ูˆุฌูˆุฏ ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ู€ center
51
00:05:13,350 --> 00:05:21,040
ุจู…ุนู†ู‰ ุขุฎุฑ ุฃุฑูŠุฏ ุฃู† ุฃุซุจุช ุฃู† a b inverse x ู‡ูˆ x a b
52
00:05:21,040 --> 00:05:27,360
inverse ู„ูƒู„ x ู…ูˆุฌูˆุฏุฉ ููŠ g ุจู„ุง ุงุณุชุซู†ุงุก ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฌูŠ
53
00:05:27,360 --> 00:05:34,740
ุฃู‚ูˆู„ ู„ู‡ consider ุฎุฏ ุฃู† a b inverse x
54
00:05:38,410 --> 00:05:46,950
ุจุชุดูˆู ู‡ุฐุง ุจุฏูŠ ุฃุซุจุช ูˆ ุจุฏูŠ ุฃุซุจุช ูˆ ุจุฏูŠ ุฃุซุจุช
55
00:05:46,950 --> 00:05:48,290
ูˆ ุจุฏูŠ ุฃุซุจุช ูˆ ุจุฏูŠ ุฃุซุจุช ูˆ ุจุฏูŠ ุฃุซุจุช ูˆ ุจุฏูŠ ุฃุซุจุช ูˆ ุจุฏูŠ
56
00:05:48,290 --> 00:05:57,150
ุฃุซุจุช ูˆ ุจุฏูŠ ุฃุซุจุช ูˆ ุจุฏูŠ ุฃุซุจุช
57
00:05:57,980 --> 00:06:03,900
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจูŠุณุงูˆูŠ ุจุฏูŠ ุฃุญุงูˆู„ ุฃุฑุจุท ู…ุง ุจูŠู† ุงู„ู€
58
00:06:03,900 --> 00:06:08,780
X ูˆุงู„ู€ B ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุช ู‚ู„ุช ู‡ุฐุง A B
59
00:06:08,780 --> 00:06:16,420
inverse ุงู„ู€ X ุฃุฎุฏุชู‡ุง X inverse inverse ุทุจุนุง ุจุฑู‡ู†ุงู‡ุง
60
00:06:16,420 --> 00:06:23,600
ุณุงุจู‚ุง ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจูŠุณุงูˆูŠ A ูุงู‡ู…ูŠู†ุŸ ูุจูŠุตูŠุฑ X
61
00:06:23,600 --> 00:06:30,770
inverse B inverse ู‡ุฐู‡ ุฅู†ูุฑุณ ูˆู‡ุฐู‡ ุฅู†ูุฑุณ ูŠุจู‚ู‰
62
00:06:30,770 --> 00:06:35,330
ุฑุฌุนุชู‡ู… ู„ู„ุฃุตู„ ุงู„ู„ูŠ ุจุชุจุนู‡ู… ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุทูŠุจ
63
00:06:35,330 --> 00:06:40,170
ุงู„ุขู† B ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ center ูˆู„ุง ู„ุฃุŸ ูŠุจู‚ู‰ commutes ู…ุน
64
00:06:40,170 --> 00:06:43,270
ุงู„ู€ X ูˆุงู„ู€ X inverse ู„ุฃู†ู‡ุง ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ center ูŠุนู†ูŠ
65
00:06:43,270 --> 00:06:47,910
commutes ู…ุน any element ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ group G ูŠุจู‚ู‰
66
00:06:47,910 --> 00:06:56,670
ู‡ุฐุง ุงู„ูƒู„ุงู… ุจูŠุณุงูˆูŠ A ูˆู‡ู†ุง B X inverse ุงู„ูƒู„ inverse
67
00:07:00,860 --> 00:07:05,520
ู„ูŠุด ู‡ุฐู‡ ุงู„ุฎุทูˆุฉ ุนู…ู„ุชู‡ุงุŸ ู„ุฃู† B ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ Center
68
00:07:05,520 --> 00:07:11,600
ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู€ sense B ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ Center ุชุจุน ุงู„ู€
69
00:07:11,600 --> 00:07:17,580
G ู‡ุฐุง ุงู„ูƒู„ุงู… ุจูŠุณุงูˆูŠ ู„ูˆ ุฌูŠุช ู„ูŠ ู‡ุฐุง ุงู„ุขู† ุจูŠุณุงูˆูŠ ุจุฏูŠ ุฃุทุจู‚
70
00:07:17,580 --> 00:07:22,940
ุนู„ูŠู‡ ุชุนุฑูŠู ุงู„ู…ุนูƒูˆุณ ู„ุญุธุฉ ุญุตู„ ุถุฑุจ two elements ูŠุจู‚ู‰
71
00:07:22,940 --> 00:07:26,020
ู‡ุฐุง ุจูŠุตูŠุฑ A ููŠ X
72
00:07:28,710 --> 00:07:37,090
inverse inverse ูˆู‡ู†ุง ุงู„ู„ูŠ ู‡ูˆ B inverse ูŠุจู‚ู‰ ูˆุฒุนุช ุงู„ู€
73
00:07:37,090 --> 00:07:42,210
inverse ู„ูƒู„ ูˆุงุญุฏุฉ ู…ู† ู‡ุฐูˆู„ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู†ุชู‚ู„ุช ูŠุจู‚ู‰
74
00:07:42,210 --> 00:07:49,770
ู‡ุฐู‡ ุฅูŠุด ุจูŠุตูŠุฑ AX ููŠ ุงู„ู€ B inverse ุงู„ุขู† ุฃู†ุง ุนู†ุฏูŠ ู…ู†
75
00:07:49,770 --> 00:07:57,330
ุงู„ู…ุนุทูŠุงุช ุฃู† AX ูŠุณุงูˆูŠ X A ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏูŠ
76
00:07:57,330 --> 00:08:06,810
ูŠุนุทูŠู†ุง X A ููŠ ุงู„ู€ B inverse ู„ูŠุด ู‡ุฐุง ุงู„ู€ sense ุงู„ู€ A
77
00:08:06,810 --> 00:08:13,150
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ center ุชุจุน ุงู„ู€ G ุทูŠุจ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏูŠ
78
00:08:13,150 --> 00:08:19,770
ูŠุณุงูˆูŠ ู…ู† ุฎุงุตูŠุฉ ุงู„ู€ associativity XAB inverse ุจุงู„ุดูƒู„
79
00:08:19,770 --> 00:08:25,090
ุงู„ู„ูŠ ุนู†ุฏู†ุง ุทุจ ุฅูŠุด ุงู„ู„ูŠ ุนู…ู„ุชู‡ ุฃู†ุง ุญุชู‰ ุงู„ู„ุญุธุฉ ุฃุฎุฐุช A
80
00:08:25,090 --> 00:08:31,250
B inverse X ูˆุฌูŠุชู‡ ูŠุณุงูˆูŠ X A B inverse ู‡ุฐุง ุงู„ูƒู„ุงู…
81
00:08:31,250 --> 00:08:37,590
ุตุญูŠุญ ู„ูƒู„ ุงู„ู€ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ G plus ุชุชู†ู‰ ุฅูŠุด
82
00:08:37,590 --> 00:08:42,370
ุชูุณูŠุฑูƒ ู„ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุจู‚ู‰ ุงู„ู€ A B inverse ู…ูˆุฌูˆุฏ ูˆูŠู†
83
00:08:42,370 --> 00:08:45,990
ููŠ ุงู„ู€ center ุชุจุน ุงู„ู€ group ูˆุจุงู„ุชุงู„ูŠ ุงู„ู€ center ุนุจุงุฑุฉ
84
00:08:45,990 --> 00:08:53,880
ุนู† subgroup ูŠุจู‚ู‰ ู‡ู†ุง ุณูˆูŠุง ุงู„ู€ A B inverse belongs ู„ู„ู€
85
00:08:53,880 --> 00:09:03,920
Z of G and hence ูˆู…ู† ุซู… ุงู„ู€ Z of G is a subgroup ู…ู†
86
00:09:03,920 --> 00:09:05,060
G ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ
87
00:09:08,760 --> 00:09:14,200
ูŠุจู‚ู‰ ู…ู† ุงู„ุขู† ูุตุงุนุฏุง ุงู„ู€ center ุชุจุน ุงู„ู€ group ู‡ูˆ sub
88
00:09:14,200 --> 00:09:20,440
group ู…ู† ุงู„ู€ group ุงู„ุฃุณุงุณูŠุฉ ุทูŠุจ ูŠุง ุดุจุงุจ ููŠ ุนู†ุฏู†ุง
89
00:09:20,440 --> 00:09:28,000
ุณุคุงู„ ุงู„ุณุคุงู„ ู„ูˆ ูƒุงู†ุช G ุฃุจูŠู„ูŠุงู† G ุฃุจูŠู„ูŠุงู† ูŠุจู‚ู‰ ุงู„ู€
90
00:09:28,000 --> 00:09:34,040
center ุชุจุน ุงู„ู€ group ุจูŠูƒูˆู† ูƒู„ ุงู„ู€ group ูŠุจู‚ู‰ ู‡ุฐู‡ ุงูƒุชุจู‡ุง
91
00:09:34,040 --> 00:09:46,500
ู…ู„ุงุญุธุฉ Note If ุงู„ู€ G is abelian then ุงู„ู€ center ุชุจุน
92
00:09:46,500 --> 00:09:53,280
ุงู„ู€ G ุจูŠุณุงูˆูŠ ุงู„ู€ G itself ูƒู„ู‡ุง ุจู„ุง ุงุณุชุซู†ุงุก ู†ุจุฏุฃ
93
00:09:53,280 --> 00:10:04,080
ู†ุฃุฎุฐ ุฃู…ุซู„ุฉ examples ุฃูˆู„ ู…ุซุงู„ ุจูŠู‚ูˆู„ let ุงู„ู€ G ู‡ูŠ ุงู„ู€
94
00:10:04,080 --> 00:10:09,550
general linear group of two by two matrices over R
95
00:10:09,550 --> 00:10:21,390
Then ุจุฏู†ุง Z of G ุจุฏูŠ Z of G ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ ุฃู†ุง
96
00:10:21,390 --> 00:10:31,090
ุฃุฏุนูŠ ุฃู† Z of G ูƒู„ ุงู„ู…ุตููˆูุฉ ุนู„ู‰ ุตูŠุบุฉ A 0 0 A ูˆุจุญูŠุซ ุงู„ู€
97
00:10:31,090 --> 00:10:41,300
A ู…ูˆุฌูˆุฏ ููŠ R ูˆุงู„ู€ A ู‡ุฐุง ู„ุง ูŠุณุงูˆูŠ Zero ุงู„ูƒู„ุงู…
98
00:10:41,300 --> 00:10:44,760
ู‡ุฐุง ุตุญูŠุญ ูˆู„ุง ู…ุง ู‡ูˆุŸ ู…ุด ุตุญูŠุญ ูˆุงู„ู„ู‡ ุฃู†ุง ุฃุฏุนูŠ
99
00:10:44,760 --> 00:10:51,040
ุงุฏุนุงุก ุจุงุฌูŠ ุจู‚ูˆู„ ูˆุงู„ู„ู‡ ุฅุฐุง ู„ู‚ูŠุช ู‡ุฐู‡ ุงู„ู…ุตููˆูุงุช ูƒู„ู‡ู…
100
00:10:51,040 --> 00:10:56,540
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ Z of G commutes with any element ููŠ
101
00:10:56,540 --> 00:11:00,180
ุงู„ู€ general linear group ูŠุตูŠุจ ูƒู„ุงู…ู†ุง ุตุญูŠุญ ู…ู† ุงู„ูŠู…ูŠู†
102
00:11:00,180 --> 00:11:05,450
ูˆู…ู† ุงู„ุดู…ุงู„ ู…ุง ุทู„ุน ูŠุจู‚ู‰ ูƒู„ุงู…ู†ุง ู…ุนู„ู‡ ุบูŠุฑ ุตุญูŠุญ ู„ุฐู„ูƒ
103
00:11:05,450 --> 00:11:11,310
ุจุฃุฌูŠ ุจู‚ูˆู„ ู„ูƒ ู‡ุฐุง ุงู„ูƒู„ุงู… because ุจุฏูŠ ุฃุฌูŠ ุงู„ู€ element
104
00:11:11,310 --> 00:11:17,230
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ center A 0 0 A ุจุฏูŠ ุฃุถุฑุจู‡ ููŠ
105
00:11:17,230 --> 00:11:21,230
ุฃูŠ element ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ general linear group ุจุฏูŠ
106
00:11:21,230 --> 00:11:28,810
ุขุฎุฐ B, C, D, F ู…ุซู„ุง ุจุฏูŠุด ุฃูƒุชุจ ุงู„ู€ A ุจู„ุงุด ุชู‚ูˆู„ ู„ูŠ ุฅูŠู‡
107
00:11:28,810 --> 00:11:34,160
ู‡ุฐุง ู‡ูˆ ุงู„ู€ identity element ุฅุฐุง ู‡ุฐู‡ ู„ูˆ ุฌูŠุช ุถุฑุจุชู‡ุง
108
00:11:34,160 --> 00:11:40,400
ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ AB
109
00:11:40,400 --> 00:11:47,560
ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ BC ุงู„ุตู ุงู„ุซุงู†ูŠ
110
00:11:47,560 --> 00:11:53,260
ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ AD ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ
111
00:11:53,260 --> 00:12:06,450
ุงู„ุซุงู†ูŠ AF ุงู„ู„ูŠ ุจู‚ุฏุฑ ุฃูƒุชุจู‡ุง A ููŠ B, C, D, F ุงู„ุขู† ุจุฏุฃุช
112
00:12:06,450 --> 00:12:16,420
ุขุฎุฐ ู„ู‡ ุงู„ู„ูŠ ู‡ูˆ B, C, D, F ููŠ ุงู„ู€ A, 0, 0, A ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡
113
00:12:16,420 --> 00:12:23,180
ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ BA ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ
114
00:12:23,180 --> 00:12:29,960
ุงู„ุซุงู†ูŠ CA ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ DA ุงู„ุตู
115
00:12:29,960 --> 00:12:37,240
ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ FA ู„ูˆ ุฃุฎุฐุช ุงู„ู€ A ู…ู† ูƒู„
116
00:12:37,240 --> 00:12:42,340
element ู…ูˆุฌูˆุฏ ุฏุงุฎู„ ุงู„ู…ุตููˆูุฉ ุจูŠุธู‡ุฑ ู„ู†ุง ู…ูŠู†ุŸ ุจูŠ ุจูŠ ุจูŠ
117
00:12:42,340 --> 00:12:43,680
ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ
118
00:12:43,680 --> 00:12:50,000
ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ
119
00:12:50,780 --> 00:12:56,080
ู…ุง ุฏุงู… ุฃุฑูŠูƒูˆุง ุงู„ู…ุนู†ุงุชู‡ ูุนู„ุง ู‡ุฐุง ูŠู…ุซู„ main ุงู„ู€
120
00:12:56,080 --> 00:13:01,480
center ุฃูˆ ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ู‡ูŠ element ู…ูˆุฌูˆุฏ
121
00:13:01,480 --> 00:13:07,380
ูˆุฅู† ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ center ู‡ุฐุง ุจุฏูŠ ุฃุนุทูŠูƒ ุฃู† any
122
00:13:07,380 --> 00:13:09,140
element
123
00:13:11,320 --> 00:13:22,860
in Z of G is in the form ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ู‡ูˆ A 0
124
00:13:22,860 --> 00:13:30,410
0 A ูˆุงู„ู€ A does not equal to zero ูŠุจู‚ู‰ ู…ู† ุงู„ุขู†
125
00:13:30,410 --> 00:13:34,110
ูุตุงุนุฏุง ู„ู…ุง ุจุฏูŠ ุงู„ู€ center ู„ู„ู€ general linear group of
126
00:13:34,110 --> 00:13:38,670
two by two matrices over R ุจูŠูƒูˆู† ุนู†ุฏูŠ ูˆุงุญุฏ ุฒูŠุฑูˆ
127
00:13:38,670 --> 00:13:43,030
ุฒูŠุฑูˆ ูˆุงุญุฏ ุงุชู†ูŠู† ุฒูŠุฑูˆ ุฒูŠุฑูˆ ูˆุงุญุฏ ู…ุต ุฒูŠุฑูˆ ุฒูŠุฑูˆ ูˆุงุญุฏ
128
00:13:43,030 --> 00:13:48,310
ูˆุงุญุฏ ุนู„ู‰ ู…ูŠุฉ ุฒูŠุฑูˆ ุฒูŠุฑูˆ ูˆุงุญุฏ ุนู„ู‰ ู…ูŠุฉ ูˆู‡ูƒุฐุง ูŠุจู‚ู‰ ูƒู„
129
00:13:48,310 --> 00:13:53,590
ุงู„ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ุจูŠูƒูˆู† ุนู†ุงุตุฑู‡ู… ู…ุชุณุงูˆูŠุฉ ูˆู‡ุฐู‡
130
00:13:53,590 --> 00:13:59,170
ุจู‚ูŠู†ุง ู†ุณู…ูŠู‡ุง ููŠ ุงู„ linear algebra ุจู‚ูŠู†ุง ู†ุณู…ูŠู‡ุง
131
00:13:59,170 --> 00:14:05,830
ุงู„ู…ุตููˆูุฉ ุดูˆ ุงุณู…ู‡ุงุŸ ู…ุตููˆูุฉ ุงู„ูˆุงุญุฏ ุงู„ู‚ุทุฑูŠุฉ
132
00:14:05,830 --> 00:14:12,150
ู„ู…ุง ุงู„ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ูŠูƒูˆู†ูˆุง ู…ุชุณุงูˆูŠุฉ ุจู‚ูŠู†ุง
133
00:14:12,150 --> 00:14:14,330
ู†ุณู…ูŠู‡ุง ู…ุซู„ุซูŠุฉ
134
00:14:17,700 --> 00:14:24,520
ุจู†ุณู…ูŠู‡ุง scalar matrix ุฃูˆ ู…ู‚ูŠุงุณูŠุฉ
135
00:14:24,520 --> 00:14:28,940
ู„ูˆ ูƒุงู† ุงู„ู‚ุทุฑูŠู† ุบูŠุฑ ู…ุชุณุงูˆูŠูŠู† ุจูŠู‚ูˆู„ diagonal matrix
136
00:14:28,940 --> 00:14:31,240
diagonal matrix ู‡ูŠ ูุนู„ุง diagonal matrix ููŠ ุงู„ู…ุตููˆู
137
00:14:31,240 --> 00:14:36,060
ุงู„ู‚ุทุฑูŠุฉ ุจุณ ุฅุฐุง ุชุณุงูˆุช ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ุจู†ุณู…ูŠู‡ุง
138
00:14:36,060 --> 00:14:41,070
scalar matrix ูŠุจู‚ู‰ ูƒู„ scalar matrix ููŠ ุงู„ general
139
00:14:41,070 --> 00:14:44,790
linear group of two by two matrices ุจูŠูƒูˆู†ูˆู„ูŠ main
140
00:14:44,790 --> 00:14:50,790
ุจูŠูƒูˆู†ูˆู„ูŠ ุงู„ center ู„ู„ group ุงู„ู„ูŠ ุนู†ุฏู†ุง ุทูŠุจ ู†ู…ุฑุชู†ุง
141
00:14:50,790 --> 00:15:01,990
example two ุจุฏู†ุง z of D4 ูŠุณุงูˆูŠ ุฃูƒูŠุฏ ุงู„ R node ู…ู†ู‡ู…
142
00:15:01,990 --> 00:15:07,240
ู‡ุฐุง ูƒู„ ู…ุฌู…ุน ู„ูŠู‡ ู„ุฃู†ู‡ ุงู„ identity ุญุฏ ุจูŠู‚ุฏุฑ ูŠุฌูŠุจู„ูŠ
143
00:15:07,240 --> 00:15:16,240
ูƒู…ุงู† element ุขุฎุฑ ุชุณุนูŠู† commutes ู…ุน ุงู„ูƒู„ ุชุณุนูŠู†
144
00:15:16,240 --> 00:15:19,860
commutes ู…ุน ุงู„ู…ูŠุฉ ูˆุชู…ุงู†ูŠู† ูˆู…ุน ุงู„ู…ูŠุชูŠู† ูˆุณุจุนูŠู† ู…ุน ุงู„
145
00:15:19,860 --> 00:15:25,580
rotations ู†ุนู… ู„ูƒู† ู…ุน ุงู„ reflections ู„ูŠุณ ุตุญูŠุญุง
146
00:15:25,580 --> 00:15:31,960
ูˆุฃุซุจุช ู„ูƒ ุฃู† R ุชุณุนูŠู† ููŠ H ู„ูŠุณูˆุง ุงู„ H ููŠ R ุชุณุนูŠู†
147
00:15:31,960 --> 00:15:39,720
ูˆุญุณุจุชู‡ู… ู„ูƒ ุฃู†ุช ุงู„ู€ R180 ูู‚ุท ู„ุง ุบูŠุฑ ูŠุจู‚ู‰ ู‡ุฐู‡ ูˆุงู„ู€
148
00:15:39,720 --> 00:15:48,060
R180 ูู‚ุท ู„ุง ุบูŠุฑ ูŠุจู‚ู‰ ู‡ุฏูˆู„ ุจุณ ุนู†ุงุตุฑ ุงู„ู€ Center ุชุจุนูŠ
149
00:15:48,060 --> 00:15:52,600
ุงู„ู€ D4 ุบูŠุฑ ู‡ูŠูƒ ู…ุง ููŠุด ูˆู„ุง elements ุทุจุนุง ู„ูˆ ุฑุฌุนุช
150
00:15:52,600 --> 00:15:58,720
ู„ู„ุฌุฏูˆู„ ุงู„ู„ูŠ ููŠ ุงู„ุตูุญุฉ ูˆุงุญุฏุฉ ูˆ ุชู„ุงุชูŠู† ุงู„ูƒู„ูŠุชุงุจู„ ู„ู„ู€
151
00:15:58,720 --> 00:16:05,880
D4 ุจุชู„ุงู‚ูŠ ุฃู† ุงู„ R180 ู‡ูŠ ุงู„ commutes ู…ุน ุฌู…ูŠุน ุนู†ุงุตุฑ
152
00:16:05,880 --> 00:16:10,280
D4 ุจุงู„ุฅุถุงูุฉ ุฅู„ู‰ ุงู„ identity element ุงู„ู„ูŠ ู‡ูˆ main
153
00:16:10,670 --> 00:16:16,350
ุงู„ู„ูŠ ู‡ูˆ Arnold ูŠุจู‚ู‰ ู‡ุฐูˆู„ ุงู„ two elements ู‡ู… ุงู„ู„ูŠ
154
00:16:16,350 --> 00:16:21,890
commutes ู…ุน ุฌู…ูŠุน ุนู†ุงุตุฑ D4 ูู‚ุท ู„ุง ุบูŠุฑ ุทูŠุจ ุฅูŠุด ุฑุฃูŠูƒ
155
00:16:21,890 --> 00:16:27,650
ุจุฏูŠ ุฃุนู…ู„ูƒ ู‡ุงู„ุดุบู„ ู‡ุฐู‡ ุจุฏู„ ู…ุง ุขุฎุฐ D4 ุจุฏูŠ ุขุฎุฐ DN
156
00:16:27,650 --> 00:16:35,950
ูŠุจู‚ู‰ ุงู„ุขู† in general ู„ูˆ
157
00:16:35,950 --> 00:16:46,670
ุฃุฎุฐุช ุงู„ Z of DM ู‡ุฐู‡ ุฃุญุฏ ุฃู…ุฑูŠู† ูŠุง ุฅู…ุง ุงู„ู€ Arnold ูˆุงู„ู€
158
00:16:46,670 --> 00:16:55,750
ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ูู‚ุท ูŠุง ุฅู…ุง ุงู„ู€ Arnold ุงู„ุณุคุงู„ ู‡ูˆ ู…ุชู‰ ูŠุญุฏุซ
159
00:16:55,750 --> 00:17:01,950
ู‡ุฐุง ูˆู…ุชู‰ ูŠุญุฏุซ ู‡ุฐุง ุงู„ุขู† ููŠ D4 ุงู„ุฑู‚ู… ู‡ุฐุง ุฒูˆุฌูŠ ูˆุงู„ู„ู‡
160
00:17:01,950 --> 00:17:09,870
ูุฑุฏูŠ ุฒูˆุฌูŠ ูŠุจู‚ู‰ ู‡ุฐุง ูŠุญุฏุซ ู„ูˆ ูƒุงู† ุงู„ n ูุฑุฏูŠุง ูŠุจู‚ู‰ ู‡ู†ุง
161
00:17:09,870 --> 00:17:21,630
ู‡ุฐุง ุงู„ูƒู„ุงู… if n is even ุฃูˆ ู‡ุฐุง if ุงู„ n is odd
162
00:17:21,630 --> 00:17:29,050
ูู‚ุท ู„ุง ุบูŠุฑ ุทุจุนุง ูŠู…ูƒู† ูŠุณุฃู„ ูˆุงุญุฏ ุจุนุถ ู…ู†ูƒู… ู„ู…ุงุฐุง ู‡ุฐุง
163
00:17:29,050 --> 00:17:29,750
ุงู„ูƒู„ุงู…
164
00:17:40,760 --> 00:17:46,140
ุงู„ุฅุฌุงุจุฉ ุจุฏู†ุง ู†ุนุทูŠ ุชูุณูŠุฑ ู„ูŠุด ู‡ุฐุง ุงู„ูƒู„ุงู… ู…ุง ููŠุด ุบุฑุถ
165
00:17:46,140 --> 00:17:54,220
ูŠุจู‚ู‰ ุงูƒุชุจ ู„ูŠ this is because ูŠุจู‚ู‰ this is because
166
00:17:54,220 --> 00:18:05,940
ู‡ุฐุง ุงู„ูƒู„ุงู… ู„ุฃู†ู‡ this is because every rotation in
167
00:18:05,940 --> 00:18:07,680
DN
168
00:18:09,750 --> 00:18:19,790
is a power is a power of
169
00:18:19,790 --> 00:18:28,450
R ุชู„ุช ู…ูŠุฉ ูˆ ุณุชูŠู† ุนู„ู‰ N and
170
00:18:28,450 --> 00:18:37,790
rotations and rotations commute
171
00:18:42,200 --> 00:18:49,400
and the rotations commute with each other with
172
00:18:49,400 --> 00:18:59,060
each other ู†ุฌูŠ
173
00:18:59,060 --> 00:19:03,760
ุงู„ุขู† ู„ูˆ ูƒุงู† ุญุงุตู„ ุถุฑุจ rotation ููŠ reflection ุจุฏุง
174
00:19:03,760 --> 00:19:10,280
ุฃู‚ูˆู„ ู„ูƒ ุจุฏุง ุฃุนุทูŠ ุชุณู…ูŠุฉ ุงู„ุชุงู„ูŠุฉ little r b any
175
00:19:12,530 --> 00:19:31,450
rotation in DN and let ุงู„ F be any reflection ุจุฑุถู‡
176
00:19:31,450 --> 00:19:36,290
in DN in DN
177
00:19:49,990 --> 00:19:57,070
ู…ุฑุฉ ุฃุฎุฑู‰ ู†ุฏุนูŠ ุฃู† ุงู„ู€ Center ุชุจุน ุงู„ group D ุงู† ุณูˆุงุก
178
00:19:57,070 --> 00:20:04,330
ูƒุงู†ุช D3ุŒ D4ุŒ D5ุŒ D6ุŒ ุฌุฏ ู…ุง ูŠูƒูˆู† ูŠูƒูˆู† ุทุจุนุง ุงู„ N ู‡ุฐู‡
179
00:20:04,330 --> 00:20:10,410
ุฃูƒุจุฑ ู…ู† ุฃูˆ ุชุณุงูˆูŠ ุชู„ุงุชุฉ ุงู„ N ุงู„ู„ูŠ ุนู†ุฏู†ุง ุฃูƒุจุฑ ู…ู† ุฃูˆ
180
00:20:10,410 --> 00:20:15,330
ุชุณุงูˆูŠ ุชู„ุงุชุฉ ูŠุนู†ูŠ ู…ู…ูƒู† ูŠูƒูˆู† ู…ุซู„ุซ ู…ู†ุชุธู… ู…ุฑุจุน ู…ู†ุชุธู…
181
00:20:15,330 --> 00:20:20,390
ู…ุฎู„ุต ู…ู†ุชุธู… ู…ุณุฏุณ ู…ู†ุชุธู… ุฅู„ู‰ ุขุฎุฑู‡ู… ุฅุฐุง ูˆุงู„ู„ู‡ ุงู„ N
182
00:20:20,390 --> 00:20:28,030
ู…ูˆุฌุจุฉ ุฒูŠ D4, D6, D8, D10 ุฅู„ู‰ ุขุฎุฑู‡ ูŠุจู‚ู‰ ุงู„ุนู†ุงุตุฑ
183
00:20:28,030 --> 00:20:33,070
ุงู„ู„ูŠ ููŠ ุงู„ center ุจุณ Arnold ูˆ R180 ุงู„ุฃู‚ู„ ู„ูˆ ูƒุงู†ุช
184
00:20:33,070 --> 00:20:36,670
ุงู„ N ูุฑุฏูŠ ุชู„ุงุชุฉ ุฎู…ุณุฉ ุณุจุนุฉ ุชุณุนุฉ ุฅู„ู‰ ุขุฎุฑู‡ ูŠุจู‚ู‰ ู„ุง
185
00:20:36,670 --> 00:20:40,990
ูŠูˆุฌุฏ ููŠ ุงู„ center ุฅู„ุง ุนู†ุตุฑ ุงู„ูˆุญุฏุฉ ุงู„ู„ูŠ ู‡ู…ูŠู† Arnold
186
00:20:40,990 --> 00:20:46,720
ู„ูŠุด ู‡ุฐุงุŸ ู„ุฃู† ุฃูŠ ุฑูˆุชุงุดู† ูŠุชุนุงู…ู„ ู…ุน ุฃูŠ ุฑูˆุชุงุดู† ุขุฎุฑ ู…ุซู„ุง
187
00:20:46,720 --> 00:20:52,220
ููŠ D4 ุฅุฐุง ู‚ู„ุช ู„ูƒ R90 ูŠุชุนุงู…ู„ ู…ุน R180 ูˆูŠุชุนุงู…ู„ ู…ุน
188
00:20:52,220 --> 00:20:57,520
R270 ูˆR270 ูŠุชุนุงู…ู„ ู…ุน R270 ูˆR270 ูŠุชุนุงู…ู„ ู…ุน R270
189
00:20:57,520 --> 00:21:01,300
ูˆR270 ูŠุชุนุงู…ู„ ู…ุน R270 ูˆR270 ูŠุชุนุงู…ู„ ู…ุน R270 ูˆR270
190
00:21:01,300 --> 00:21:02,380
ูŠุชุนุงู…ู„ ู…ุน R270 ูˆR270 ูŠุชุนุงู…ู„ ู…ุน R270 ูˆR270 ูŠุชุนุงู…ู„
191
00:21:02,380 --> 00:21:03,200
ู…ุน R270 ูˆR270 ูŠุชุนุงู…ู„ ู…ุน R270 ูˆR270 ูŠุชุนุงู…ู„ ู…ุน R270
192
00:21:03,200 --> 00:21:07,000
ูˆR270 ูŠุชุนุงู…ู„ ู…ุน R270 ูˆR270 ูŠุชุนุงู…ู„ ู…ุน R270 ูˆR270
193
00:21:07,000 --> 00:21:12,500
ูŠุชุนุงู…ู„ ู…ุน R270 ูˆR270 ูŠุชุนุงู…ู„ ู…ุน R270
194
00:21:12,500 --> 00:21:17,410
ูˆR2 ูŠุจู‚ู‰ ุฏู‡ commutes ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุจุฏูŠ ุขุฌูŠ ุขุฎุฐ R ู‡ูŠ any
195
00:21:17,410 --> 00:21:23,670
rotation ูŠุนู†ูŠ ุฌุฑุจ ู„ูƒ ุงู„ููƒุฑุฉ ู„ูˆ ูƒุงู† ุงู„ D4 ุนู†ุฏู†ุง ูŠุจู‚ู‰
196
00:21:23,670 --> 00:21:27,610
ุงู„ R ู‡ุงุฏูŠ ุฃู…ุง R ุชุณุนูŠู† ุฃูˆ ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ุฃูˆ ู…ูŠุชูŠู† ูˆ
197
00:21:27,610 --> 00:21:34,730
ุณุจุนูŠู† ุฃูŠ ูˆุงุญุฏุฉ ู…ู†ู‡ู… ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ุงู„ F ููŠ ูƒุฐู„ูƒ any
198
00:21:34,730 --> 00:21:39,670
reflection ุฃูŠ ุงู†ู‚ู„ุงุจ ุณูˆุงุก ูƒุงู† H ุฃูˆ ู„ุง V ุฃูˆ ู„ุง D ุฃูˆ ู„ุง
199
00:21:39,670 --> 00:21:45,430
D' ุฃูŠ ูˆุงุญุฏุฉ ู…ู†ู‡ู… ู…ูƒุชูˆุจ ู…ุนูƒ ุฃู† reflection ุถุฑุจ
200
00:21:45,430 --> 00:21:51,530
rotation ูŠุณุงูˆูŠ rotation ุถุฑุจ reflection ูƒู„ู‡ ุจูŠุนุทูŠู†ูŠ
201
00:21:51,530 --> 00:21:55,850
reflection ู…ุง ุฃู‚ูˆู„ุด ูŠุณุงูˆูŠ ูŠุนู†ูŠ ุนู„ู‰ ูƒู„ ุงู„ุฃู…ุฑูŠู† ุจูŠุทู„ุน ู„ูŠ
202
00:21:55,850 --> 00:21:59,090
reflection ู„ูˆ ุถุฑุจุช rotation ููŠ reflection ุจุฏู‡
203
00:21:59,090 --> 00:22:01,570
ูŠุทู„ุน ู„ูŠ reflectionุŒ ู„ูˆ ุถุฑุจุช reflection ููŠ rotation
204
00:22:01,570 --> 00:22:05,170
ุจุฏู‡ ูŠุทู„ุน ู„ูŠ reflection ุนู„ู‰ ูƒู„ุง ุงู„ุฃู…ุฑูŠู† ูˆู…ูƒุชูˆุจุฉ
205
00:22:05,170 --> 00:22:08,130
ู…ุนุงูƒ ู‡ุฐู‡ ูƒุชุจู†ุงู‡ุง ู‚ุจู„ ุฐู„ูƒ
206
00:22:10,970 --> 00:22:16,690
ุฃูŠ rotation ููŠ D4 ู‡ูˆ power of r 360 ุนู„ู‰ n ุฅูŠุด
207
00:22:16,690 --> 00:22:24,630
360 ุนู„ู‰ n ุจุงุฌูŠ ุจู‚ูˆู„ ุงู‡ ู„ูˆ ูƒุงู†ุช n ุชุณุงูˆูŠ 4 ู…ุซู„ุง ูŠุจู‚ู‰
208
00:22:24,630 --> 00:22:29,230
360 ุนู„ู‰ 4 ููŠู‡ุง ู‚ุฏุงุด 90 ุฅุฐุง ุงู„ rotation ุงู„ูˆุงุญุฏุฉ
209
00:22:29,230 --> 00:22:35,080
ุจุชุณุนูŠู† ุฏุฑุฌุฉ ู‡ุฐุง ู„ู…ุง ูŠูƒูˆู† ู…ุฑุจุน ุทุจ ู„ูˆ ูƒุงู† ู…ุซู„ุซ ุจุฏูŠ
210
00:22:35,080 --> 00:22:39,660
ุฃู‚ุณู… ุนู„ู‰ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ุงู„ rotation ู…ู‚ุฏุงุด ู…ูŠุฉ ูˆุนุดุฑูŠู†
211
00:22:39,660 --> 00:22:45,740
ุฏุฑุฌุฉ ู„ูˆ ูƒุงู† ู…ุฎู…ุณ ู„ูˆ ูƒุงู† ู…ุณุฏุณ ู…ู†ุชุธู… ูŠุจู‚ู‰ ุชู„ุงุชู…ูŠุฉ ูˆ
212
00:22:45,740 --> 00:22:49,460
ุณุชูŠู† ุนู„ู‰ ุณุช ุงู„ู„ูŠ ููŠู‡ ู…ู‚ุฏุงุด ุณุชูŠู† ูŠุจู‚ู‰ ุจูŠุตูŠุฑ ุนู†ุฏูŠ R
213
00:22:49,460 --> 00:22:55,740
node R ุณุชูŠู† R ู…ูŠุฉ ูˆุนุดุฑูŠู† R ู…ูŠุฉ ูˆุชู…ุงู†ูŠู† R ู…ูŠุชูŠู† ูˆ ุฃุฑุจุนูŠู†
214
00:22:55,740 --> 00:23:02,820
R300 R node ูˆู‡ูƒุฐุง ูŠุจู‚ู‰ ู‡ูƒุฐุง ุชูƒุชุจ ู…ู† ุงู„ุนู†ุงุตุฑ ูˆุจุนุฏูŠู†
215
00:23:02,820 --> 00:23:06,800
ุจุฑูˆุญ ุจุฏูˆุฑ ู…ู† ุงู„ reflections ุฅู„ู‰ ุขุฎุฑูŠู† ู…ุง ุนู„ูŠู†ุง
216
00:23:06,800 --> 00:23:13,880
ูŠุจู‚ู‰ ุงู„ู…ู‚ุตูˆุฏ ู…ู† R360 ุนู„ู‰ N ุฃุทู„ุน ู‚ุฏุงุด ู…ู‚ุฏุงุฑ ุงู„ุฒุงูˆูŠุฉ
217
00:23:13,880 --> 00:23:18,250
ุงู„ู„ูŠ ุจุฃุนู…ู„ ุจู‡ุง ุงู„ุฏูˆุฑุงู„ุฉ ุงู„ู…ุถู„ุน ุงู„ู…ู†ุชุธู… ุงู„ู„ูŠ ุนู†ุฏูŠ
218
00:23:18,250 --> 00:23:23,830
ู…ูŠู† ู…ูƒุงู† ุฅูŠู‡ ูŠูƒูˆู† ุชู…ุงู… ุฃูŠ rotation ู‡ุฏูŠู‡ุง ุงู„ุฑู…ุฒ R
219
00:23:23,830 --> 00:23:30,150
ุฃูŠ reflection ู‡ุฏูŠู‡ุง ุฅูŠู‡ ู‡ุฏูŠู‡ุง ุงู„ุฑู…ุฒ F ุชู…ุงู… ุทูŠุจ
220
00:23:30,150 --> 00:23:36,890
ุงู„ุขู† rotation ุจุฏูŠ ุฃู‚ูˆู„ any rotation ููŠ reflection
221
00:23:36,890 --> 00:23:41,930
ุจูŠุนุทูŠู†ุง reflection ุฃูˆ ุฃูŠ reflection ููŠ rotation
222
00:23:41,930 --> 00:23:44,250
ุจูŠุนุทูŠู†ุง reflection
223
00:23:58,780 --> 00:24:03,600
Arnold ุงู„ identity element ุงุชุญุฑูƒ ู…ุน ุฃูŠ element ุขุฎุฑ
224
00:24:03,600 --> 00:24:10,860
ููŠ ุงู„ group Arnold ู‡ูˆ ุฏูˆุฑุงู† ุจุตูุฑ ุฏุฑุฌุฉ ูŠุจู‚ู‰ ู‡ุฐุง ู‡ูˆ ุงู„
225
00:24:10,860 --> 00:24:15,860
identity element ูƒู†ุช ุญุงุถุฑ ูŠูˆู… ุดุฑุญู†ุง ุงู„ D4 ู‡ุฐู‡ุŸ
226
00:24:15,860 --> 00:24:24,180
ุจุนูˆู† ุงู„ู„ู‡ ุทูŠุจ ูˆู„ุง ู‚ุฑูŠุชู‡ุง ูƒู…ุงู†ุŸ ู…ุงุดูŠ ุทูŠุจ ู‡ุฐู‡ ุฏู„ูˆู‚ุชูŠ
227
00:24:24,180 --> 00:24:28,440
ุนู…ูˆุฏ ูู‚ุฑูŠ ุฑูˆุญ ุงู‚ุฑุฃู‡ุง ุซุงู†ูŠ ุบู„ุจุชูƒ ุญุงุฌุฉ ุญุชู‰ ูˆุชุนุงู„ูŠ
228
00:24:28,440 --> 00:24:32,980
ู†ุดุฑุญ ู„ูƒ ู…ุง ุนู†ุฏู†ุงุด ู…ุดูƒู„ุฉ ุงู„ู…ู‡ู… ู„ุฃู† ู‡ุฐู‡ ุนู…ูˆุฏ ูู‚ุฑูŠ ูƒู„
229
00:24:32,980 --> 00:24:37,860
ุดูˆูŠุฉ ู„ุฌุฑูˆุจ ูˆู‡ูŠ ุทุงู„ุนุฉ ุจุฏู†ุง ู†ุดุชุบู„ ุนู„ูŠู‡ุง ุชู…ุงู…ุŸ ุทูŠุจ
230
00:24:38,150 --> 00:24:43,490
ู†ุฑุฌุน ู„ู…ูˆุถูˆุนู†ุง ุงุญู†ุง ุจู†ุฏุนูŠ ุงู„ุขู† ุฃู† ุงู„ center ู„ุฏู‰ N
231
00:24:43,490 --> 00:24:47,690
ุฅุฐุง ูƒุงู†ุช N ุนุฏุฏุง ุฒูˆุฌูŠุง ู…ุง ุนู†ุฏูŠุด ุฅู„ุง Arnold ูˆR180
232
00:24:47,690 --> 00:24:53,970
ูˆุฅุฐุง ูƒุงู† ูุฑุฏูŠุง ู…ุง ุนู†ุฏูŠุด ุฅู„ุง ู…ู† Arnold ุงู„ุขู† ุจู†ู‚ูˆู„ ุงู„
233
00:24:53,970 --> 00:24:58,950
rotation ุจ commutes ู…ุน ุฃูŠ rotation ุฃุฎุฑู‰ ูˆุถุฑุจุช ู„ูƒ ู…ู†
234
00:24:58,950 --> 00:25:04,490
93 ู…ุน 180 ู…ุน 270 ูƒู„ู‡ู… commutes ู‡ุฏูˆู„ ู…ุน ุจุนุถ ู…ุน ุงู„
235
00:25:04,490 --> 00:25:09,480
Arnold ูƒู…ุงู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ identity ุงู„ุขู† ุฃูŠ rotation
236
00:25:09,480 --> 00:25:15,000
ุญุฏูŠู‡ุง ุงู„ุฑู…ุฒ R ุฃูŠ reflection ุญุฏูŠู‡ุง ุงู„ุฑู…ุฒ F ุงู„ุขู†
237
00:25:15,000 --> 00:25:22,600
ุงุญู†ุง ุณุงุจู‚ุง ุจุฑุถู‡ ุจุงุฌูŠ ุจู‚ูˆู„ since ุงู„ู„ูŠ ู‡ูˆ ุงู„ R ููŠ F
238
00:25:22,600 --> 00:25:25,800
is a reflection
239
00:25:28,280 --> 00:25:32,260
ู‡ุฐู‡ reflection ูŠุนู†ูŠ ุญุงุตู„ ุถุฑุจ ุงู„ rotation ููŠ ุงู„
240
00:25:32,260 --> 00:25:36,860
reflection ุจูŠุนุทูŠู†ูŠ reflection ุฃูˆ ุงู„ุนูƒุณ ู„ูˆ ูƒุงู† F ููŠ
241
00:25:36,860 --> 00:25:41,700
R ูƒู…ุงู† ุจูŠุนุทูŠู†ุง ู…ูŠู† reflection ูˆู…ุง ุฅู„ู‰ ุฐู„ูƒ ูŠุจู‚ู‰
242
00:25:41,700 --> 00:25:46,300
ู†ุธุฑุง ู„ุฅู† ุงู„ R ููŠ F is a reflection ู…ุนู†ุงุชู‡ ู‡ุฐุง
243
00:25:46,300 --> 00:25:55,630
ุงู„ุนู†ุตุฑ ู…ุนูƒุณู‡ ู‚ุฏุงุดูŠ ุจูŠุนุทูŠู†ุง ู…ุนูƒุณ ุงู„ุนู†ุตุฑ ู‡ุฐุง ุงุฑุฌุน ุงู„
244
00:25:55,630 --> 00:26:00,450
D4 ู…ุด ุงู„ D4 ู‚ูˆู„ู†ุง H ุชุฑุจูŠุนู‡ ูŠุณุงูˆูŠ ุงู„ identity ูŠุจู‚ู‰
245
00:26:00,450 --> 00:26:05,530
ุงู„ H inverse ูŠุจู‚ู‰ ูƒุฏู‡ ุจุงู„ H itself ูŠุจู‚ู‰ ู‡ูˆ ู…ุนูƒูˆุณ
246
00:26:05,530 --> 00:26:12,210
ู„ู†ูุณ ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ู„ุฃ it's a reflection we have
247
00:26:12,210 --> 00:26:22,430
ูŠุจู‚ู‰ ุจุฏู‡ ูŠุตูŠุฑ ุงู„ RF ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ RF ู„ูƒู„ inverse ูŠุจู‚ู‰
248
00:26:22,430 --> 00:26:29,210
ุจุงุฌูŠ ุจู‚ูˆู„ ูŠุจู‚ู‰ ุตุงุฑ ุงู„ RF ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ RF ููŠ
249
00:26:29,210 --> 00:26:35,290
ุงู„ูƒู„ inverse ูˆุจู„ุบุฉ ุงู„ F inverse ู‡ุฐุง ู‡ูˆ ุงู„ F inverse
250
00:26:35,290 --> 00:26:40,190
ููŠ ุงู„ R inverse ุจู„ุบุฉ ุงู„ู…ุนูƒูˆุณ ุจุชู†ู‚ู„ ุจูŠู‚ูˆู„ ู…ุนูƒูˆุณ
251
00:26:40,190 --> 00:26:45,290
ุงู„ุฃูˆู„ ู„ู„ุขุฎุฑ ุทุจ ุงู„ู€ F reflection ู„ู…ุง ุชุจู‚ู‰ ุงู„ู€ F
252
00:26:45,290 --> 00:26:51,340
reflection ูŠุจู‚ู‰ F square ู‚ุฏุงุด ู…ุฏูŠูˆุทู† ูŠุง ุดุจุงุจ ุงู„ู„ูŠ
253
00:26:51,340 --> 00:26:55,420
ู‡ู†ุถู„ ู‡ูˆ ุงู„ู€ identity ูŠุนู†ูŠ ู„ูˆ ุฌูŠุช ู‚ู„ุช ุงู„ู€ identity
254
00:26:55,420 --> 00:27:00,880
ูŠุจู‚ู‰ ุงู„ู€ F ุจุงู„ุตูŠุฑ ู‡ูŠ ุงู„ู€ F inverse ูˆู„ุง ู„ุง ูŠุนู†ูŠ ู„ูˆ
255
00:27:00,880 --> 00:27:04,480
ุถุฑุจุช ุงู„ุทุฑููŠู† ููŠ ุงู„ู€ F inverse ู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ุฃูˆ ู…ู†
256
00:27:04,480 --> 00:27:09,220
ุฌู‡ุฉ ุงู„ุดู…ุงู„ ูŠุจู‚ู‰ ู‡ู†ุง ุจุธู„ ู‚ุฏุงุด ุจุธู„ F ูˆุงู„ุทุฑู ุงู„ูŠุงู…ูŠู†
257
00:27:09,220 --> 00:27:13,620
ู‡ูŠ G F inverse ู…ูƒุชูˆุจ ู…ุนุงูƒ ู‡ุฐุง V ุชุฑุจูŠุฉ ุชุณูˆู‰ ุงู„ู€
258
00:27:13,620 --> 00:27:17,420
identity ููŠ D4 ูŠุจู‚ู‰ V ุจุชุณูˆู‰ V inverse H ุชุฑุจูŠุฉ ุชุณูˆู‰
259
00:27:17,420 --> 00:27:20,200
ุงู„ู€ identity ูŠุจู‚ู‰ H ุชุณูˆู‰ H inverse D ุชุฑุจูŠุฉ ุชุณูˆู‰ ุงู„ู€
260
00:27:20,200 --> 00:27:23,340
identity ูŠุจู‚ู‰ D ุจุชุณูˆู‰ D ุงู„ู€ inverse ูˆD prime ุฒูŠู‡ู…
261
00:27:23,340 --> 00:27:29,300
ูŠุจู‚ู‰ ูƒู„ ู‡ุฐุง ู…ูƒุชูˆุจ ู…ุนุงูƒ ูŠูˆู… ุฃุฎุฏู†ุง D4 ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡
262
00:27:29,300 --> 00:27:34,320
ู„ู…ุง ูƒุงู†ุช ุงู„ู€ F ู‡ูŠ reflection ูŠุจู‚ู‰ ุงู„ู€ F ูˆ ุงู„ู€ F
263
00:27:34,320 --> 00:27:41,300
inverse ุงู„ุดูŠ ุงู„ุนู„ุงู‚ุฉ ุจูŠู†ู‡ู…ุง ุงุชู†ูŠู† are ุงู„ู€ F ูˆ ุงู„ู€ F
264
00:27:41,300 --> 00:27:42,540
inverse ุงู„ู€ reflection
265
00:27:47,690 --> 00:27:52,230
ู…ุงุฐุง ูŠุญุตู„ ุนู„ุงู‚ุฉ ุจูŠู†ู‡ู…ุŸ ุนู„ุงู‚ุฉ ุชุณุงูˆูŠ ูŠุนู†ูŠ ุจู‚ุฏุฑ ุฃุดูŠู„
266
00:27:52,230 --> 00:27:55,590
ุงู„ู€ F ูˆ ุฃุญุท ู…ูƒุงู†ู‡ุง F inverse ูˆ ุจู‚ุฏุฑ ุฃุดูŠู„ F inverse
267
00:27:55,590 --> 00:27:59,730
ูˆ ุฃุญุท ู…ูƒุงู†ู‡ุง ุงู„ู€ F ู‡ูŠู‡ุง ู‚ุฏุงู…ูƒ ู‡ูŠ ุนู„ู‰ ุงู„ู„ูˆุญ ู…ูƒุชูˆุจุฉ
268
00:27:59,730 --> 00:28:09,470
ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุจู†ุงุก ุนู„ูŠู‡ ุฃู‚ูˆู„ ู‡ุฐู‡ ู‡ูŠ ุงู„ู€ F R inverse ุทูŠุจ
269
00:28:09,470 --> 00:28:10,510
ุงุณุชู†ู‰ ุดูˆูŠุฉ
270
00:28:27,180 --> 00:28:29,980
ู…ุตุจูˆุท ู‡ูƒุฐุงุŸ
271
00:28:38,160 --> 00:28:46,100
ุทูŠุจ ู‡ุฐุง ูƒู„ุงู… ุตุญูŠุญ if and only if ุงู„ู€ R F ุจุฏู‡ุง ุชุณุงูˆูŠ
272
00:28:47,590 --> 00:28:53,690
ูˆูŠู† ุงู„ู€ ุงุฑ ุงู ู‡ูŠู‡ุงุŸ ูƒุฏู‡ ุงุด ุทุงู„ุน ุจูŠุณุงูˆูŠุŸ ุงู ุงุฑ ุงู†ูุฑุณุŒ
273
00:28:53,690 --> 00:29:03,130
ู…ุธุจูˆุทุŸ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู ุงุฑ ุงู ุจุฏูŠ ุณุงูˆูŠ ุงู„ .. ุฅุฐุง ูƒุงู†ุช
274
00:29:03,130 --> 00:29:09,630
ุงู„ู€ ุงุฑ ุงู ุจุฏูŠ ุณุงูˆูŠ ุงู„ุงู ุงุฑ ุทูŠุจ ูˆูŠู† ุงู„ุงู ุงุฑุŸ ุทูŠุจ
275
00:29:09,630 --> 00:29:16,200
ุฎู„ูŠู‡ุง ู…ุงุดูŠุฉ ุจู†ุฌุจ ู†ู‚ูˆู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู„ู€ RF ุจุฏูŠ ุณุงูˆูŠ
276
00:29:16,200 --> 00:29:20,220
ุงู„ู€
277
00:29:20,220 --> 00:29:27,760
FR inverse ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
278
00:29:27,760 --> 00:29:33,570
ุตุญูŠุก ุฅุฐุง ูƒุงู† ุงู„ู€ RF ุจุฏูŠ ุณุงูˆู…ูŠู† ุงู„ู€ FR inverse ุทูŠุจ
279
00:29:33,570 --> 00:29:40,070
ุงู„ุขู† ุฃู†ุง ุจู‚ุฏุฑ ุฃุดูŠู„ ุงู„ู€ F ูˆ ุงุญุท ู…ูƒุงู†ู‡ุง ู…ู† ุงู„ู€ F
280
00:29:40,070 --> 00:29:46,290
inverse ูˆ ุงุฑุฌุนู‡ุง ูƒูŠู ุฏู‡ ุณูŠู‡ ู„ุญุธุฉ ุดูˆูŠุฉ ุทูŠุจ ุนู†ุฏูƒ ุงู„ู€
281
00:29:46,290 --> 00:29:51,230
RF ูŠุณูˆู‰ ุงู„ู€ FR inverse ู…ุธุจูˆุท ุงู„ู€ R ูƒู…ุง ู†ุณู…ูŠู‡ ุฅุฐุง ูƒุงู†
282
00:29:51,230 --> 00:29:58,350
ุงู„ู€ FR ุจุฏูŠู‡ ูŠุณูˆู‰ ุฅุฐุง ูƒุงู† ุงู„ู€ FR ุจุฏูŠู‡ ูŠุณูˆู‰ RF ุงุณุชู†ู‰
283
00:29:58,350 --> 00:30:01,130
ุดูˆูŠุฉ ุฅุฐุง ูƒุงู† ุงู„ู€ F
284
00:30:04,870 --> 00:30:19,850
ูุงุฑ ูุงุฑ ูุงุฑ ูุงุฑ ูุงุฑ ูุงุฑ ูุงุฑ ูุงุฑ ูุงุฑ ูุงุฑ ูุงุฑ
285
00:30:28,490 --> 00:30:34,610
ุงู„ู€ R F Inverse ู„ุฃูŠุดุŸ ู„ุฃู† ุงู„ู€ F ู‡ูŠ ุชุณุงูˆูŠ ู…ูŠู†ุŸ
286
00:30:34,610 --> 00:30:40,450
ุชุณุงูˆูŠ ุงู„ู€ F Inverse itself ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ุฐุง ุจูŠุณุงูˆูŠ
287
00:30:40,450 --> 00:30:47,150
ุงู„ู€ R Inverse F itself ูŠุจู‚ู‰ ุฃุตุงุฑ F R Inverse
288
00:30:50,680 --> 00:30:57,700
ูŠุจู‚ู‰ ูุงู† ุงู„ู€ F R ุจุฏูŠู†ุง ููŠู‡ุง ุจุฏูŠ ูŠุณุงูˆูŠ R F ูˆู‡ุฐุง R F
289
00:30:57,700 --> 00:31:07,380
ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุณุงูˆูŠ F R Inverse ู‡ุฐูŠ ุจุฏูŠ ูŠุณุงูˆูŠ F R
290
00:31:07,380 --> 00:31:12,680
Inverse ู‡ูŠ ุงู„ูƒู„ุงู… ุตุญูŠุญ ูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠุช ู‡ุฏูˆู„ ุงู„ุชู†ูŠู†
291
00:31:12,680 --> 00:31:18,160
ูƒู…ูˆุณูŠ ุฏู‡ ูƒุงู† ุงู„ู€ F R ุจุฏูŠ ูŠุณุงูˆูŠ ู…ู† R F ู‡ุฐุง ุงู„ูƒู„ุงู…
292
00:31:18,160 --> 00:31:24,080
ูŠุณุงูˆูŠ ู‡ุงูŠ RF ู…ู† ููˆู‚ ุดูŠู„ุชู‡ุง ูˆ ุฌูŠุจุช ุจุฏุงู„ู‡ุง ู…ูŠู†ุŸ F R
293
00:31:24,080 --> 00:31:30,340
inverse ูŠุจู‚ู‰ ุงุทู„ุนู„ูŠ ู„ู‡ุฐู‡ ูˆ ุงุทู„ุนู„ูŠ ู„ู‡ุฐู‡ ุชู…ุงู…ุŸ ุจุงู„
294
00:31:30,340 --> 00:31:35,360
lift cancellation law ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู€ F ุจุชุฑูˆุญ ู…ุน ู‡ุฐู‡
295
00:31:35,360 --> 00:31:43,480
ุจุธู„ F and only F ุงู„ู€ R ุจุฏู‡ุง ุชุณุงูˆูŠ R inverse ุฅุฐุง ูƒุงู†
296
00:31:43,480 --> 00:31:49,820
ุงู„ู€ R ูŠุณูˆู‰ ุงู„ู€ R inverse ุงู„ู€ R ูŠุณูˆู‰
297
00:31:49,820 --> 00:31:57,820
ุงู„ู€ R inverse ุจุณ ููŠ ุญุงู„ุฉ ุงู„ู€ 180 ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† R
298
00:31:57,820 --> 00:32:06,440
ุชุณูˆู‰ R 180 ุฏุฑุฌุฉ ูˆู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญ ู„ูˆ ูƒุงู†ุช ุงู„ู€ N is
299
00:32:06,440 --> 00:32:19,190
even ูู‚ุท this is a true ูุงู„ู† is even ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡
300
00:32:19,190 --> 00:32:27,310
z of d ูุงู„ู€ z of dn ุจุฏูŠ ูŠุณูˆู‰ ุฑู† ูˆุฑู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ููŠ
301
00:32:27,310 --> 00:32:34,730
ุญุงู„ุฉ ุงู„ุฒูˆุฌูŠ ูˆุงู„ุงุฑู†ูˆุฏ ููŠ ุญุงู„ุฉ ู…ู† ููŠ ุญุงู„ุฉ ุงู„ูุฑุฏูŠ ุทูŠุจ
302
00:32:34,730 --> 00:32:39,990
ููŠู†ุง ุชุนุฑูŠู ุฌุฏูŠุฏ ุจุฑุถู‡ ุฌุฑูŠุจ ู…ู† ุงู„ู€ center ุจุณ ุจูŠุณู…ูŠู‡
303
00:32:39,990 --> 00:32:46,610
centralizer ูŠุจู‚ู‰ definition let
304
00:32:46,610 --> 00:32:55,270
ุงู„ู€ a be a fixed element
305
00:32:55,270 --> 00:32:58,350
of
306
00:32:58,350 --> 00:33:01,330
a group G
307
00:33:04,040 --> 00:33:18,140
the centralizer of
308
00:33:18,140 --> 00:33:28,120
ุงู„ู€ element a ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ููŠ g ู‡ุฏูŠู„ู‡ ุงู„ุฑู…ุฒ center of
309
00:33:28,120 --> 00:33:28,600
a
310
00:33:31,400 --> 00:33:42,920
is the set of all elements the set of all elements
311
00:33:42,920 --> 00:33:53,620
in G that commute with
312
00:33:53,620 --> 00:33:57,700
A with
313
00:33:57,700 --> 00:34:01,020
A that is
314
00:34:03,590 --> 00:34:12,050
Centralizer ู„ุฅูŠู‡ ูƒู„ ุงู„ุนู†ุงุตุฑ ุฌูŠ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุฌูŠ
315
00:34:12,050 --> 00:34:18,790
ุจุญูŠุซ ุฃู† ุฌูŠ ููŠ ุงูŠู‡ ุณุงูˆูŠ ุงูŠู‡ ููŠ ุฌูŠ
316
00:34:48,240 --> 00:34:52,400
ู†ุนูˆุฏ ู„ู„ุชุนุฑูŠู ุงู„ู„ูŠ ู‚ู„ู†ุงู‡ ูˆ ู†ุนูˆุฏ ู„ู‡ ุซุงู†ูŠ ูˆ ู†ุดูˆู ุดูˆ
317
00:34:52,400 --> 00:34:58,360
ุจูŠู‚ูˆู„ ุงู„ุชุนุฑูŠู ุจูŠู‚ูˆู„ ุฎุฏู„ูŠ a fixed element ู…ู† ุงู„ู€
318
00:34:58,360 --> 00:35:02,660
group g ุจูŠุจู‚ู‰ ุฃุฎุฏุช ุนู†ุตุฑ ู…ู† g ุณู…ูŠุชู‡ a the
319
00:35:02,660 --> 00:35:08,840
centralizer of a ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ููŠู‡ g ูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠ
320
00:35:08,840 --> 00:35:15,540
ุฃุฏูˆุฑ ุนู„ู‰ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ุจุชุจู‚ู‰ commutes ู…ุน a ูู‚ุท ูˆุจุฏูŠ
321
00:35:15,540 --> 00:35:20,900
ุฃุณู…ูŠู‡ู… ุงู„ู€ centralizer ุจู‡ุฐุง ุงู„ู€ element a ุจุชุนุทูŠู‡ C of
322
00:35:20,900 --> 00:35:25,400
A ูŠุจู‚ู‰ C of A the centralizer of the element A ู…ูŠู†
323
00:35:25,400 --> 00:35:30,900
ู‡ูŠุŸ ู‡ูŠ ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ G that commutes
324
00:35:30,900 --> 00:35:37,060
with A ุงู„ู„ูŠ ุจุชุนู…ู„ ุนู…ู„ูŠุฉ ุชุจุฏูŠู„ ูู‚ุท ู…ุน ุงู„ุนู†ุตุฑ A ู…ุด
325
00:35:37,060 --> 00:35:40,700
ู…ุน ุจุงู‚ูŠ ุนู†ุงุตุฑ ูŠุจู‚ู‰ ููŠู‡ ูุฑู‚ ู…ุง ุจูŠู† ุงู„ู€ center
326
00:35:40,700 --> 00:35:44,940
ูˆุงู„ู€ centralizer ุงู„ู€ element ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ center
327
00:35:44,940 --> 00:35:50,460
commutes ู…ุน ุฌู…ูŠุน ุนู†ุงุตุฑ A ู…ุน ุฌู…ูŠุน ุนู†ุงุตุฑ ุงู„ุฌุฑูˆุจ G
328
00:35:50,460 --> 00:35:54,960
ู„ูƒู† ุงู„ู€ centralizer ู„ูŠู‡ุŸ ุจุณ ุงู„ุนู†ุงุตุฑ ูŠ commutes ู…ุน
329
00:35:54,960 --> 00:36:01,260
ู…ูŠู†ุŸ ู…ุน A ูู‚ุท ู„ุบูŠุฑ ุฐู„ูƒ ู‚ู„ู†ุง ุงู„ู€ Centralizer ู„ูƒู„
330
00:36:01,260 --> 00:36:05,180
ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุฌูŠู‡ ุงู„ู„ูŠ ุจุชุจู‚ู‰ commutes ู…ุน
331
00:36:05,180 --> 00:36:11,260
ู…ูŠู† ู…ุน ุงูŠู‡ ูู‚ุท ุจู†ุงุก ุนู„ู‰ ุฐู„ูƒ ุณู†ุทุฑุญ ุจุนุถ ุงู„ุฃุณุฆู„ุฉ
332
00:36:11,260 --> 00:36:16,120
ุงู„ุณุคุงู„ ุงู„ุฃูˆู„ ู…ูŠู†
333
00:36:16,120 --> 00:36:19,840
ุงู„ู„ูŠ ุฃูƒุจุฑ ุงู„ู€ center ูˆู„ุง ุงู„ู€ centralizer ููŠ ุงู„ู€ group
334
00:36:19,840 --> 00:36:28,240
ุงู„ุนุงุฏูŠ ุงู„ู€ Center ุฃูƒุจุฑ ูŠุนู†ูŠ ุจู„ุงู‚ูŠ ููŠ ุนู†ุงุตุฑ ุฃูƒุซุฑ ู…ู†
335
00:36:28,240 --> 00:36:31,020
ุนู†ุงุตุฑ ุงู„ู€ Centralizer ู„ุฅูŠู‡ุŸ
336
00:36:34,970 --> 00:36:40,990
ุทูŠุจ ุณุคุงู„ ุณุคุงู„ ุจุฏูŠ ุฃุฌูŠุจ ู†ูุณ ุงู„ุณุคุงู„ ุจุตูŠุบุฉ ุฃุฎุฑู‰ ู„ูˆ
337
00:36:40,990 --> 00:36:46,550
ุฃุฎุฏ element ููŠ ุงู„ู€ center ุชุจุน ุงู„ู€ group ุจู„ุงุฌูŠู‡ ููŠ ุงู„ู€
338
00:36:46,550 --> 00:36:50,410
centralizer ุชุจุน ุงู„ู€ ุงูŠู‡ุŸ ุจู„ุงุฌูŠู‡ ุทุจ ู†ุนู…ู„ ุงู„ุนู…ู„ูŠุฉ
339
00:36:50,410 --> 00:36:54,430
ุงู„ุนูƒุณูŠุฉ ุจุฏูŠ ุฃุฎุฏ element ููŠ ุงู„ู€ centralizer ู‡ู„
340
00:36:54,430 --> 00:36:57,170
ุจู„ุงุฌูŠู‡ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ centerุŸ
341
00:37:00,330 --> 00:37:05,270
ูŠุนู†ูŠ ู‚ุฏ ูŠูƒูˆู† ูˆ ู‚ุฏ ู„ุง ูŠูƒูˆู† ู…ูˆุฌูˆุฏุŒ ู…ุธุจูˆุทุŸ ุฅุฐุง ุตุงุฑ ุงู„ู€
342
00:37:05,270 --> 00:37:10,630
center ุตุบูŠุฑ ู„ุฃู†ู‡ ุจุฏูƒู… ูŠุณู…ุน ุฌู…ูŠุน ุนู†ุงุตุฑ ุฌู‡ุฉ ุจุณ ู‡ุฏุง
343
00:37:10,630 --> 00:37:14,650
ูƒู… ูŠุณู…ุน ุนู†ุตุฑ ูˆุงุญุฏ ูู‚ุท ูŠุจู‚ู‰ ุงู„ู€ center ู‡ูŠูƒูˆู† ููŠ
344
00:37:14,650 --> 00:37:18,710
ุนู†ุงุตุฑ ูƒุซูŠุฑุฉ ุจุฏู„ูŠู„ ุฃุฎุฏุช ุฃูˆุณุน ุนู†ุตุฑ ู…ู† ุงู„ู€ center
345
00:37:18,710 --> 00:37:21,970
ูˆุฌุฏุชู‡ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ centralizer ู„ูƒู† ุฅุฐุง ุฐู‡ุจุช ู„ุฎุชู…
346
00:37:21,970 --> 00:37:25,210
ุงู„ู€ centralizer ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุฃู† ูŠูƒูˆู† ูˆูŠู† ููŠ
347
00:37:25,210 --> 00:37:29,850
ุงู„ู€ center ูŠุจู‚ู‰ ุฃูˆู„ ู…ู„ุงุญุธุฉ ุฃู† ุงู„ู€ center ุชุจุน ู„ุฌุฑูˆุจ
348
00:37:29,850 --> 00:37:36,030
ู‡ูˆ ุงู„ู€ subset ู…ู† ุงู„ู€ centralizer ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ุจุงุฌูŠ
349
00:37:36,030 --> 00:37:37,750
ุจู‚ูˆู„ู‡ ู‡ู†ุง note
350
00:37:40,820 --> 00:37:48,020
ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู€ center ุชุจุน ุงู„ู€ group G subset ู…ู†
351
00:37:48,020 --> 00:37:51,200
ุงู„ู€
352
00:37:51,200 --> 00:37:59,660
centralizer ู„ู€ A ูˆ ุงู„ู€ A ุนู†ุตุฑ ู…ูˆุฌูˆุฏ ููŠ ุฌูŠ ู…ุด ุงู„ู€ A ูˆ
353
00:37:59,660 --> 00:38:03,300
ู„ุง ุงู„ู€ B ูˆ ุงู„ู€ C ูŠุนู†ูŠ ู‡ุฐุง ูƒู„ุงู… ุตุญูŠุญ ู„ูƒู„ ุงู„ู€ A ุงู„ู„ูŠ
354
00:38:03,300 --> 00:38:08,940
ู…ูˆุฌูˆุฏ ููŠ ุฌูŠ ุจุฏู„ ู‡ูŠูƒ ุจู‚ูˆู„ ู„ูƒู„ ุงู„ู€ A ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ
355
00:38:08,940 --> 00:38:15,310
ุฌูŠ ูŠุนู†ูŠ ู„ูˆ ุฑูˆุญุช ู„ุฃูŠ ุนู†ุตุฑ ุบูŠุฑุช ู„ุฅูŠู‡ ุจุนู†ุตุฑ ุซุงู†ูŠ ูˆ
356
00:38:15,310 --> 00:38:18,830
ุฌุจุชู„ู‡ ุงู„ู€ centralizer ุจู„ุงุฌ ุงู„ู€ center subset ู…ู†ู‡ ูˆ
357
00:38:18,830 --> 00:38:22,210
ุฑูˆุญุช ุฌุจุช ุงู„ู€ centralizer ู„ุนู†ุตุฑ ุซุงู„ุซ ูˆ ุฌุจุช ุงู„ู€
358
00:38:22,210 --> 00:38:24,770
central group ุจู„ุงุฌ ุงู„ู€ central subset ู…ู† ุงู„ู€
359
00:38:24,770 --> 00:38:29,070
centralizer ู„ู„ุนู†ุตุฑ ุงู„ุซุงู„ุซ ูˆ ู‡ูƒุฐุง ู‡ูŠ ุงู„ู„ูŠ ู‚ุตุฏู†ุงู‡ ู…ู†
360
00:38:29,070 --> 00:38:36,050
ู‡ู†ุง ุทูŠุจ ูƒู…ุงู† ุณุคุงู„ ู„ูˆ ูƒุงู†ุช ุงู„ู€ ุฌูŠ ุฃุจูŠู„ูŠุงู† ู‚ุฏุงุด ุงู„ู€
361
00:38:36,050 --> 00:38:42,450
centralizer ู„ู„ู€ ุฅูŠู‡ุŸ ุฌูŠ ุฌูŠ ูƒู„ู‡ุง ุทุจ ูˆ ุงู„ู€ centerุŸ ุฌูŠ
362
00:38:42,450 --> 00:38:46,080
ูƒู„ู‡ุง ูŠุจู‚ู‰ ุตุฑุช ุณู…ุง ุจูŠู† ุงู„ู€ Central ูˆ ุงู„ู€ Centralizer
363
00:38:46,080 --> 00:38:50,740
ูŠุจู‚ู‰ ุฅุฐุง ูƒุงู†ุช ุงู„ู€ G Abelian ูุฅู† ุงู„ู€ Center ูŠุณูˆู‰
364
00:38:50,740 --> 00:38:55,540
ุงู„ู€ Centralizer ูˆ ูŠุณุงูˆู‰ ุงู„ุฌุฑูˆุจ G ูƒู„ู‡ ู„ูƒู† ู„ูˆ ู…ุงูƒู†ุชุด
365
00:38:55,540 --> 00:38:59,840
Abelian ุจูŠุธู„ ุงู„ู€ Center ุชุจุน ุงู„ุฌุฑูˆุจ ู‡ูˆ ุงู„ู€ Subset
366
00:38:59,840 --> 00:39:06,220
ู‚ุฏ ูŠุณูˆู‰ ูˆ ู‚ุฏ ู„ุง ูŠุณูˆู‰ ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุจู‚ูˆู„ ู‡ุฐู‡
367
00:39:06,220 --> 00:39:14,040
ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ If G is Abelian Then
368
00:39:14,040 --> 00:39:20,220
ุงู„ู€ Center ุชุจุน ู„ู€ Group G ู‡ูˆ ุจุงู„ุถุจุท ุงู„ู€
369
00:39:20,220 --> 00:39:26,060
Centralizer ู„ู€ A ู„ูƒู„ ุงู„ู€ A ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ G ูˆู‡ุฐุง
370
00:39:26,060 --> 00:39:31,500
ุจุฏู‡ ูŠุณุงูˆูŠ G itself ู‡ุฐุง ููŠ ุญุงู„ุฉ ู…ุง ุชูƒูˆู† A ู…ุง ุชูƒูˆู†
371
00:39:31,500 --> 00:39:39,200
Abelian Group ุทูŠุจ ู†ุงุฎุฏ ู…ุซุงู„ ุจุณูŠุท example let
372
00:39:44,050 --> 00:39:52,830
ุงู„ู€ G ุชุณูˆูŠ ุงู„ู€ D4 ุงู„ู€ D4 ุซู… ุจุฏูŠ
373
00:39:52,830 --> 00:40:02,670
ุงู„ู€ Centralizer ู„ู„ู€ R ู†ูˆุช ู…ูŠู† ุจูŠุทู„ุน ุฏูŠ ูƒู„ู‡ุง ุทูŠุจ ู‡ู„
374
00:40:02,670 --> 00:40:10,150
ู‡ูˆ ุงู„ู€ Centralizer ู„ู„ู€ R 180 ุตุญูŠุญ ู„ุบุฑู…ูŠุฉ ุงุจู†ูƒู… ูŠุณู…ุน
375
00:40:10,150 --> 00:40:16,270
ุงู„ูƒู„ ูŠุฑูŠุฏ ุนู† ุฌุฏูŠูƒูˆุง ุจุณ ูˆ ู‡ุฐุง ุจุฏูŠ ูŠุณูˆูŠ D4 ูƒู„ู‡ ูŠุจู‚ู‰
376
00:40:16,270 --> 00:40:22,070
ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ุง D4 ูƒู„ู‡ ุทุจ ู„ูˆ ุจุฏูŠ ุงู„ู€ centralizer ู„ู„ู€
377
00:40:22,070 --> 00:40:28,270
R90 ู‡ู„
378
00:40:28,270 --> 00:40:34,710
ู‡ุฐุง ู‡ูˆ ุงู„ู€ centralizer ู„ู„ู€ R270ุŸ
379
00:40:38,690 --> 00:40:46,030
ุงู†ุธุฑูˆุง ู…ุนุงูƒูˆุณู‡ ุทุจ ุจุฏู‘ ุงู„ุนู†ุงุตุฑ ุชุจุนุชู‡ู… ู…ูŠู† ู‡ู…ุŸ ุงุฑูˆู†ูˆุฏ ูˆ
380
00:40:46,030 --> 00:40:54,230
R180 ูˆุงู„ู€ R90 ูƒู…ุงู† ู„ุฃู† ุงู„ู€ R90 ูŠุณู…ุน ู†ูุณู‡ ุตุญูŠุญ ูˆู„ุง
381
00:40:54,230 --> 00:41:00,540
ู„ุงุŸ ุถู„ ุนู„ูŠูƒ ูƒู…ุงู† ูˆุงุญุฏ ุจุณุญุฏ ู…ุนุงู‡ ุงู„ุฌุฏูˆู„ ูŠุทู„ุน ู„ุจุณู‡
382
00:41:00,540 --> 00:41:04,000
ูุชุด ุงู„ุฌุฏูˆู„ ูˆุจุชุนุฑู ุงู„ุฅุฌุงุจุฉ ู…ู†ู‡ ููŠ ุตูุญุฉ ูˆุงุญุฏ ูˆ
383
00:41:04,000 --> 00:41:09,500
ุซู„ุงุซูŠู† ูŠุจู‚ู‰ ู„ูˆ ุฑุฌุนู†ุง ุจู†ู„ุงู‚ูŠ ุจุณ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ R ู…ูŠุชูŠู†
384
00:41:09,500 --> 00:41:16,710
ูˆุณุจุนูŠู† ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู€ R ู…ูŠุชูŠู† ูˆุณุจุนูŠู† ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุนู†ูŠ
385
00:41:16,710 --> 00:41:20,230
ุงูŠุด ู…ูŠู† ุจุฏูŠ ุฃุนุทูŠู‡ ู„ูƒุŸ ุจุฏูŠ ุฃุนุทูŠู‡ ู„ูƒ ุงู„ู€ subgroup
386
00:41:20,230 --> 00:41:26,470
generated by R 90 ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช ู‡ูŠ ุงู„ู€ subgroup
387
00:41:26,470 --> 00:41:36,590
generated by R 270 ู…ุธุจูˆุทุŸ R 90 ุชุฑุจูŠุน 180 R 90
388
00:41:36,590 --> 00:41:42,400
ุชูƒุนูŠุจ 270 R ุฃุณ 4 ุจุงู„ู€ identity ูŠุจู‚ู‰ ู„ูˆ ุจุฏูŠ
389
00:41:42,400 --> 00:41:46,780
ุฃุฌูŠุจ ูƒู…ุงู† ุงู„ู€ centralizer ู„ู…ูŠู†ุŸ ู„ู„ู€ H ูŠุจู‚ู‰
390
00:41:46,780 --> 00:41:55,200
ุงู„ู€ centralizer ู„ู„ู€ H ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡
391
00:41:55,200 --> 00:42:00,140
ูŠุนุทูŠูƒ ุงู„ู€ R nought ูˆุงู„ู€ R100U80
392
00:42:00,140 --> 00:42:03,700
ูˆุงู„ู€ H ูˆุญุท ุนู„ูŠู‡ุง ุงู„ู€ V ูƒู…ุงู†
393
00:42:06,390 --> 00:42:13,330
ุฃู„ูŠุณ ู‡ุฐุง ู‡ูˆ ุงู„ู€ centralizer ู„ู„ู€ V ูƒุฐู„ูƒุŸ ู„ูˆ ุงู„ุฌุฏูˆู„
394
00:42:13,330 --> 00:42:17,970
ู…ุนูƒ ูƒุงู† ุนุฑูุช ู„ุญุงู„ูƒ ุฌุฏูˆู„ ููŠ ุตูุญุฉ ูˆุงุญุฏ ูˆุซู„ุงุซูŠู†
395
00:42:17,970 --> 00:42:22,390
ุจุงู„ู…ุซู„ ู„ูˆ ุฑูˆุญู†ุง ุฌุจู†ุง ุงู„ู€ centralizer ู„ู€ D
396
00:42:22,390 --> 00:42:30,450
ุงู„ู€ centralizer ู„ู€ D ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ R nought ูˆุงู„ู€ R ู…ูŠุฉ
397
00:42:30,450 --> 00:42:38,000
ูˆุซู…ุงู†ูŠู† ูˆุงู„ู€ D itself ูˆุงู„ู€ D prime ู‡ุฐุง ุณูŠูƒูˆู† ุงู„ู€
398
00:42:38,000 --> 00:42:46,540
Centralizer ู„ู€ D' ู…ู† ู‡ุฐุง ุงู„ูƒู„ุงู… ุจู‚ุฏุฑ ุงุณุชู†ุชุฌ ุฃู† H
399
00:42:46,540 --> 00:42:54,040
ููŠ V ุณูŠูƒูˆู† V ููŠ H ูˆุจู‚ุฏุฑ ุงุณุชู†ุชุฌ ู…ู† ู‡ุฐุง ุงู„ู„ูŠ ุชุญุช ุฃู†
400
00:42:54,040 --> 00:43:02,460
D D' ุณูŠูƒูˆู† D' D ูŠุจู‚ู‰ ู‡ุฐุง ุงุณุชู†ุชุงุฌ ู…ู† ุฎู„ุงู„ ุงู„ูƒู„ุงู…
401
00:43:02,460 --> 00:43:03,760
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง
402
00:43:23,420 --> 00:43:30,680
ุงู„ุขู† ุขุฎุฑ ู†ุธุฑูŠุฉ ู…ูˆุฌูˆุฏุฉ ููŠ ู‡ุฐุง ุงู„ู€ chapter ูˆู‡ูŠ ุฃู† ุงู„ู€
403
00:43:30,680 --> 00:43:39,220
centralizer ุนุจุงุฑุฉ ุนู† subgroup ูŠุจู‚ู‰ theorem for
404
00:43:39,220 --> 00:43:51,840
any element a ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ููŠ ุฌูŠุจ ุงู„ู€ centralizer ู„ู€ a
405
00:43:53,260 --> 00:44:02,720
is a subgroup ู…ู† G ู…ู† ู…ู† ู…ู† ู…ู† ู…ู†
406
00:44:02,720 --> 00:44:03,440
ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู†
407
00:44:03,440 --> 00:44:03,500
ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู†
408
00:44:03,500 --> 00:44:08,840
ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู†
409
00:44:08,840 --> 00:44:08,920
ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู†
410
00:44:08,920 --> 00:44:10,740
ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู†
411
00:44:10,740 --> 00:44:14,560
ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู† ู…ู†
412
00:44:14,560 --> 00:44:15,840
ู…ู† ู…ู† ู…ู†
413
00:44:36,070 --> 00:44:43,020
ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ุจุฏุงูŠุฉ ูŠุงุฎุฏ let ุนุดุงู† ู†ุงุฎุฏ ุงู„ู€ a ูˆู†ู‚ูˆู„
414
00:44:43,020 --> 00:44:51,400
x y ู„ุช ุงู„ู€ x y ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ centralizer ู„ู€ a then ุงู„ู€
415
00:44:51,400 --> 00:45:02,980
x a ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ a x and ุงู„ู€ y a ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ a y ุงูŠุด
416
00:45:02,980 --> 00:45:09,100
ุจุฏู†ุง ู†ุซุจุชุŸ ุจู†ุซุจุช ุฃู† ุงู„ู€ xy inverse ู…ูˆุฌูˆุฏ ููŠ
417
00:45:09,100 --> 00:45:14,360
ุงู„ู€ centralizer ู„ุฅูŠู‡ุŸ ูŠุนู†ูŠ ุจู†ุซุจุช ุฃู† ุงู„ู€ xy inverse a
418
00:45:14,360 --> 00:45:20,360
ุจุฏูˆ ูŠุณุงูˆูŠ ุงู„ู€ axy inverse ูŠุจู‚ู‰ ูุฑุถู†ุง ู‡ุฏูˆู„ ุงู„ุงุซู†ูŠู†
419
00:45:20,360 --> 00:45:30,020
ุจูŠุณุงูˆูˆุง ุจุนุถ ูŠุจู‚ู‰ now ู„ูˆ ุฃุฌู‰ ุฃุฎุฏุช ุงู„ู€ ya ุจุฏูˆ ูŠุณุงูˆูŠ
420
00:45:30,020 --> 00:45:37,890
ุงู„ู€ ay ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ุง ุดุฑุงูŠูƒ ุจุฏูŠ ุฃุถุฑุจ ููŠ ุงู„ู€ y inverse
421
00:45:37,890 --> 00:45:44,690
ู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ูŠุจู‚ู‰ ุจูŠุตูŠุฑ y a y inverse ูŠุณุงูˆูŠ ู‚ุฏุงุด
422
00:45:44,690 --> 00:45:50,210
ูŠุณุงูˆูŠ ุงู„ู€ a ุจุฏูŠ ุฃุถุฑุจ ููŠ y inverse ู…ู† ุฌู‡ุฉ ุงู„ูŠุณุงุฑ
423
00:45:50,210 --> 00:45:56,310
ูŠุจู‚ู‰ ู„ูˆ ุถุฑุจุช ู…ู† ุฌู‡ุฉ ุงู„ูŠุณุงุฑ ุจูŠุธู„ a y inverse ุชุณุงูˆูŠ
424
00:45:56,310 --> 00:46:03,130
y inverse ููŠ a ูŠุจู‚ู‰ ุงูŠุด ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู† ุงู„ู€ y
425
00:46:03,130 --> 00:46:09,370
inverse ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ centralizer ู„ุฅูŠู‡ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู†
426
00:46:09,370 --> 00:46:14,450
ุงู„ู€ y inverse ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ centralizer ู„ุฅูŠู‡ ูŠุจู‚ู‰
427
00:46:14,450 --> 00:46:20,870
ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู€ element y ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ centralizer
428
00:46:20,870 --> 00:46:27,030
ู„ุฅูŠู‡ ุฅุฐุง ู…ุนูƒูˆุณู‡ ูŠูƒูˆู† ูƒุฐู„ูƒ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ centralizer
429
00:46:27,030 --> 00:46:31,110
ู„ุฅูŠู‡ ู‡ุฐุง ู…ุนู†ุงุชู‡ ุฃู† y inverse ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€
430
00:46:31,110 --> 00:46:37,710
centralizer ู„ุฅูŠู‡ ูˆุงุนุชุจุฑ ู„ู‡ุฐู‡ ุงู„ู‡ูŠู…ูŠู†ุฉ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰
431
00:46:37,710 --> 00:46:45,670
ูŠุจู‚ู‰ ู†ูƒุชุจ ุงู„ูƒู„ู…ุฉ ุงู„ู„ูŠ ู‚ูˆู„ู†ุงู‡ุง ูŠุจู‚ู‰ this means that
432
00:46:45,670 --> 00:46:52,710
ู‡ุฐุง ูŠุนู†ูŠ ุฃู† if ุงู„ู€ y ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ centralizer ู„ู€ a
433
00:46:52,710 --> 00:47:03,380
then ุงู„ู€ Y ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ Centralizer ู„ู€
434
00:47:03,380 --> 00:47:10,880
A ุซู… ุงู„ู€ Y Inverse ุซู… ุฃูˆ ุงู„ู€ Y ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€
435
00:47:10,880 --> 00:47:17,780
Centralizer ู„ู€ A Inverse ู„ุง ู„ุง ุงู„ู€ Y Inverse
436
00:47:17,780 --> 00:47:24,550
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ Centralizer ู„ู€ A ุชู…ุงู… ุงู„ุขู† ู„ูˆ ุฌูŠุช
437
00:47:24,550 --> 00:47:39,110
ู‚ู„ุช ู„ูƒ consider ุฎุฏ ู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ X Y inverse A ู‡ุฐุง
438
00:47:39,110 --> 00:47:45,310
ุงู„ูƒู„ุงู… ุจุฏูˆ ูŠุณุงูˆูŠ ุฅุฐุง ู‚ุฏุฑุช ุฃุซุจุช ุฃู† ุงู„ู€ x y inverse a
439
00:47:45,310 --> 00:47:52,290
ุจูŠูƒูˆู† a x y inverse ุจูŠุชู… ุงู„ู…ุทู„ูˆุจ ูŠุจู‚ู‰ ู‡ุฐุง x y
440
00:47:52,290 --> 00:47:58,010
inverse ุงู„ู€ a ุจู‚ุฏุฑ ุฃูƒุชุจู‡ุง a inverse inverse ูŠุจู‚ู‰
441
00:47:58,010 --> 00:48:07,470
ู‡ุฐุง ุงู„ูƒู„ุงู… ุจูŠูƒูˆู† x ูˆู‡ู†ุง a inverse y ุงู„ูƒู„ inverse
442
00:48:07,470 --> 00:48:09,510
ู…ุธุจูˆุท
443
00:48:10,530 --> 00:48:16,310
ูŠุนู†ูŠ ุฌู…ุนุช ู‡ู†ุง ุงู„ู€ inverse inverse ุฑุฌุนุชู‡ู… ู„ุฃุตู„ู‡ู…
444
00:48:16,310 --> 00:48:24,110
ูˆุงุญุฏุฉ ุจุงู„ุดูƒู„ ู‡ู†ุง ุงู„ุขู† ุฃู†ุง ุนู†ุฏูŠ ู‡ู†ุง a inverse
445
00:48:24,110 --> 00:48:30,990
ู…ูƒุชูˆุจุฉ ุงู‡ ุณู†ุฉ ุณู†ุฉ ุดูˆูŠุฉ ุงูŠุด ุงู„ู„ูŠ ุณูˆูŠุชู‡ุงุŸ a inverse y
446
00:48:30,990 --> 00:48:34,990
ุทูŠุจ ู‡ู†ุง ู‚ู„ุช ุฏูŠ ุงุณู… ุงู„ุงู„ูƒุชุฑูˆู† ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€
447
00:48:34,990 --> 00:48:38,910
centralizer then y inverse ู…ูˆุฌูˆุฏ
448
00:48:45,110 --> 00:48:56,690
ูƒูŠูุŸ ุจุฏูŠ ูˆุงุญุฏ ุจุณ ูŠุญูƒูŠุŒ ูˆุงุญุฏ ูŠุญูƒูŠ ุจู‚ู‰ุŒ ุงูŠู‡ุŸ ุงู‡ุŒ
449
00:48:56,690 --> 00:49:00,850
ูŠุนู†ูŠ ู‡ูŠูƒุŒ ุจุฑุถู‡ ู…ุธุจูˆุทุŒ ู…ู…ูƒู† ู†ุงุฎุฏ x,y ูˆู…ู…ูƒู† ู†ุงุฎุฏ x,y
450
00:49:00,850 --> 00:49:04,090
inverse ู…ุฑุฉ ูˆุงุญุฏุŒ ุนุดู‚ุชูŠู†ุŒ ูŠุง ู†ุงุณ ุถุฑูˆุฑุฉุŒ ู…ู…ูƒู†
451
00:49:04,090 --> 00:49:06,770
ุงุณุชููŠุฏ ู…ู† ู‡ุฐู‡ุŒ ุฃู† ุงู„ู€ A
452
00:49:17,330 --> 00:49:22,150
ุนู„ู‰ ุฃูŠ ุญุงู„ ุจู†ูƒู…ู„ ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุฅู† ุดุงุก ุงู„ู„ู‡