|
1 |
|
00:00:21,330 --> 00:00:26,210 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ุขุฎุฑ ุญุงุฌุฉ |
|
|
|
2 |
|
00:00:26,210 --> 00:00:29,750 |
|
ุชููู
ูุง ูููุง ุฃุนุทููุง definition ููู center ููู group |
|
|
|
3 |
|
00:00:30,390 --> 00:00:36,030 |
|
ูุนูุฏ ูุฐุง ุงูู definition ูู
ู ุซู
ูุฃุฎุฐ ูุธุฑูุฉ ุนููู |
|
|
|
4 |
|
00:00:36,030 --> 00:00:41,050 |
|
ููููุง ุงูู
ุฑุฉ ุงููู ูุงุชุช ุฃู ุงูู center ุชุจุน ุงูู group G |
|
|
|
5 |
|
00:00:41,050 --> 00:00:47,610 |
|
ูุฏููู ุฑู
ุฒ Z of G ููููุง ูู ูู ุงูุนูุงุตุฑ ุงูู A ุงููู |
|
|
|
6 |
|
00:00:47,610 --> 00:00:55,510 |
|
ู
ูุฌูุฏุฉ ูู G ุจุญูุซ ุฃู ุงูู AX ุจูุณุงูู ุงูู XA ููู ุงูู X |
|
|
|
7 |
|
00:00:55,510 --> 00:01:02,150 |
|
ุงููู belongs to the group G ุฅุฐุง ู
ุง ู
ุนูู ุงูู |
|
|
|
8 |
|
00:01:02,150 --> 00:01:05,510 |
|
Center ุชุจุน ุงูู Groupุ ู
ุนูู ุงูู Center ุชุจุน ุงูู |
|
|
|
9 |
|
00:01:05,510 --> 00:01:11,070 |
|
Group ูู ูู ุงูู elements ุงููู ูู
ููุชุณ ู
ุน ุจููุฉ |
|
|
|
10 |
|
00:01:11,070 --> 00:01:15,090 |
|
ุนูุงุตุฑ ุงูู Group ูุนูู ูู ุฃุฎุฐุช element ูุฌูุชู ูู
ููุชุณ |
|
|
|
11 |
|
00:01:15,090 --> 00:01:18,030 |
|
ู
ุน ุฌู
ูุน ุนูุงุตุฑ ุงูู Group ุจููู ูุฐุง ู
ู ุงูู Center |
|
|
|
12 |
|
00:01:18,030 --> 00:01:22,970 |
|
ุงููู ุจุนุฏู ุงููู ุจุนุฏู ูุบุงูุฉ ู
ุง ูุทูุน ูู ุงูุนูุงุตุฑ ุงููู |
|
|
|
13 |
|
00:01:22,970 --> 00:01:28,500 |
|
ุจุชููู ูู
ููุชุณ ู
ุน ุฌู
ูุน ุนูุงุตุฑ ุงูู Group ูุจูู ูุฐูู |
|
|
|
14 |
|
00:01:28,500 --> 00:01:32,560 |
|
ุจูููููุง ู
ููุ ุจูููููุง ุงูู center ุชุจุน ุงูู group ุฃุจุณุท |
|
|
|
15 |
|
00:01:32,560 --> 00:01:37,380 |
|
ุงูุฃุดูุงุก ุงูู identity element ู
ูุฌูุฏ ูู ู
ููุ ูู ุงูู |
|
|
|
16 |
|
00:01:37,380 --> 00:01:40,260 |
|
center ุชุจุน ุงูู group ูุฃู ุงูู identity elements |
|
|
|
17 |
|
00:01:40,260 --> 00:01:45,740 |
|
commutes with all elements of G ูุจูู ูู ุงูุนูุงุตุฑ |
|
|
|
18 |
|
00:01:45,740 --> 00:01:51,520 |
|
ุงููู ู
ูุฌูุฏุฉ ูู G ูุงููู ุจุชุจูู commutes ู
ุน ุฃู ุนูุตุฑ |
|
|
|
19 |
|
00:01:51,520 --> 00:01:56,490 |
|
ู
ูุฌูุฏ ูู G ูุจูู ูุฐุง ุจุณู
ูู ุงูู center of G ุงูุขู ูู |
|
|
|
20 |
|
00:01:56,490 --> 00:02:01,530 |
|
ูุธุฑูุฉ ุจุชููู ุงูู center ูุฐุง ูู ุงูู subgroup ูุจุฏูุง |
|
|
|
21 |
|
00:02:01,530 --> 00:02:06,670 |
|
ูุฑูุญ ูุจุฑูู ุตุญุฉ ูุฐุง ุงูููุงู
ูุจูู ุงููุธุฑูุฉ ุจุชููู ู
ุง |
|
|
|
22 |
|
00:02:06,670 --> 00:02:13,070 |
|
ูุฃุชู theorem Z |
|
|
|
23 |
|
00:02:13,070 --> 00:02:18,430 |
|
of G the |
|
|
|
24 |
|
00:02:18,430 --> 00:02:23,570 |
|
center of |
|
|
|
25 |
|
00:02:23,570 --> 00:02:33,340 |
|
a group G is a |
|
|
|
26 |
|
00:02:33,340 --> 00:02:39,720 |
|
subgroup of |
|
|
|
27 |
|
00:02:39,720 --> 00:02:41,020 |
|
G |
|
|
|
28 |
|
00:02:51,670 --> 00:02:56,290 |
|
ูุจูู ุฃูุง ู
ุดุงู ุฃุซุจุช ุฃู ุงูู Z ุงูู
ุนุฑูุฉ ุจุงูุดูู ููุง |
|
|
|
29 |
|
00:02:56,290 --> 00:03:02,490 |
|
subgroup ู
ู ุงูู group ุงูุฃุณุงุณูุฉ ุฏู ุจุฏู ุฃุซุจุช ุงูููุทุชูู |
|
|
|
30 |
|
00:03:02,490 --> 00:03:08,810 |
|
ุฃูู ุดูุก ุฃู Z of G non-empty ุงูุฃู
ุฑ ุงูุซุงูู ุจุฏู ุฃุซุจุช |
|
|
|
31 |
|
00:03:08,810 --> 00:03:15,350 |
|
ุฃู ุฃู ุนูุตุฑ ูู ุฃุฎุฐุชู ุฃู ุฃู ุนูุตุฑูู ูู ุฃุฎุฐุชู ู
ู |
|
|
|
32 |
|
00:03:15,350 --> 00:03:18,750 |
|
ุงูู center ุจุฏู ูููู ุงูุฃูู ูู ู
ุนููุณ ุงูุซุงูู ู
ูุฌูุฏ |
|
|
|
33 |
|
00:03:18,750 --> 00:03:25,220 |
|
ูููุ ู
ูุฌูุฏ ูู ุงูู center ูุจูู ุฃูู ุดูุก ุฃูุง ุฃุฏุนู ุฃู ุงูู |
|
|
|
34 |
|
00:03:25,220 --> 00:03:32,400 |
|
Z of G is non-empty ููุฐู ูู ุงูููุทุฉ ุงูุฃููู ูู |
|
|
|
35 |
|
00:03:32,400 --> 00:03:40,150 |
|
ุงูุจุฑูุงู non-empty ููุดุ because ุงูู E ู
ูุฌูุฏ ูู ุงูู Z |
|
|
|
36 |
|
00:03:40,150 --> 00:03:47,610 |
|
of G ูุฅูุดุ ูุฃู ุงูู EX ุจูุณุงูู X E ููู ุงูู X |
|
|
|
37 |
|
00:03:47,610 --> 00:03:56,650 |
|
ุงููู ู
ูุฌูุฏ ูุฃู ุงูู EX ุจูุณุงูู ุงูู X ูู ุงูู E |
|
|
|
38 |
|
00:03:56,650 --> 00:04:04,040 |
|
ููู ุงูู X ุงููู ู
ูุฌูุฏุฉ ูู G ุจูุง ุงุณุชุซูุงุก ูุจูู ูุธุฑุง |
|
|
|
39 |
|
00:04:04,040 --> 00:04:07,780 |
|
ูุฃูู ูุญูู ุงูุฎุงุตูุฉ ุชุจุน ุงูู center ุชุจุน ุงูู group ุฅุฐุง |
|
|
|
40 |
|
00:04:07,780 --> 00:04:13,680 |
|
ุนูู ุงูุฃูู ูููุง element ูุงุญุฏ ุงููู ูู ุงูู E ุงูุขู |
|
|
|
41 |
|
00:04:13,680 --> 00:04:20,700 |
|
ุจุชุฑูุญ ุชุฃุฎุฐ two elements ุงูููุทุฉ ุงูุซุงููุฉ let a ู b |
|
|
|
42 |
|
00:04:20,700 --> 00:04:27,960 |
|
belongs to Z of G ูู
ุง ุฃููู two elements ูุฐูู |
|
|
|
43 |
|
00:04:27,960 --> 00:04:34,760 |
|
ู
ูุฌูุฏุงุช ูู Z of G ูุจูู ุจุฏ ูููู ุนูุฏูุง ุงูู AX ุจุฏ |
|
|
|
44 |
|
00:04:34,760 --> 00:04:44,800 |
|
ูุณุงูู ุงูู XA and ุงูู BX ุจูุณุงูู X B ููู ุงูู X ุงููู |
|
|
|
45 |
|
00:04:44,800 --> 00:04:47,400 |
|
ู
ูุฌูุฏ ูู G ุจู less ุชุชูุนู |
|
|
|
46 |
|
00:04:50,150 --> 00:04:54,250 |
|
ูุจูู ูุฐุง ุงูู element ู
ูุฌูุฏ ูู ุงูู center ุฅุฐุง ุจุฏู |
|
|
|
47 |
|
00:04:54,250 --> 00:04:58,790 |
|
ุฃุญูู ููุฎุงุตูุฉ ุงููู ููู ุชุจุนุช ุงูู center ุจู ู
ูุฌูุฏ ูู |
|
|
|
48 |
|
00:04:58,790 --> 00:05:03,590 |
|
ุงูู center ุฅุฐุง ุจุฏู ุฃุญูู ูููุณ ุงูุฎุงุตูุฉ ูุจูู ุฃูุง ุฃุฎุฐุช |
|
|
|
49 |
|
00:05:03,590 --> 00:05:08,050 |
|
ุนูุตุฑูู ู
ูุฌูุฏุงุช ูู ุงูู center ุชุจุน ุงูู group ุจุฏู ุฃุซุจุช |
|
|
|
50 |
|
00:05:08,050 --> 00:05:13,350 |
|
ุฅู ุงูุฃูู ูู ู
ุนููุณู ุงูุซุงูู ู
ูุฌูุฏ ูู ู
ููุ ูู ุงูู center |
|
|
|
51 |
|
00:05:13,350 --> 00:05:21,040 |
|
ุจู
ุนูู ุขุฎุฑ ุฃุฑูุฏ ุฃู ุฃุซุจุช ุฃู a b inverse x ูู x a b |
|
|
|
52 |
|
00:05:21,040 --> 00:05:27,360 |
|
inverse ููู x ู
ูุฌูุฏุฉ ูู g ุจูุง ุงุณุชุซูุงุก ูุจูู ุจุฏู ุฃุฌู |
|
|
|
53 |
|
00:05:27,360 --> 00:05:34,740 |
|
ุฃููู ูู consider ุฎุฏ ุฃู a b inverse x |
|
|
|
54 |
|
00:05:38,410 --> 00:05:46,950 |
|
ุจุชุดูู ูุฐุง ุจุฏู ุฃุซุจุช ู ุจุฏู ุฃุซุจุช ู ุจุฏู ุฃุซุจุช |
|
|
|
55 |
|
00:05:46,950 --> 00:05:48,290 |
|
ู ุจุฏู ุฃุซุจุช ู ุจุฏู ุฃุซุจุช ู ุจุฏู ุฃุซุจุช ู ุจุฏู ุฃุซุจุช ู ุจุฏู |
|
|
|
56 |
|
00:05:48,290 --> 00:05:57,150 |
|
ุฃุซุจุช ู ุจุฏู ุฃุซุจุช ู ุจุฏู ุฃุซุจุช |
|
|
|
57 |
|
00:05:57,980 --> 00:06:03,900 |
|
ูุจูู ูุฐุง ุงูููุงู
ุจูุณุงูู ุจุฏู ุฃุญุงูู ุฃุฑุจุท ู
ุง ุจูู ุงูู |
|
|
|
58 |
|
00:06:03,900 --> 00:06:08,780 |
|
X ูุงูู B ุงููู ุนูุฏูุง ูุจูู ูู ุฌูุช ููุช ูุฐุง A B |
|
|
|
59 |
|
00:06:08,780 --> 00:06:16,420 |
|
inverse ุงูู X ุฃุฎุฏุชูุง X inverse inverse ุทุจุนุง ุจุฑููุงูุง |
|
|
|
60 |
|
00:06:16,420 --> 00:06:23,600 |
|
ุณุงุจูุง ูุจูู ูุฐุง ุงูููุงู
ุจูุณุงูู A ูุงูู
ููุ ูุจูุตูุฑ X |
|
|
|
61 |
|
00:06:23,600 --> 00:06:30,770 |
|
inverse B inverse ูุฐู ุฅููุฑุณ ููุฐู ุฅููุฑุณ ูุจูู |
|
|
|
62 |
|
00:06:30,770 --> 00:06:35,330 |
|
ุฑุฌุนุชูู
ููุฃุตู ุงููู ุจุชุจุนูู
ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ุทูุจ |
|
|
|
63 |
|
00:06:35,330 --> 00:06:40,170 |
|
ุงูุขู B ู
ูุฌูุฏุฉ ูู ุงูู center ููุง ูุฃุ ูุจูู commutes ู
ุน |
|
|
|
64 |
|
00:06:40,170 --> 00:06:43,270 |
|
ุงูู X ูุงูู X inverse ูุฃููุง ู
ูุฌูุฏุฉ ูู ุงูู center ูุนูู |
|
|
|
65 |
|
00:06:43,270 --> 00:06:47,910 |
|
commutes ู
ุน any element ู
ูุฌูุฏ ูู ุงูู group G ูุจูู |
|
|
|
66 |
|
00:06:47,910 --> 00:06:56,670 |
|
ูุฐุง ุงูููุงู
ุจูุณุงูู A ูููุง B X inverse ุงููู inverse |
|
|
|
67 |
|
00:07:00,860 --> 00:07:05,520 |
|
ููุด ูุฐู ุงูุฎุทูุฉ ุนู
ูุชูุงุ ูุฃู B ู
ูุฌูุฏุฉ ูู ุงูู Center |
|
|
|
68 |
|
00:07:05,520 --> 00:07:11,600 |
|
ูุจูู ูุฐู ุงูู sense B ู
ูุฌูุฏุฉ ูู ุงูู Center ุชุจุน ุงูู |
|
|
|
69 |
|
00:07:11,600 --> 00:07:17,580 |
|
G ูุฐุง ุงูููุงู
ุจูุณุงูู ูู ุฌูุช ูู ูุฐุง ุงูุขู ุจูุณุงูู ุจุฏู ุฃุทุจู |
|
|
|
70 |
|
00:07:17,580 --> 00:07:22,940 |
|
ุนููู ุชุนุฑูู ุงูู
ุนููุณ ูุญุธุฉ ุญุตู ุถุฑุจ two elements ูุจูู |
|
|
|
71 |
|
00:07:22,940 --> 00:07:26,020 |
|
ูุฐุง ุจูุตูุฑ A ูู X |
|
|
|
72 |
|
00:07:28,710 --> 00:07:37,090 |
|
inverse inverse ูููุง ุงููู ูู B inverse ูุจูู ูุฒุนุช ุงูู |
|
|
|
73 |
|
00:07:37,090 --> 00:07:42,210 |
|
inverse ููู ูุงุญุฏุฉ ู
ู ูุฐูู ูุจูู ูุฐู ุงูุชููุช ูุจูู |
|
|
|
74 |
|
00:07:42,210 --> 00:07:49,770 |
|
ูุฐู ุฅูุด ุจูุตูุฑ AX ูู ุงูู B inverse ุงูุขู ุฃูุง ุนูุฏู ู
ู |
|
|
|
75 |
|
00:07:49,770 --> 00:07:57,330 |
|
ุงูู
ุนุทูุงุช ุฃู AX ูุณุงูู X A ูุจูู ูุฐุง ุงูููุงู
ุจุฏู |
|
|
|
76 |
|
00:07:57,330 --> 00:08:06,810 |
|
ูุนุทููุง X A ูู ุงูู B inverse ููุด ูุฐุง ุงูู sense ุงูู A |
|
|
|
77 |
|
00:08:06,810 --> 00:08:13,150 |
|
ู
ูุฌูุฏุฉ ูู ุงูู center ุชุจุน ุงูู G ุทูุจ ูุฐุง ุงูููุงู
ุจุฏู |
|
|
|
78 |
|
00:08:13,150 --> 00:08:19,770 |
|
ูุณุงูู ู
ู ุฎุงุตูุฉ ุงูู associativity XAB inverse ุจุงูุดูู |
|
|
|
79 |
|
00:08:19,770 --> 00:08:25,090 |
|
ุงููู ุนูุฏูุง ุทุจ ุฅูุด ุงููู ุนู
ูุชู ุฃูุง ุญุชู ุงููุญุธุฉ ุฃุฎุฐุช A |
|
|
|
80 |
|
00:08:25,090 --> 00:08:31,250 |
|
B inverse X ูุฌูุชู ูุณุงูู X A B inverse ูุฐุง ุงูููุงู
|
|
|
|
81 |
|
00:08:31,250 --> 00:08:37,590 |
|
ุตุญูุญ ููู ุงูู X ุงููู ู
ูุฌูุฏุฉ ูู G plus ุชุชูู ุฅูุด |
|
|
|
82 |
|
00:08:37,590 --> 00:08:42,370 |
|
ุชูุณูุฑู ููุฐุง ุงูููุงู
ูุจูู ุงูู A B inverse ู
ูุฌูุฏ ููู |
|
|
|
83 |
|
00:08:42,370 --> 00:08:45,990 |
|
ูู ุงูู center ุชุจุน ุงูู group ูุจุงูุชุงูู ุงูู center ุนุจุงุฑุฉ |
|
|
|
84 |
|
00:08:45,990 --> 00:08:53,880 |
|
ุนู subgroup ูุจูู ููุง ุณููุง ุงูู A B inverse belongs ููู |
|
|
|
85 |
|
00:08:53,880 --> 00:09:03,920 |
|
Z of G and hence ูู
ู ุซู
ุงูู Z of G is a subgroup ู
ู |
|
|
|
86 |
|
00:09:03,920 --> 00:09:05,060 |
|
G ููู ุงูู
ุทููุจ |
|
|
|
87 |
|
00:09:08,760 --> 00:09:14,200 |
|
ูุจูู ู
ู ุงูุขู ูุตุงุนุฏุง ุงูู center ุชุจุน ุงูู group ูู sub |
|
|
|
88 |
|
00:09:14,200 --> 00:09:20,440 |
|
group ู
ู ุงูู group ุงูุฃุณุงุณูุฉ ุทูุจ ูุง ุดุจุงุจ ูู ุนูุฏูุง |
|
|
|
89 |
|
00:09:20,440 --> 00:09:28,000 |
|
ุณุคุงู ุงูุณุคุงู ูู ูุงูุช G ุฃุจูููุงู G ุฃุจูููุงู ูุจูู ุงูู |
|
|
|
90 |
|
00:09:28,000 --> 00:09:34,040 |
|
center ุชุจุน ุงูู group ุจูููู ูู ุงูู group ูุจูู ูุฐู ุงูุชุจูุง |
|
|
|
91 |
|
00:09:34,040 --> 00:09:46,500 |
|
ู
ูุงุญุธุฉ Note If ุงูู G is abelian then ุงูู center ุชุจุน |
|
|
|
92 |
|
00:09:46,500 --> 00:09:53,280 |
|
ุงูู G ุจูุณุงูู ุงูู G itself ูููุง ุจูุง ุงุณุชุซูุงุก ูุจุฏุฃ |
|
|
|
93 |
|
00:09:53,280 --> 00:10:04,080 |
|
ูุฃุฎุฐ ุฃู
ุซูุฉ examples ุฃูู ู
ุซุงู ุจูููู let ุงูู G ูู ุงูู |
|
|
|
94 |
|
00:10:04,080 --> 00:10:09,550 |
|
general linear group of two by two matrices over R |
|
|
|
95 |
|
00:10:09,550 --> 00:10:21,390 |
|
Then ุจุฏูุง Z of G ุจุฏู Z of G ูู ุนุจุงุฑุฉ ุนู ู
ููุ ุฃูุง |
|
|
|
96 |
|
00:10:21,390 --> 00:10:31,090 |
|
ุฃุฏุนู ุฃู Z of G ูู ุงูู
ุตูููุฉ ุนูู ุตูุบุฉ A 0 0 A ูุจุญูุซ ุงูู |
|
|
|
97 |
|
00:10:31,090 --> 00:10:41,300 |
|
A ู
ูุฌูุฏ ูู R ูุงูู A ูุฐุง ูุง ูุณุงูู Zero ุงูููุงู
|
|
|
|
98 |
|
00:10:41,300 --> 00:10:44,760 |
|
ูุฐุง ุตุญูุญ ููุง ู
ุง ููุ ู
ุด ุตุญูุญ ูุงููู ุฃูุง ุฃุฏุนู |
|
|
|
99 |
|
00:10:44,760 --> 00:10:51,040 |
|
ุงุฏุนุงุก ุจุงุฌู ุจููู ูุงููู ุฅุฐุง ูููุช ูุฐู ุงูู
ุตูููุงุช ูููู
|
|
|
|
100 |
|
00:10:51,040 --> 00:10:56,540 |
|
ุงููู ู
ูุฌูุฏุฉ ูู Z of G commutes with any element ูู |
|
|
|
101 |
|
00:10:56,540 --> 00:11:00,180 |
|
ุงูู general linear group ูุตูุจ ููุงู
ูุง ุตุญูุญ ู
ู ุงููู
ูู |
|
|
|
102 |
|
00:11:00,180 --> 00:11:05,450 |
|
ูู
ู ุงูุดู
ุงู ู
ุง ุทูุน ูุจูู ููุงู
ูุง ู
ุนูู ุบูุฑ ุตุญูุญ ูุฐูู |
|
|
|
103 |
|
00:11:05,450 --> 00:11:11,310 |
|
ุจุฃุฌู ุจููู ูู ูุฐุง ุงูููุงู
because ุจุฏู ุฃุฌู ุงูู element |
|
|
|
104 |
|
00:11:11,310 --> 00:11:17,230 |
|
ุงููู ู
ูุฌูุฏ ูู ุงูู center A 0 0 A ุจุฏู ุฃุถุฑุจู ูู |
|
|
|
105 |
|
00:11:17,230 --> 00:11:21,230 |
|
ุฃู element ู
ูุฌูุฏ ูู ุงูู general linear group ุจุฏู |
|
|
|
106 |
|
00:11:21,230 --> 00:11:28,810 |
|
ุขุฎุฐ B, C, D, F ู
ุซูุง ุจุฏูุด ุฃูุชุจ ุงูู A ุจูุงุด ุชููู ูู ุฅูู |
|
|
|
107 |
|
00:11:28,810 --> 00:11:34,160 |
|
ูุฐุง ูู ุงูู identity element ุฅุฐุง ูุฐู ูู ุฌูุช ุถุฑุจุชูุง |
|
|
|
108 |
|
00:11:34,160 --> 00:11:40,400 |
|
ุจุฏูุง ุชุณุงูู ุงูุตู ุงูุฃูู ูู ุงูุนู
ูุฏ ุงูุฃูู ุงููู ูู AB |
|
|
|
109 |
|
00:11:40,400 --> 00:11:47,560 |
|
ุงูุตู ุงูุฃูู ูู ุงูุนู
ูุฏ ุงูุซุงูู ูุจูู BC ุงูุตู ุงูุซุงูู |
|
|
|
110 |
|
00:11:47,560 --> 00:11:53,260 |
|
ูู ุงูุนู
ูุฏ ุงูุฃูู ูุจูู AD ุงูุตู ุงูุซุงูู ูู ุงูุนู
ูุฏ |
|
|
|
111 |
|
00:11:53,260 --> 00:12:06,450 |
|
ุงูุซุงูู AF ุงููู ุจูุฏุฑ ุฃูุชุจูุง A ูู B, C, D, F ุงูุขู ุจุฏุฃุช |
|
|
|
112 |
|
00:12:06,450 --> 00:12:16,420 |
|
ุขุฎุฐ ูู ุงููู ูู B, C, D, F ูู ุงูู A, 0, 0, A ูุจูู ูุฐุง ู
ุนูุงู |
|
|
|
113 |
|
00:12:16,420 --> 00:12:23,180 |
|
ุตู ุงูุฃูู ูู ุงูุนู
ูุฏ ุงูุฃูู BA ุงูุตู ุงูุฃูู ูู ุงูุนู
ูุฏ |
|
|
|
114 |
|
00:12:23,180 --> 00:12:29,960 |
|
ุงูุซุงูู CA ุงูุตู ุงูุซุงูู ูู ุงูุนู
ูุฏ ุงูุฃูู DA ุงูุตู |
|
|
|
115 |
|
00:12:29,960 --> 00:12:37,240 |
|
ุงูุซุงูู ูู ุงูุนู
ูุฏ ุงูุซุงูู ูุจูู FA ูู ุฃุฎุฐุช ุงูู A ู
ู ูู |
|
|
|
116 |
|
00:12:37,240 --> 00:12:42,340 |
|
element ู
ูุฌูุฏ ุฏุงุฎู ุงูู
ุตูููุฉ ุจูุธูุฑ ููุง ู
ููุ ุจู ุจู ุจู |
|
|
|
117 |
|
00:12:42,340 --> 00:12:43,680 |
|
ุจู ุจู ุจู ุจู ุจู ุจู ุจู ุจู ุจู ุจู ุจู ุจู ุจู ุจู ุจู ุจู ุจู |
|
|
|
118 |
|
00:12:43,680 --> 00:12:50,000 |
|
ุจู ุจู ุจู ุจู ุจู ุจู ุจู ุจู ุจู ุจู ุจู ุจู ุจู ุจู ุจู |
|
|
|
119 |
|
00:12:50,780 --> 00:12:56,080 |
|
ู
ุง ุฏุงู
ุฃุฑูููุง ุงูู
ุนูุงุชู ูุนูุง ูุฐุง ูู
ุซู main ุงูู |
|
|
|
120 |
|
00:12:56,080 --> 00:13:01,480 |
|
center ุฃู ุงูู
ุตูููุฉ ุงููู ุนูุฏูุง ูุฐู ูู element ู
ูุฌูุฏ |
|
|
|
121 |
|
00:13:01,480 --> 00:13:07,380 |
|
ูุฅู ู
ูุฌูุฏ ูู ุงูู center ูุฐุง ุจุฏู ุฃุนุทูู ุฃู any |
|
|
|
122 |
|
00:13:07,380 --> 00:13:09,140 |
|
element |
|
|
|
123 |
|
00:13:11,320 --> 00:13:22,860 |
|
in Z of G is in the form ุนูู ุงูุดูู ุงููู ูู A 0 |
|
|
|
124 |
|
00:13:22,860 --> 00:13:30,410 |
|
0 A ูุงูู A does not equal to zero ูุจูู ู
ู ุงูุขู |
|
|
|
125 |
|
00:13:30,410 --> 00:13:34,110 |
|
ูุตุงุนุฏุง ูู
ุง ุจุฏู ุงูู center ููู general linear group of |
|
|
|
126 |
|
00:13:34,110 --> 00:13:38,670 |
|
two by two matrices over R ุจูููู ุนูุฏู ูุงุญุฏ ุฒูุฑู |
|
|
|
127 |
|
00:13:38,670 --> 00:13:43,030 |
|
ุฒูุฑู ูุงุญุฏ ุงุชููู ุฒูุฑู ุฒูุฑู ูุงุญุฏ ู
ุต ุฒูุฑู ุฒูุฑู ูุงุญุฏ |
|
|
|
128 |
|
00:13:43,030 --> 00:13:48,310 |
|
ูุงุญุฏ ุนูู ู
ูุฉ ุฒูุฑู ุฒูุฑู ูุงุญุฏ ุนูู ู
ูุฉ ูููุฐุง ูุจูู ูู |
|
|
|
129 |
|
00:13:48,310 --> 00:13:53,590 |
|
ุงูุนูุงุตุฑ ุงููุทุฑ ุงูุฑุฆูุณู ุจูููู ุนูุงุตุฑูู
ู
ุชุณุงููุฉ ููุฐู |
|
|
|
130 |
|
00:13:53,590 --> 00:13:59,170 |
|
ุจูููุง ูุณู
ููุง ูู ุงู linear algebra ุจูููุง ูุณู
ููุง |
|
|
|
131 |
|
00:13:59,170 --> 00:14:05,830 |
|
ุงูู
ุตูููุฉ ุดู ุงุณู
ูุงุ ู
ุตูููุฉ ุงููุงุญุฏ ุงููุทุฑูุฉ |
|
|
|
132 |
|
00:14:05,830 --> 00:14:12,150 |
|
ูู
ุง ุงูุนูุงุตุฑ ุงููุทุฑ ุงูุฑุฆูุณู ูููููุง ู
ุชุณุงููุฉ ุจูููุง |
|
|
|
133 |
|
00:14:12,150 --> 00:14:14,330 |
|
ูุณู
ููุง ู
ุซูุซูุฉ |
|
|
|
134 |
|
00:14:17,700 --> 00:14:24,520 |
|
ุจูุณู
ููุง scalar matrix ุฃู ู
ููุงุณูุฉ |
|
|
|
135 |
|
00:14:24,520 --> 00:14:28,940 |
|
ูู ูุงู ุงููุทุฑูู ุบูุฑ ู
ุชุณุงูููู ุจูููู diagonal matrix |
|
|
|
136 |
|
00:14:28,940 --> 00:14:31,240 |
|
diagonal matrix ูู ูุนูุง diagonal matrix ูู ุงูู
ุตููู |
|
|
|
137 |
|
00:14:31,240 --> 00:14:36,060 |
|
ุงููุทุฑูุฉ ุจุณ ุฅุฐุง ุชุณุงูุช ุนูุงุตุฑ ุงููุทุฑ ุงูุฑุฆูุณู ุจูุณู
ููุง |
|
|
|
138 |
|
00:14:36,060 --> 00:14:41,070 |
|
scalar matrix ูุจูู ูู scalar matrix ูู ุงู general |
|
|
|
139 |
|
00:14:41,070 --> 00:14:44,790 |
|
linear group of two by two matrices ุจููููููู main |
|
|
|
140 |
|
00:14:44,790 --> 00:14:50,790 |
|
ุจููููููู ุงู center ูู group ุงููู ุนูุฏูุง ุทูุจ ูู
ุฑุชูุง |
|
|
|
141 |
|
00:14:50,790 --> 00:15:01,990 |
|
example two ุจุฏูุง z of D4 ูุณุงูู ุฃููุฏ ุงู R node ู
ููู
|
|
|
|
142 |
|
00:15:01,990 --> 00:15:07,240 |
|
ูุฐุง ูู ู
ุฌู
ุน ููู ูุฃูู ุงู identity ุญุฏ ุจููุฏุฑ ูุฌูุจูู |
|
|
|
143 |
|
00:15:07,240 --> 00:15:16,240 |
|
ูู
ุงู element ุขุฎุฑ ุชุณุนูู commutes ู
ุน ุงููู ุชุณุนูู |
|
|
|
144 |
|
00:15:16,240 --> 00:15:19,860 |
|
commutes ู
ุน ุงูู
ูุฉ ูุชู
ุงููู ูู
ุน ุงูู
ูุชูู ูุณุจุนูู ู
ุน ุงู |
|
|
|
145 |
|
00:15:19,860 --> 00:15:25,580 |
|
rotations ูุนู
ููู ู
ุน ุงู reflections ููุณ ุตุญูุญุง |
|
|
|
146 |
|
00:15:25,580 --> 00:15:31,960 |
|
ูุฃุซุจุช ูู ุฃู R ุชุณุนูู ูู H ููุณูุง ุงู H ูู R ุชุณุนูู |
|
|
|
147 |
|
00:15:31,960 --> 00:15:39,720 |
|
ูุญุณุจุชูู
ูู ุฃูุช ุงูู R180 ููุท ูุง ุบูุฑ ูุจูู ูุฐู ูุงูู |
|
|
|
148 |
|
00:15:39,720 --> 00:15:48,060 |
|
R180 ููุท ูุง ุบูุฑ ูุจูู ูุฏูู ุจุณ ุนูุงุตุฑ ุงูู Center ุชุจุนู |
|
|
|
149 |
|
00:15:48,060 --> 00:15:52,600 |
|
ุงูู D4 ุบูุฑ ููู ู
ุง ููุด ููุง elements ุทุจุนุง ูู ุฑุฌุนุช |
|
|
|
150 |
|
00:15:52,600 --> 00:15:58,720 |
|
ููุฌุฏูู ุงููู ูู ุงูุตูุญุฉ ูุงุญุฏุฉ ู ุชูุงุชูู ุงููููุชุงุจู ููู |
|
|
|
151 |
|
00:15:58,720 --> 00:16:05,880 |
|
D4 ุจุชูุงูู ุฃู ุงู R180 ูู ุงู commutes ู
ุน ุฌู
ูุน ุนูุงุตุฑ |
|
|
|
152 |
|
00:16:05,880 --> 00:16:10,280 |
|
D4 ุจุงูุฅุถุงูุฉ ุฅูู ุงู identity element ุงููู ูู main |
|
|
|
153 |
|
00:16:10,670 --> 00:16:16,350 |
|
ุงููู ูู Arnold ูุจูู ูุฐูู ุงู two elements ูู
ุงููู |
|
|
|
154 |
|
00:16:16,350 --> 00:16:21,890 |
|
commutes ู
ุน ุฌู
ูุน ุนูุงุตุฑ D4 ููุท ูุง ุบูุฑ ุทูุจ ุฅูุด ุฑุฃูู |
|
|
|
155 |
|
00:16:21,890 --> 00:16:27,650 |
|
ุจุฏู ุฃุนู
ูู ูุงูุดุบู ูุฐู ุจุฏู ู
ุง ุขุฎุฐ D4 ุจุฏู ุขุฎุฐ DN |
|
|
|
156 |
|
00:16:27,650 --> 00:16:35,950 |
|
ูุจูู ุงูุขู in general ูู |
|
|
|
157 |
|
00:16:35,950 --> 00:16:46,670 |
|
ุฃุฎุฐุช ุงู Z of DM ูุฐู ุฃุญุฏ ุฃู
ุฑูู ูุง ุฅู
ุง ุงูู Arnold ูุงูู |
|
|
|
158 |
|
00:16:46,670 --> 00:16:55,750 |
|
ู
ูุฉ ู ุชู
ุงููู ููุท ูุง ุฅู
ุง ุงูู Arnold ุงูุณุคุงู ูู ู
ุชู ูุญุฏุซ |
|
|
|
159 |
|
00:16:55,750 --> 00:17:01,950 |
|
ูุฐุง ูู
ุชู ูุญุฏุซ ูุฐุง ุงูุขู ูู D4 ุงูุฑูู
ูุฐุง ุฒูุฌู ูุงููู |
|
|
|
160 |
|
00:17:01,950 --> 00:17:09,870 |
|
ูุฑุฏู ุฒูุฌู ูุจูู ูุฐุง ูุญุฏุซ ูู ูุงู ุงู n ูุฑุฏูุง ูุจูู ููุง |
|
|
|
161 |
|
00:17:09,870 --> 00:17:21,630 |
|
ูุฐุง ุงูููุงู
if n is even ุฃู ูุฐุง if ุงู n is odd |
|
|
|
162 |
|
00:17:21,630 --> 00:17:29,050 |
|
ููุท ูุง ุบูุฑ ุทุจุนุง ูู
ูู ูุณุฃู ูุงุญุฏ ุจุนุถ ู
ููู
ูู
ุงุฐุง ูุฐุง |
|
|
|
163 |
|
00:17:29,050 --> 00:17:29,750 |
|
ุงูููุงู
|
|
|
|
164 |
|
00:17:40,760 --> 00:17:46,140 |
|
ุงูุฅุฌุงุจุฉ ุจุฏูุง ูุนุทู ุชูุณูุฑ ููุด ูุฐุง ุงูููุงู
ู
ุง ููุด ุบุฑุถ |
|
|
|
165 |
|
00:17:46,140 --> 00:17:54,220 |
|
ูุจูู ุงูุชุจ ูู this is because ูุจูู this is because |
|
|
|
166 |
|
00:17:54,220 --> 00:18:05,940 |
|
ูุฐุง ุงูููุงู
ูุฃูู this is because every rotation in |
|
|
|
167 |
|
00:18:05,940 --> 00:18:07,680 |
|
DN |
|
|
|
168 |
|
00:18:09,750 --> 00:18:19,790 |
|
is a power is a power of |
|
|
|
169 |
|
00:18:19,790 --> 00:18:28,450 |
|
R ุชูุช ู
ูุฉ ู ุณุชูู ุนูู N and |
|
|
|
170 |
|
00:18:28,450 --> 00:18:37,790 |
|
rotations and rotations commute |
|
|
|
171 |
|
00:18:42,200 --> 00:18:49,400 |
|
and the rotations commute with each other with |
|
|
|
172 |
|
00:18:49,400 --> 00:18:59,060 |
|
each other ูุฌู |
|
|
|
173 |
|
00:18:59,060 --> 00:19:03,760 |
|
ุงูุขู ูู ูุงู ุญุงุตู ุถุฑุจ rotation ูู reflection ุจุฏุง |
|
|
|
174 |
|
00:19:03,760 --> 00:19:10,280 |
|
ุฃููู ูู ุจุฏุง ุฃุนุทู ุชุณู
ูุฉ ุงูุชุงููุฉ little r b any |
|
|
|
175 |
|
00:19:12,530 --> 00:19:31,450 |
|
rotation in DN and let ุงู F be any reflection ุจุฑุถู |
|
|
|
176 |
|
00:19:31,450 --> 00:19:36,290 |
|
in DN in DN |
|
|
|
177 |
|
00:19:49,990 --> 00:19:57,070 |
|
ู
ุฑุฉ ุฃุฎุฑู ูุฏุนู ุฃู ุงูู Center ุชุจุน ุงู group D ุงู ุณูุงุก |
|
|
|
178 |
|
00:19:57,070 --> 00:20:04,330 |
|
ูุงูุช D3ุ D4ุ D5ุ D6ุ ุฌุฏ ู
ุง ูููู ูููู ุทุจุนุง ุงู N ูุฐู |
|
|
|
179 |
|
00:20:04,330 --> 00:20:10,410 |
|
ุฃูุจุฑ ู
ู ุฃู ุชุณุงูู ุชูุงุชุฉ ุงู N ุงููู ุนูุฏูุง ุฃูุจุฑ ู
ู ุฃู |
|
|
|
180 |
|
00:20:10,410 --> 00:20:15,330 |
|
ุชุณุงูู ุชูุงุชุฉ ูุนูู ู
ู
ูู ูููู ู
ุซูุซ ู
ูุชุธู
ู
ุฑุจุน ู
ูุชุธู
|
|
|
|
181 |
|
00:20:15,330 --> 00:20:20,390 |
|
ู
ุฎูุต ู
ูุชุธู
ู
ุณุฏุณ ู
ูุชุธู
ุฅูู ุขุฎุฑูู
ุฅุฐุง ูุงููู ุงู N |
|
|
|
182 |
|
00:20:20,390 --> 00:20:28,030 |
|
ู
ูุฌุจุฉ ุฒู D4, D6, D8, D10 ุฅูู ุขุฎุฑู ูุจูู ุงูุนูุงุตุฑ |
|
|
|
183 |
|
00:20:28,030 --> 00:20:33,070 |
|
ุงููู ูู ุงู center ุจุณ Arnold ู R180 ุงูุฃูู ูู ูุงูุช |
|
|
|
184 |
|
00:20:33,070 --> 00:20:36,670 |
|
ุงู N ูุฑุฏู ุชูุงุชุฉ ุฎู
ุณุฉ ุณุจุนุฉ ุชุณุนุฉ ุฅูู ุขุฎุฑู ูุจูู ูุง |
|
|
|
185 |
|
00:20:36,670 --> 00:20:40,990 |
|
ููุฌุฏ ูู ุงู center ุฅูุง ุนูุตุฑ ุงููุญุฏุฉ ุงููู ูู
ูู Arnold |
|
|
|
186 |
|
00:20:40,990 --> 00:20:46,720 |
|
ููุด ูุฐุงุ ูุฃู ุฃู ุฑูุชุงุดู ูุชุนุงู
ู ู
ุน ุฃู ุฑูุชุงุดู ุขุฎุฑ ู
ุซูุง |
|
|
|
187 |
|
00:20:46,720 --> 00:20:52,220 |
|
ูู D4 ุฅุฐุง ููุช ูู R90 ูุชุนุงู
ู ู
ุน R180 ููุชุนุงู
ู ู
ุน |
|
|
|
188 |
|
00:20:52,220 --> 00:20:57,520 |
|
R270 ูR270 ูุชุนุงู
ู ู
ุน R270 ูR270 ูุชุนุงู
ู ู
ุน R270 |
|
|
|
189 |
|
00:20:57,520 --> 00:21:01,300 |
|
ูR270 ูุชุนุงู
ู ู
ุน R270 ูR270 ูุชุนุงู
ู ู
ุน R270 ูR270 |
|
|
|
190 |
|
00:21:01,300 --> 00:21:02,380 |
|
ูุชุนุงู
ู ู
ุน R270 ูR270 ูุชุนุงู
ู ู
ุน R270 ูR270 ูุชุนุงู
ู |
|
|
|
191 |
|
00:21:02,380 --> 00:21:03,200 |
|
ู
ุน R270 ูR270 ูุชุนุงู
ู ู
ุน R270 ูR270 ูุชุนุงู
ู ู
ุน R270 |
|
|
|
192 |
|
00:21:03,200 --> 00:21:07,000 |
|
ูR270 ูุชุนุงู
ู ู
ุน R270 ูR270 ูุชุนุงู
ู ู
ุน R270 ูR270 |
|
|
|
193 |
|
00:21:07,000 --> 00:21:12,500 |
|
ูุชุนุงู
ู ู
ุน R270 ูR270 ูุชุนุงู
ู ู
ุน R270 |
|
|
|
194 |
|
00:21:12,500 --> 00:21:17,410 |
|
ูR2 ูุจูู ุฏู commutes ุจุงุฌู ุจูููู ุจุฏู ุขุฌู ุขุฎุฐ R ูู any |
|
|
|
195 |
|
00:21:17,410 --> 00:21:23,670 |
|
rotation ูุนูู ุฌุฑุจ ูู ุงูููุฑุฉ ูู ูุงู ุงู D4 ุนูุฏูุง ูุจูู |
|
|
|
196 |
|
00:21:23,670 --> 00:21:27,610 |
|
ุงู R ูุงุฏู ุฃู
ุง R ุชุณุนูู ุฃู ู
ูุฉ ู ุชู
ุงููู ุฃู ู
ูุชูู ู |
|
|
|
197 |
|
00:21:27,610 --> 00:21:34,730 |
|
ุณุจุนูู ุฃู ูุงุญุฏุฉ ู
ููู
ุชู
ุงู
ุ ูุจูู ุงู F ูู ูุฐูู any |
|
|
|
198 |
|
00:21:34,730 --> 00:21:39,670 |
|
reflection ุฃู ุงูููุงุจ ุณูุงุก ูุงู H ุฃู ูุง V ุฃู ูุง D ุฃู ูุง |
|
|
|
199 |
|
00:21:39,670 --> 00:21:45,430 |
|
D' ุฃู ูุงุญุฏุฉ ู
ููู
ู
ูุชูุจ ู
ุนู ุฃู reflection ุถุฑุจ |
|
|
|
200 |
|
00:21:45,430 --> 00:21:51,530 |
|
rotation ูุณุงูู rotation ุถุฑุจ reflection ููู ุจูุนุทููู |
|
|
|
201 |
|
00:21:51,530 --> 00:21:55,850 |
|
reflection ู
ุง ุฃูููุด ูุณุงูู ูุนูู ุนูู ูู ุงูุฃู
ุฑูู ุจูุทูุน ูู |
|
|
|
202 |
|
00:21:55,850 --> 00:21:59,090 |
|
reflection ูู ุถุฑุจุช rotation ูู reflection ุจุฏู |
|
|
|
203 |
|
00:21:59,090 --> 00:22:01,570 |
|
ูุทูุน ูู reflectionุ ูู ุถุฑุจุช reflection ูู rotation |
|
|
|
204 |
|
00:22:01,570 --> 00:22:05,170 |
|
ุจุฏู ูุทูุน ูู reflection ุนูู ููุง ุงูุฃู
ุฑูู ูู
ูุชูุจุฉ |
|
|
|
205 |
|
00:22:05,170 --> 00:22:08,130 |
|
ู
ุนุงู ูุฐู ูุชุจูุงูุง ูุจู ุฐูู |
|
|
|
206 |
|
00:22:10,970 --> 00:22:16,690 |
|
ุฃู rotation ูู D4 ูู power of r 360 ุนูู n ุฅูุด |
|
|
|
207 |
|
00:22:16,690 --> 00:22:24,630 |
|
360 ุนูู n ุจุงุฌู ุจููู ุงู ูู ูุงูุช n ุชุณุงูู 4 ู
ุซูุง ูุจูู |
|
|
|
208 |
|
00:22:24,630 --> 00:22:29,230 |
|
360 ุนูู 4 ูููุง ูุฏุงุด 90 ุฅุฐุง ุงู rotation ุงููุงุญุฏุฉ |
|
|
|
209 |
|
00:22:29,230 --> 00:22:35,080 |
|
ุจุชุณุนูู ุฏุฑุฌุฉ ูุฐุง ูู
ุง ูููู ู
ุฑุจุน ุทุจ ูู ูุงู ู
ุซูุซ ุจุฏู |
|
|
|
210 |
|
00:22:35,080 --> 00:22:39,660 |
|
ุฃูุณู
ุนูู ุชูุงุชุฉ ูุจูู ุงู rotation ู
ูุฏุงุด ู
ูุฉ ูุนุดุฑูู |
|
|
|
211 |
|
00:22:39,660 --> 00:22:45,740 |
|
ุฏุฑุฌุฉ ูู ูุงู ู
ุฎู
ุณ ูู ูุงู ู
ุณุฏุณ ู
ูุชุธู
ูุจูู ุชูุงุชู
ูุฉ ู |
|
|
|
212 |
|
00:22:45,740 --> 00:22:49,460 |
|
ุณุชูู ุนูู ุณุช ุงููู ููู ู
ูุฏุงุด ุณุชูู ูุจูู ุจูุตูุฑ ุนูุฏู R |
|
|
|
213 |
|
00:22:49,460 --> 00:22:55,740 |
|
node R ุณุชูู R ู
ูุฉ ูุนุดุฑูู R ู
ูุฉ ูุชู
ุงููู R ู
ูุชูู ู ุฃุฑุจุนูู |
|
|
|
214 |
|
00:22:55,740 --> 00:23:02,820 |
|
R300 R node ูููุฐุง ูุจูู ููุฐุง ุชูุชุจ ู
ู ุงูุนูุงุตุฑ ูุจุนุฏูู |
|
|
|
215 |
|
00:23:02,820 --> 00:23:06,800 |
|
ุจุฑูุญ ุจุฏูุฑ ู
ู ุงู reflections ุฅูู ุขุฎุฑูู ู
ุง ุนูููุง |
|
|
|
216 |
|
00:23:06,800 --> 00:23:13,880 |
|
ูุจูู ุงูู
ูุตูุฏ ู
ู R360 ุนูู N ุฃุทูุน ูุฏุงุด ู
ูุฏุงุฑ ุงูุฒุงููุฉ |
|
|
|
217 |
|
00:23:13,880 --> 00:23:18,250 |
|
ุงููู ุจุฃุนู
ู ุจูุง ุงูุฏูุฑุงูุฉ ุงูู
ุถูุน ุงูู
ูุชุธู
ุงููู ุนูุฏู |
|
|
|
218 |
|
00:23:18,250 --> 00:23:23,830 |
|
ู
ูู ู
ูุงู ุฅูู ูููู ุชู
ุงู
ุฃู rotation ูุฏููุง ุงูุฑู
ุฒ R |
|
|
|
219 |
|
00:23:23,830 --> 00:23:30,150 |
|
ุฃู reflection ูุฏููุง ุฅูู ูุฏููุง ุงูุฑู
ุฒ F ุชู
ุงู
ุทูุจ |
|
|
|
220 |
|
00:23:30,150 --> 00:23:36,890 |
|
ุงูุขู rotation ุจุฏู ุฃููู any rotation ูู reflection |
|
|
|
221 |
|
00:23:36,890 --> 00:23:41,930 |
|
ุจูุนุทููุง reflection ุฃู ุฃู reflection ูู rotation |
|
|
|
222 |
|
00:23:41,930 --> 00:23:44,250 |
|
ุจูุนุทููุง reflection |
|
|
|
223 |
|
00:23:58,780 --> 00:24:03,600 |
|
Arnold ุงู identity element ุงุชุญุฑู ู
ุน ุฃู element ุขุฎุฑ |
|
|
|
224 |
|
00:24:03,600 --> 00:24:10,860 |
|
ูู ุงู group Arnold ูู ุฏูุฑุงู ุจุตูุฑ ุฏุฑุฌุฉ ูุจูู ูุฐุง ูู ุงู |
|
|
|
225 |
|
00:24:10,860 --> 00:24:15,860 |
|
identity element ููุช ุญุงุถุฑ ููู
ุดุฑุญูุง ุงู D4 ูุฐูุ |
|
|
|
226 |
|
00:24:15,860 --> 00:24:24,180 |
|
ุจุนูู ุงููู ุทูุจ ููุง ูุฑูุชูุง ูู
ุงูุ ู
ุงุดู ุทูุจ ูุฐู ุฏูููุชู |
|
|
|
227 |
|
00:24:24,180 --> 00:24:28,440 |
|
ุนู
ูุฏ ููุฑู ุฑูุญ ุงูุฑุฃูุง ุซุงูู ุบูุจุชู ุญุงุฌุฉ ุญุชู ูุชุนุงูู |
|
|
|
228 |
|
00:24:28,440 --> 00:24:32,980 |
|
ูุดุฑุญ ูู ู
ุง ุนูุฏูุงุด ู
ุดููุฉ ุงูู
ูู
ูุฃู ูุฐู ุนู
ูุฏ ููุฑู ูู |
|
|
|
229 |
|
00:24:32,980 --> 00:24:37,860 |
|
ุดููุฉ ูุฌุฑูุจ ููู ุทุงูุนุฉ ุจุฏูุง ูุดุชุบู ุนูููุง ุชู
ุงู
ุ ุทูุจ |
|
|
|
230 |
|
00:24:38,150 --> 00:24:43,490 |
|
ูุฑุฌุน ูู
ูุถูุนูุง ุงุญูุง ุจูุฏุนู ุงูุขู ุฃู ุงู center ูุฏู N |
|
|
|
231 |
|
00:24:43,490 --> 00:24:47,690 |
|
ุฅุฐุง ูุงูุช N ุนุฏุฏุง ุฒูุฌูุง ู
ุง ุนูุฏูุด ุฅูุง Arnold ูR180 |
|
|
|
232 |
|
00:24:47,690 --> 00:24:53,970 |
|
ูุฅุฐุง ูุงู ูุฑุฏูุง ู
ุง ุนูุฏูุด ุฅูุง ู
ู Arnold ุงูุขู ุจูููู ุงู |
|
|
|
233 |
|
00:24:53,970 --> 00:24:58,950 |
|
rotation ุจ commutes ู
ุน ุฃู rotation ุฃุฎุฑู ูุถุฑุจุช ูู ู
ู |
|
|
|
234 |
|
00:24:58,950 --> 00:25:04,490 |
|
93 ู
ุน 180 ู
ุน 270 ูููู
commutes ูุฏูู ู
ุน ุจุนุถ ู
ุน ุงู |
|
|
|
235 |
|
00:25:04,490 --> 00:25:09,480 |
|
Arnold ูู
ุงู ุงููู ูู ุงู identity ุงูุขู ุฃู rotation |
|
|
|
236 |
|
00:25:09,480 --> 00:25:15,000 |
|
ุญุฏููุง ุงูุฑู
ุฒ R ุฃู reflection ุญุฏููุง ุงูุฑู
ุฒ F ุงูุขู |
|
|
|
237 |
|
00:25:15,000 --> 00:25:22,600 |
|
ุงุญูุง ุณุงุจูุง ุจุฑุถู ุจุงุฌู ุจููู since ุงููู ูู ุงู R ูู F |
|
|
|
238 |
|
00:25:22,600 --> 00:25:25,800 |
|
is a reflection |
|
|
|
239 |
|
00:25:28,280 --> 00:25:32,260 |
|
ูุฐู reflection ูุนูู ุญุงุตู ุถุฑุจ ุงู rotation ูู ุงู |
|
|
|
240 |
|
00:25:32,260 --> 00:25:36,860 |
|
reflection ุจูุนุทููู reflection ุฃู ุงูุนูุณ ูู ูุงู F ูู |
|
|
|
241 |
|
00:25:36,860 --> 00:25:41,700 |
|
R ูู
ุงู ุจูุนุทููุง ู
ูู reflection ูู
ุง ุฅูู ุฐูู ูุจูู |
|
|
|
242 |
|
00:25:41,700 --> 00:25:46,300 |
|
ูุธุฑุง ูุฅู ุงู R ูู F is a reflection ู
ุนูุงุชู ูุฐุง |
|
|
|
243 |
|
00:25:46,300 --> 00:25:55,630 |
|
ุงูุนูุตุฑ ู
ุนูุณู ูุฏุงุดู ุจูุนุทููุง ู
ุนูุณ ุงูุนูุตุฑ ูุฐุง ุงุฑุฌุน ุงู |
|
|
|
244 |
|
00:25:55,630 --> 00:26:00,450 |
|
D4 ู
ุด ุงู D4 ููููุง H ุชุฑุจูุนู ูุณุงูู ุงู identity ูุจูู |
|
|
|
245 |
|
00:26:00,450 --> 00:26:05,530 |
|
ุงู H inverse ูุจูู ูุฏู ุจุงู H itself ูุจูู ูู ู
ุนููุณ |
|
|
|
246 |
|
00:26:05,530 --> 00:26:12,210 |
|
ูููุณ ูุจูู ูู ูุฐู ูุฃ it's a reflection we have |
|
|
|
247 |
|
00:26:12,210 --> 00:26:22,430 |
|
ูุจูู ุจุฏู ูุตูุฑ ุงู RF ุจุฏู ูุณุงูู ุงู RF ููู inverse ูุจูู |
|
|
|
248 |
|
00:26:22,430 --> 00:26:29,210 |
|
ุจุงุฌู ุจููู ูุจูู ุตุงุฑ ุงู RF ุจุฏู ูุณุงูู ุงู RF ูู |
|
|
|
249 |
|
00:26:29,210 --> 00:26:35,290 |
|
ุงููู inverse ูุจูุบุฉ ุงู F inverse ูุฐุง ูู ุงู F inverse |
|
|
|
250 |
|
00:26:35,290 --> 00:26:40,190 |
|
ูู ุงู R inverse ุจูุบุฉ ุงูู
ุนููุณ ุจุชููู ุจูููู ู
ุนููุณ |
|
|
|
251 |
|
00:26:40,190 --> 00:26:45,290 |
|
ุงูุฃูู ููุขุฎุฑ ุทุจ ุงูู F reflection ูู
ุง ุชุจูู ุงูู F |
|
|
|
252 |
|
00:26:45,290 --> 00:26:51,340 |
|
reflection ูุจูู F square ูุฏุงุด ู
ุฏููุทู ูุง ุดุจุงุจ ุงููู |
|
|
|
253 |
|
00:26:51,340 --> 00:26:55,420 |
|
ููุถู ูู ุงูู identity ูุนูู ูู ุฌูุช ููุช ุงูู identity |
|
|
|
254 |
|
00:26:55,420 --> 00:27:00,880 |
|
ูุจูู ุงูู F ุจุงูุตูุฑ ูู ุงูู F inverse ููุง ูุง ูุนูู ูู |
|
|
|
255 |
|
00:27:00,880 --> 00:27:04,480 |
|
ุถุฑุจุช ุงูุทุฑููู ูู ุงูู F inverse ู
ู ุฌูุฉ ุงููู
ูู ุฃู ู
ู |
|
|
|
256 |
|
00:27:04,480 --> 00:27:09,220 |
|
ุฌูุฉ ุงูุดู
ุงู ูุจูู ููุง ุจุธู ูุฏุงุด ุจุธู F ูุงูุทุฑู ุงููุงู
ูู |
|
|
|
257 |
|
00:27:09,220 --> 00:27:13,620 |
|
ูู G F inverse ู
ูุชูุจ ู
ุนุงู ูุฐุง V ุชุฑุจูุฉ ุชุณูู ุงูู |
|
|
|
258 |
|
00:27:13,620 --> 00:27:17,420 |
|
identity ูู D4 ูุจูู V ุจุชุณูู V inverse H ุชุฑุจูุฉ ุชุณูู |
|
|
|
259 |
|
00:27:17,420 --> 00:27:20,200 |
|
ุงูู identity ูุจูู H ุชุณูู H inverse D ุชุฑุจูุฉ ุชุณูู ุงูู |
|
|
|
260 |
|
00:27:20,200 --> 00:27:23,340 |
|
identity ูุจูู D ุจุชุณูู D ุงูู inverse ูD prime ุฒููู
|
|
|
|
261 |
|
00:27:23,340 --> 00:27:29,300 |
|
ูุจูู ูู ูุฐุง ู
ูุชูุจ ู
ุนุงู ููู
ุฃุฎุฏูุง D4 ูุจูู ุจูุงุก ุนููู |
|
|
|
262 |
|
00:27:29,300 --> 00:27:34,320 |
|
ูู
ุง ูุงูุช ุงูู F ูู reflection ูุจูู ุงูู F ู ุงูู F |
|
|
|
263 |
|
00:27:34,320 --> 00:27:41,300 |
|
inverse ุงูุดู ุงูุนูุงูุฉ ุจูููู
ุง ุงุชููู are ุงูู F ู ุงูู F |
|
|
|
264 |
|
00:27:41,300 --> 00:27:42,540 |
|
inverse ุงูู reflection |
|
|
|
265 |
|
00:27:47,690 --> 00:27:52,230 |
|
ู
ุงุฐุง ูุญุตู ุนูุงูุฉ ุจูููู
ุ ุนูุงูุฉ ุชุณุงูู ูุนูู ุจูุฏุฑ ุฃุดูู |
|
|
|
266 |
|
00:27:52,230 --> 00:27:55,590 |
|
ุงูู F ู ุฃุญุท ู
ูุงููุง F inverse ู ุจูุฏุฑ ุฃุดูู F inverse |
|
|
|
267 |
|
00:27:55,590 --> 00:27:59,730 |
|
ู ุฃุญุท ู
ูุงููุง ุงูู F ูููุง ูุฏุงู
ู ูู ุนูู ุงูููุญ ู
ูุชูุจุฉ |
|
|
|
268 |
|
00:27:59,730 --> 00:28:09,470 |
|
ูุจูู ุจูุฏุฑ ุจูุงุก ุนููู ุฃููู ูุฐู ูู ุงูู F R inverse ุทูุจ |
|
|
|
269 |
|
00:28:09,470 --> 00:28:10,510 |
|
ุงุณุชูู ุดููุฉ |
|
|
|
270 |
|
00:28:27,180 --> 00:28:29,980 |
|
ู
ุตุจูุท ููุฐุงุ |
|
|
|
271 |
|
00:28:38,160 --> 00:28:46,100 |
|
ุทูุจ ูุฐุง ููุงู
ุตุญูุญ if and only if ุงูู R F ุจุฏูุง ุชุณุงูู |
|
|
|
272 |
|
00:28:47,590 --> 00:28:53,690 |
|
ููู ุงูู ุงุฑ ุงู ูููุงุ ูุฏู ุงุด ุทุงูุน ุจูุณุงููุ ุงู ุงุฑ ุงููุฑุณุ |
|
|
|
273 |
|
00:28:53,690 --> 00:29:03,130 |
|
ู
ุธุจูุทุ ูุจูู ูุฐู ุงู ุงุฑ ุงู ุจุฏู ุณุงูู ุงู .. ุฅุฐุง ูุงูุช |
|
|
|
274 |
|
00:29:03,130 --> 00:29:09,630 |
|
ุงูู ุงุฑ ุงู ุจุฏู ุณุงูู ุงูุงู ุงุฑ ุทูุจ ููู ุงูุงู ุงุฑุ ุทูุจ |
|
|
|
275 |
|
00:29:09,630 --> 00:29:16,200 |
|
ุฎูููุง ู
ุงุดูุฉ ุจูุฌุจ ูููู ูุฐุง ุงูููุงู
ุงูู RF ุจุฏู ุณุงูู |
|
|
|
276 |
|
00:29:16,200 --> 00:29:20,220 |
|
ุงูู |
|
|
|
277 |
|
00:29:20,220 --> 00:29:27,760 |
|
FR inverse ุจุงูุดูู ุงููู ุนูุฏูุง ููุง ูุจูู ูุฐุง ุงูููุงู
|
|
|
|
278 |
|
00:29:27,760 --> 00:29:33,570 |
|
ุตุญูุก ุฅุฐุง ูุงู ุงูู RF ุจุฏู ุณุงูู
ูู ุงูู FR inverse ุทูุจ |
|
|
|
279 |
|
00:29:33,570 --> 00:29:40,070 |
|
ุงูุขู ุฃูุง ุจูุฏุฑ ุฃุดูู ุงูู F ู ุงุญุท ู
ูุงููุง ู
ู ุงูู F |
|
|
|
280 |
|
00:29:40,070 --> 00:29:46,290 |
|
inverse ู ุงุฑุฌุนูุง ููู ุฏู ุณูู ูุญุธุฉ ุดููุฉ ุทูุจ ุนูุฏู ุงูู |
|
|
|
281 |
|
00:29:46,290 --> 00:29:51,230 |
|
RF ูุณูู ุงูู FR inverse ู
ุธุจูุท ุงูู R ูู
ุง ูุณู
ูู ุฅุฐุง ูุงู |
|
|
|
282 |
|
00:29:51,230 --> 00:29:58,350 |
|
ุงูู FR ุจุฏูู ูุณูู ุฅุฐุง ูุงู ุงูู FR ุจุฏูู ูุณูู RF ุงุณุชูู |
|
|
|
283 |
|
00:29:58,350 --> 00:30:01,130 |
|
ุดููุฉ ุฅุฐุง ูุงู ุงูู F |
|
|
|
284 |
|
00:30:04,870 --> 00:30:19,850 |
|
ูุงุฑ ูุงุฑ ูุงุฑ ูุงุฑ ูุงุฑ ูุงุฑ ูุงุฑ ูุงุฑ ูุงุฑ ูุงุฑ ูุงุฑ |
|
|
|
285 |
|
00:30:28,490 --> 00:30:34,610 |
|
ุงูู R F Inverse ูุฃูุดุ ูุฃู ุงูู F ูู ุชุณุงูู ู
ููุ |
|
|
|
286 |
|
00:30:34,610 --> 00:30:40,450 |
|
ุชุณุงูู ุงูู F Inverse itself ุชู
ุงู
ุ ูุจูู ูุฐุง ุจูุณุงูู |
|
|
|
287 |
|
00:30:40,450 --> 00:30:47,150 |
|
ุงูู R Inverse F itself ูุจูู ุฃุตุงุฑ F R Inverse |
|
|
|
288 |
|
00:30:50,680 --> 00:30:57,700 |
|
ูุจูู ูุงู ุงูู F R ุจุฏููุง ูููุง ุจุฏู ูุณุงูู R F ููุฐุง R F |
|
|
|
289 |
|
00:30:57,700 --> 00:31:07,380 |
|
ุงููู ุนูุฏูุง ูุณุงูู F R Inverse ูุฐู ุจุฏู ูุณุงูู F R |
|
|
|
290 |
|
00:31:07,380 --> 00:31:12,680 |
|
Inverse ูู ุงูููุงู
ุตุญูุญ ูุจูู ุฃูุง ุจุฏูุช ูุฏูู ุงูุชููู |
|
|
|
291 |
|
00:31:12,680 --> 00:31:18,160 |
|
ูู
ูุณู ุฏู ูุงู ุงูู F R ุจุฏู ูุณุงูู ู
ู R F ูุฐุง ุงูููุงู
|
|
|
|
292 |
|
00:31:18,160 --> 00:31:24,080 |
|
ูุณุงูู ูุงู RF ู
ู ููู ุดููุชูุง ู ุฌูุจุช ุจุฏุงููุง ู
ููุ F R |
|
|
|
293 |
|
00:31:24,080 --> 00:31:30,340 |
|
inverse ูุจูู ุงุทูุนูู ููุฐู ู ุงุทูุนูู ููุฐู ุชู
ุงู
ุ ุจุงู |
|
|
|
294 |
|
00:31:30,340 --> 00:31:35,360 |
|
lift cancellation law ูุจูู ูุฐู ุงูู F ุจุชุฑูุญ ู
ุน ูุฐู |
|
|
|
295 |
|
00:31:35,360 --> 00:31:43,480 |
|
ุจุธู F and only F ุงูู R ุจุฏูุง ุชุณุงูู R inverse ุฅุฐุง ูุงู |
|
|
|
296 |
|
00:31:43,480 --> 00:31:49,820 |
|
ุงูู R ูุณูู ุงูู R inverse ุงูู R ูุณูู |
|
|
|
297 |
|
00:31:49,820 --> 00:31:57,820 |
|
ุงูู R inverse ุจุณ ูู ุญุงูุฉ ุงูู 180 ูุจูู ูุฐุง ู
ุนูุงู ุฃู R |
|
|
|
298 |
|
00:31:57,820 --> 00:32:06,440 |
|
ุชุณูู R 180 ุฏุฑุฌุฉ ููุฐุง ุงูููุงู
ุตุญูุญ ูู ูุงูุช ุงูู N is |
|
|
|
299 |
|
00:32:06,440 --> 00:32:19,190 |
|
even ููุท this is a true ูุงูู is even ูุจูู ุจูุงุก ุนููู |
|
|
|
300 |
|
00:32:19,190 --> 00:32:27,310 |
|
z of d ูุงูู z of dn ุจุฏู ูุณูู ุฑู ูุฑู
ูุฉ ู ุชู
ุงููู ูู |
|
|
|
301 |
|
00:32:27,310 --> 00:32:34,730 |
|
ุญุงูุฉ ุงูุฒูุฌู ูุงูุงุฑููุฏ ูู ุญุงูุฉ ู
ู ูู ุญุงูุฉ ุงููุฑุฏู ุทูุจ |
|
|
|
302 |
|
00:32:34,730 --> 00:32:39,990 |
|
ูููุง ุชุนุฑูู ุฌุฏูุฏ ุจุฑุถู ุฌุฑูุจ ู
ู ุงูู center ุจุณ ุจูุณู
ูู |
|
|
|
303 |
|
00:32:39,990 --> 00:32:46,610 |
|
centralizer ูุจูู definition let |
|
|
|
304 |
|
00:32:46,610 --> 00:32:55,270 |
|
ุงูู a be a fixed element |
|
|
|
305 |
|
00:32:55,270 --> 00:32:58,350 |
|
of |
|
|
|
306 |
|
00:32:58,350 --> 00:33:01,330 |
|
a group G |
|
|
|
307 |
|
00:33:04,040 --> 00:33:18,140 |
|
the centralizer of |
|
|
|
308 |
|
00:33:18,140 --> 00:33:28,120 |
|
ุงูู element a ุงููู ู
ูุฌูุฏ ูู g ูุฏููู ุงูุฑู
ุฒ center of |
|
|
|
309 |
|
00:33:28,120 --> 00:33:28,600 |
|
a |
|
|
|
310 |
|
00:33:31,400 --> 00:33:42,920 |
|
is the set of all elements the set of all elements |
|
|
|
311 |
|
00:33:42,920 --> 00:33:53,620 |
|
in G that commute with |
|
|
|
312 |
|
00:33:53,620 --> 00:33:57,700 |
|
A with |
|
|
|
313 |
|
00:33:57,700 --> 00:34:01,020 |
|
A that is |
|
|
|
314 |
|
00:34:03,590 --> 00:34:12,050 |
|
Centralizer ูุฅูู ูู ุงูุนูุงุตุฑ ุฌู ุงููู ู
ูุฌูุฏุฉ ูู ุฌู |
|
|
|
315 |
|
00:34:12,050 --> 00:34:18,790 |
|
ุจุญูุซ ุฃู ุฌู ูู ุงูู ุณุงูู ุงูู ูู ุฌู |
|
|
|
316 |
|
00:34:48,240 --> 00:34:52,400 |
|
ูุนูุฏ ููุชุนุฑูู ุงููู ูููุงู ู ูุนูุฏ ูู ุซุงูู ู ูุดูู ุดู |
|
|
|
317 |
|
00:34:52,400 --> 00:34:58,360 |
|
ุจูููู ุงูุชุนุฑูู ุจูููู ุฎุฏูู a fixed element ู
ู ุงูู |
|
|
|
318 |
|
00:34:58,360 --> 00:35:02,660 |
|
group g ุจูุจูู ุฃุฎุฏุช ุนูุตุฑ ู
ู g ุณู
ูุชู a the |
|
|
|
319 |
|
00:35:02,660 --> 00:35:08,840 |
|
centralizer of a ุงููู ู
ูุฌูุฏ ููู g ูุจูู ุฃูุง ุจุฏู |
|
|
|
320 |
|
00:35:08,840 --> 00:35:15,540 |
|
ุฃุฏูุฑ ุนูู ุงูุนูุงุตุฑ ุงููู ุจุชุจูู commutes ู
ุน a ููุท ูุจุฏู |
|
|
|
321 |
|
00:35:15,540 --> 00:35:20,900 |
|
ุฃุณู
ููู
ุงูู centralizer ุจูุฐุง ุงูู element a ุจุชุนุทูู C of |
|
|
|
322 |
|
00:35:20,900 --> 00:35:25,400 |
|
A ูุจูู C of A the centralizer of the element A ู
ูู |
|
|
|
323 |
|
00:35:25,400 --> 00:35:30,900 |
|
ููุ ูู ูู ุงูุนูุงุตุฑ ุงููู ู
ูุฌูุฏุฉ ูู G that commutes |
|
|
|
324 |
|
00:35:30,900 --> 00:35:37,060 |
|
with A ุงููู ุจุชุนู
ู ุนู
ููุฉ ุชุจุฏูู ููุท ู
ุน ุงูุนูุตุฑ A ู
ุด |
|
|
|
325 |
|
00:35:37,060 --> 00:35:40,700 |
|
ู
ุน ุจุงูู ุนูุงุตุฑ ูุจูู ููู ูุฑู ู
ุง ุจูู ุงูู center |
|
|
|
326 |
|
00:35:40,700 --> 00:35:44,940 |
|
ูุงูู centralizer ุงูู element ุงููู ู
ูุฌูุฏ ูู ุงูู center |
|
|
|
327 |
|
00:35:44,940 --> 00:35:50,460 |
|
commutes ู
ุน ุฌู
ูุน ุนูุงุตุฑ A ู
ุน ุฌู
ูุน ุนูุงุตุฑ ุงูุฌุฑูุจ G |
|
|
|
328 |
|
00:35:50,460 --> 00:35:54,960 |
|
ููู ุงูู centralizer ูููุ ุจุณ ุงูุนูุงุตุฑ ู commutes ู
ุน |
|
|
|
329 |
|
00:35:54,960 --> 00:36:01,260 |
|
ู
ููุ ู
ุน A ููุท ูุบูุฑ ุฐูู ูููุง ุงูู Centralizer ููู |
|
|
|
330 |
|
00:36:01,260 --> 00:36:05,180 |
|
ุงูุนูุงุตุฑ ุงููู ู
ูุฌูุฏุฉ ูู ุฌูู ุงููู ุจุชุจูู commutes ู
ุน |
|
|
|
331 |
|
00:36:05,180 --> 00:36:11,260 |
|
ู
ูู ู
ุน ุงูู ููุท ุจูุงุก ุนูู ุฐูู ุณูุทุฑุญ ุจุนุถ ุงูุฃุณุฆูุฉ |
|
|
|
332 |
|
00:36:11,260 --> 00:36:16,120 |
|
ุงูุณุคุงู ุงูุฃูู ู
ูู |
|
|
|
333 |
|
00:36:16,120 --> 00:36:19,840 |
|
ุงููู ุฃูุจุฑ ุงูู center ููุง ุงูู centralizer ูู ุงูู group |
|
|
|
334 |
|
00:36:19,840 --> 00:36:28,240 |
|
ุงูุนุงุฏู ุงูู Center ุฃูุจุฑ ูุนูู ุจูุงูู ูู ุนูุงุตุฑ ุฃูุซุฑ ู
ู |
|
|
|
335 |
|
00:36:28,240 --> 00:36:31,020 |
|
ุนูุงุตุฑ ุงูู Centralizer ูุฅููุ |
|
|
|
336 |
|
00:36:34,970 --> 00:36:40,990 |
|
ุทูุจ ุณุคุงู ุณุคุงู ุจุฏู ุฃุฌูุจ ููุณ ุงูุณุคุงู ุจุตูุบุฉ ุฃุฎุฑู ูู |
|
|
|
337 |
|
00:36:40,990 --> 00:36:46,550 |
|
ุฃุฎุฏ element ูู ุงูู center ุชุจุน ุงูู group ุจูุงุฌูู ูู ุงูู |
|
|
|
338 |
|
00:36:46,550 --> 00:36:50,410 |
|
centralizer ุชุจุน ุงูู ุงููุ ุจูุงุฌูู ุทุจ ูุนู
ู ุงูุนู
ููุฉ |
|
|
|
339 |
|
00:36:50,410 --> 00:36:54,430 |
|
ุงูุนูุณูุฉ ุจุฏู ุฃุฎุฏ element ูู ุงูู centralizer ูู |
|
|
|
340 |
|
00:36:54,430 --> 00:36:57,170 |
|
ุจูุงุฌูู ู
ูุฌูุฏ ูู ุงูู centerุ |
|
|
|
341 |
|
00:37:00,330 --> 00:37:05,270 |
|
ูุนูู ูุฏ ูููู ู ูุฏ ูุง ูููู ู
ูุฌูุฏุ ู
ุธุจูุทุ ุฅุฐุง ุตุงุฑ ุงูู |
|
|
|
342 |
|
00:37:05,270 --> 00:37:10,630 |
|
center ุตุบูุฑ ูุฃูู ุจุฏูู
ูุณู
ุน ุฌู
ูุน ุนูุงุตุฑ ุฌูุฉ ุจุณ ูุฏุง |
|
|
|
343 |
|
00:37:10,630 --> 00:37:14,650 |
|
ูู
ูุณู
ุน ุนูุตุฑ ูุงุญุฏ ููุท ูุจูู ุงูู center ููููู ูู |
|
|
|
344 |
|
00:37:14,650 --> 00:37:18,710 |
|
ุนูุงุตุฑ ูุซูุฑุฉ ุจุฏููู ุฃุฎุฏุช ุฃูุณุน ุนูุตุฑ ู
ู ุงูู center |
|
|
|
345 |
|
00:37:18,710 --> 00:37:21,970 |
|
ูุฌุฏุชู ู
ูุฌูุฏ ูู ุงูู centralizer ููู ุฅุฐุง ุฐูุจุช ูุฎุชู
|
|
|
|
346 |
|
00:37:21,970 --> 00:37:25,210 |
|
ุงูู centralizer ููุณ ุจุงูุถุฑูุฑุฉ ุฃู ูููู ููู ูู |
|
|
|
347 |
|
00:37:25,210 --> 00:37:29,850 |
|
ุงูู center ูุจูู ุฃูู ู
ูุงุญุธุฉ ุฃู ุงูู center ุชุจุน ูุฌุฑูุจ |
|
|
|
348 |
|
00:37:29,850 --> 00:37:36,030 |
|
ูู ุงูู subset ู
ู ุงูู centralizer ุชู
ุงู
ุ ูุจูู ุจุงุฌู |
|
|
|
349 |
|
00:37:36,030 --> 00:37:37,750 |
|
ุจูููู ููุง note |
|
|
|
350 |
|
00:37:40,820 --> 00:37:48,020 |
|
ุงูููุทุฉ ุงูุฃููู ุงูู center ุชุจุน ุงูู group G subset ู
ู |
|
|
|
351 |
|
00:37:48,020 --> 00:37:51,200 |
|
ุงูู |
|
|
|
352 |
|
00:37:51,200 --> 00:37:59,660 |
|
centralizer ูู A ู ุงูู A ุนูุตุฑ ู
ูุฌูุฏ ูู ุฌู ู
ุด ุงูู A ู |
|
|
|
353 |
|
00:37:59,660 --> 00:38:03,300 |
|
ูุง ุงูู B ู ุงูู C ูุนูู ูุฐุง ููุงู
ุตุญูุญ ููู ุงูู A ุงููู |
|
|
|
354 |
|
00:38:03,300 --> 00:38:08,940 |
|
ู
ูุฌูุฏ ูู ุฌู ุจุฏู ููู ุจููู ููู ุงูู A ุงููู ู
ูุฌูุฏุฉ ูู |
|
|
|
355 |
|
00:38:08,940 --> 00:38:15,310 |
|
ุฌู ูุนูู ูู ุฑูุญุช ูุฃู ุนูุตุฑ ุบูุฑุช ูุฅูู ุจุนูุตุฑ ุซุงูู ู |
|
|
|
356 |
|
00:38:15,310 --> 00:38:18,830 |
|
ุฌุจุชูู ุงูู centralizer ุจูุงุฌ ุงูู center subset ู
ูู ู |
|
|
|
357 |
|
00:38:18,830 --> 00:38:22,210 |
|
ุฑูุญุช ุฌุจุช ุงูู centralizer ูุนูุตุฑ ุซุงูุซ ู ุฌุจุช ุงูู |
|
|
|
358 |
|
00:38:22,210 --> 00:38:24,770 |
|
central group ุจูุงุฌ ุงูู central subset ู
ู ุงูู |
|
|
|
359 |
|
00:38:24,770 --> 00:38:29,070 |
|
centralizer ููุนูุตุฑ ุงูุซุงูุซ ู ููุฐุง ูู ุงููู ูุตุฏูุงู ู
ู |
|
|
|
360 |
|
00:38:29,070 --> 00:38:36,050 |
|
ููุง ุทูุจ ูู
ุงู ุณุคุงู ูู ูุงูุช ุงูู ุฌู ุฃุจูููุงู ูุฏุงุด ุงูู |
|
|
|
361 |
|
00:38:36,050 --> 00:38:42,450 |
|
centralizer ููู ุฅููุ ุฌู ุฌู ูููุง ุทุจ ู ุงูู centerุ ุฌู |
|
|
|
362 |
|
00:38:42,450 --> 00:38:46,080 |
|
ูููุง ูุจูู ุตุฑุช ุณู
ุง ุจูู ุงูู Central ู ุงูู Centralizer |
|
|
|
363 |
|
00:38:46,080 --> 00:38:50,740 |
|
ูุจูู ุฅุฐุง ูุงูุช ุงูู G Abelian ูุฅู ุงูู Center ูุณูู |
|
|
|
364 |
|
00:38:50,740 --> 00:38:55,540 |
|
ุงูู Centralizer ู ูุณุงูู ุงูุฌุฑูุจ G ููู ููู ูู ู
ุงููุชุด |
|
|
|
365 |
|
00:38:55,540 --> 00:38:59,840 |
|
Abelian ุจูุธู ุงูู Center ุชุจุน ุงูุฌุฑูุจ ูู ุงูู Subset |
|
|
|
366 |
|
00:38:59,840 --> 00:39:06,220 |
|
ูุฏ ูุณูู ู ูุฏ ูุง ูุณูู ุชู
ุงู
ุ ูุจูู ุจูุงุก ุนููู ุจููู ูุฐู |
|
|
|
367 |
|
00:39:06,220 --> 00:39:14,040 |
|
ุงูููุทุฉ ุงูุฃููู ุงูููุทุฉ ุงูุซุงููุฉ If G is Abelian Then |
|
|
|
368 |
|
00:39:14,040 --> 00:39:20,220 |
|
ุงูู Center ุชุจุน ูู Group G ูู ุจุงูุถุจุท ุงูู |
|
|
|
369 |
|
00:39:20,220 --> 00:39:26,060 |
|
Centralizer ูู A ููู ุงูู A ุงููู ู
ูุฌูุฏุฉ ูู G ููุฐุง |
|
|
|
370 |
|
00:39:26,060 --> 00:39:31,500 |
|
ุจุฏู ูุณุงูู G itself ูุฐุง ูู ุญุงูุฉ ู
ุง ุชููู A ู
ุง ุชููู |
|
|
|
371 |
|
00:39:31,500 --> 00:39:39,200 |
|
Abelian Group ุทูุจ ูุงุฎุฏ ู
ุซุงู ุจุณูุท example let |
|
|
|
372 |
|
00:39:44,050 --> 00:39:52,830 |
|
ุงูู G ุชุณูู ุงูู D4 ุงูู D4 ุซู
ุจุฏู |
|
|
|
373 |
|
00:39:52,830 --> 00:40:02,670 |
|
ุงูู Centralizer ููู R ููุช ู
ูู ุจูุทูุน ุฏู ูููุง ุทูุจ ูู |
|
|
|
374 |
|
00:40:02,670 --> 00:40:10,150 |
|
ูู ุงูู Centralizer ููู R 180 ุตุญูุญ ูุบุฑู
ูุฉ ุงุจููู
ูุณู
ุน |
|
|
|
375 |
|
00:40:10,150 --> 00:40:16,270 |
|
ุงููู ูุฑูุฏ ุนู ุฌุฏูููุง ุจุณ ู ูุฐุง ุจุฏู ูุณูู D4 ููู ูุจูู |
|
|
|
376 |
|
00:40:16,270 --> 00:40:22,070 |
|
ูุฐุง ุจุฏู ูุนุทููุง D4 ููู ุทุจ ูู ุจุฏู ุงูู centralizer ููู |
|
|
|
377 |
|
00:40:22,070 --> 00:40:28,270 |
|
R90 ูู |
|
|
|
378 |
|
00:40:28,270 --> 00:40:34,710 |
|
ูุฐุง ูู ุงูู centralizer ููู R270ุ |
|
|
|
379 |
|
00:40:38,690 --> 00:40:46,030 |
|
ุงูุธุฑูุง ู
ุนุงููุณู ุทุจ ุจุฏู ุงูุนูุงุตุฑ ุชุจุนุชูู
ู
ูู ูู
ุ ุงุฑูููุฏ ู |
|
|
|
380 |
|
00:40:46,030 --> 00:40:54,230 |
|
R180 ูุงูู R90 ูู
ุงู ูุฃู ุงูู R90 ูุณู
ุน ููุณู ุตุญูุญ ููุง |
|
|
|
381 |
|
00:40:54,230 --> 00:41:00,540 |
|
ูุงุ ุถู ุนููู ูู
ุงู ูุงุญุฏ ุจุณุญุฏ ู
ุนุงู ุงูุฌุฏูู ูุทูุน ูุจุณู |
|
|
|
382 |
|
00:41:00,540 --> 00:41:04,000 |
|
ูุชุด ุงูุฌุฏูู ูุจุชุนุฑู ุงูุฅุฌุงุจุฉ ู
ูู ูู ุตูุญุฉ ูุงุญุฏ ู |
|
|
|
383 |
|
00:41:04,000 --> 00:41:09,500 |
|
ุซูุงุซูู ูุจูู ูู ุฑุฌุนูุง ุจููุงูู ุจุณ ุงููู ูู ุงูู R ู
ูุชูู |
|
|
|
384 |
|
00:41:09,500 --> 00:41:16,710 |
|
ูุณุจุนูู ูุจูู ูุฐู ุงูู R ู
ูุชูู ูุณุจุนูู ูุฐุง ุงูููุงู
ูุนูู |
|
|
|
385 |
|
00:41:16,710 --> 00:41:20,230 |
|
ุงูุด ู
ูู ุจุฏู ุฃุนุทูู ููุ ุจุฏู ุฃุนุทูู ูู ุงูู subgroup |
|
|
|
386 |
|
00:41:20,230 --> 00:41:26,470 |
|
generated by R 90 ููู ููุณ ุงูููุช ูู ุงูู subgroup |
|
|
|
387 |
|
00:41:26,470 --> 00:41:36,590 |
|
generated by R 270 ู
ุธุจูุทุ R 90 ุชุฑุจูุน 180 R 90 |
|
|
|
388 |
|
00:41:36,590 --> 00:41:42,400 |
|
ุชูุนูุจ 270 R ุฃุณ 4 ุจุงูู identity ูุจูู ูู ุจุฏู |
|
|
|
389 |
|
00:41:42,400 --> 00:41:46,780 |
|
ุฃุฌูุจ ูู
ุงู ุงูู centralizer ูู
ููุ ููู H ูุจูู |
|
|
|
390 |
|
00:41:46,780 --> 00:41:55,200 |
|
ุงูู centralizer ููู H ุงููู ุนูุฏูุง ูุฐู ูุจูู ูุฐุง ุจุฏู |
|
|
|
391 |
|
00:41:55,200 --> 00:42:00,140 |
|
ูุนุทูู ุงูู R nought ูุงูู R100U80 |
|
|
|
392 |
|
00:42:00,140 --> 00:42:03,700 |
|
ูุงูู H ูุญุท ุนูููุง ุงูู V ูู
ุงู |
|
|
|
393 |
|
00:42:06,390 --> 00:42:13,330 |
|
ุฃููุณ ูุฐุง ูู ุงูู centralizer ููู V ูุฐููุ ูู ุงูุฌุฏูู |
|
|
|
394 |
|
00:42:13,330 --> 00:42:17,970 |
|
ู
ุนู ูุงู ุนุฑูุช ูุญุงูู ุฌุฏูู ูู ุตูุญุฉ ูุงุญุฏ ูุซูุงุซูู |
|
|
|
395 |
|
00:42:17,970 --> 00:42:22,390 |
|
ุจุงูู
ุซู ูู ุฑูุญูุง ุฌุจูุง ุงูู centralizer ูู D |
|
|
|
396 |
|
00:42:22,390 --> 00:42:30,450 |
|
ุงูู centralizer ูู D ูู ุนุจุงุฑุฉ ุนู ุงูู R nought ูุงูู R ู
ูุฉ |
|
|
|
397 |
|
00:42:30,450 --> 00:42:38,000 |
|
ูุซู
ุงููู ูุงูู D itself ูุงูู D prime ูุฐุง ุณูููู ุงูู |
|
|
|
398 |
|
00:42:38,000 --> 00:42:46,540 |
|
Centralizer ูู D' ู
ู ูุฐุง ุงูููุงู
ุจูุฏุฑ ุงุณุชูุชุฌ ุฃู H |
|
|
|
399 |
|
00:42:46,540 --> 00:42:54,040 |
|
ูู V ุณูููู V ูู H ูุจูุฏุฑ ุงุณุชูุชุฌ ู
ู ูุฐุง ุงููู ุชุญุช ุฃู |
|
|
|
400 |
|
00:42:54,040 --> 00:43:02,460 |
|
D D' ุณูููู D' D ูุจูู ูุฐุง ุงุณุชูุชุงุฌ ู
ู ุฎูุงู ุงูููุงู
|
|
|
|
401 |
|
00:43:02,460 --> 00:43:03,760 |
|
ุงููู ุนูุฏูุง ููุง |
|
|
|
402 |
|
00:43:23,420 --> 00:43:30,680 |
|
ุงูุขู ุขุฎุฑ ูุธุฑูุฉ ู
ูุฌูุฏุฉ ูู ูุฐุง ุงูู chapter ููู ุฃู ุงูู |
|
|
|
403 |
|
00:43:30,680 --> 00:43:39,220 |
|
centralizer ุนุจุงุฑุฉ ุนู subgroup ูุจูู theorem for |
|
|
|
404 |
|
00:43:39,220 --> 00:43:51,840 |
|
any element a ุงููู ู
ูุฌูุฏ ูู ุฌูุจ ุงูู centralizer ูู a |
|
|
|
405 |
|
00:43:53,260 --> 00:44:02,720 |
|
is a subgroup ู
ู G ู
ู ู
ู ู
ู ู
ู ู
ู |
|
|
|
406 |
|
00:44:02,720 --> 00:44:03,440 |
|
ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู |
|
|
|
407 |
|
00:44:03,440 --> 00:44:03,500 |
|
ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู |
|
|
|
408 |
|
00:44:03,500 --> 00:44:08,840 |
|
ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู |
|
|
|
409 |
|
00:44:08,840 --> 00:44:08,920 |
|
ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู |
|
|
|
410 |
|
00:44:08,920 --> 00:44:10,740 |
|
ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู |
|
|
|
411 |
|
00:44:10,740 --> 00:44:14,560 |
|
ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู ู
ู |
|
|
|
412 |
|
00:44:14,560 --> 00:44:15,840 |
|
ู
ู ู
ู ู
ู |
|
|
|
413 |
|
00:44:36,070 --> 00:44:43,020 |
|
ุงูููุทุฉ ุงูุซุงููุฉ ุจุฏุงูุฉ ูุงุฎุฏ let ุนุดุงู ูุงุฎุฏ ุงูู a ููููู |
|
|
|
414 |
|
00:44:43,020 --> 00:44:51,400 |
|
x y ูุช ุงูู x y ู
ูุฌูุฏ ูู ุงูู centralizer ูู a then ุงูู |
|
|
|
415 |
|
00:44:51,400 --> 00:45:02,980 |
|
x a ุจุฏู ูุณุงูู ุงูู a x and ุงูู y a ุจุฏู ูุณุงูู ุงูู a y ุงูุด |
|
|
|
416 |
|
00:45:02,980 --> 00:45:09,100 |
|
ุจุฏูุง ูุซุจุชุ ุจูุซุจุช ุฃู ุงูู xy inverse ู
ูุฌูุฏ ูู |
|
|
|
417 |
|
00:45:09,100 --> 00:45:14,360 |
|
ุงูู centralizer ูุฅููุ ูุนูู ุจูุซุจุช ุฃู ุงูู xy inverse a |
|
|
|
418 |
|
00:45:14,360 --> 00:45:20,360 |
|
ุจุฏู ูุณุงูู ุงูู axy inverse ูุจูู ูุฑุถูุง ูุฏูู ุงูุงุซููู |
|
|
|
419 |
|
00:45:20,360 --> 00:45:30,020 |
|
ุจูุณุงููุง ุจุนุถ ูุจูู now ูู ุฃุฌู ุฃุฎุฏุช ุงูู ya ุจุฏู ูุณุงูู |
|
|
|
420 |
|
00:45:30,020 --> 00:45:37,890 |
|
ุงูู ay ูุฐุง ุจุฏู ูุนุทููุง ุดุฑุงูู ุจุฏู ุฃุถุฑุจ ูู ุงูู y inverse |
|
|
|
421 |
|
00:45:37,890 --> 00:45:44,690 |
|
ู
ู ุฌูุฉ ุงููู
ูู ูุจูู ุจูุตูุฑ y a y inverse ูุณุงูู ูุฏุงุด |
|
|
|
422 |
|
00:45:44,690 --> 00:45:50,210 |
|
ูุณุงูู ุงูู a ุจุฏู ุฃุถุฑุจ ูู y inverse ู
ู ุฌูุฉ ุงููุณุงุฑ |
|
|
|
423 |
|
00:45:50,210 --> 00:45:56,310 |
|
ูุจูู ูู ุถุฑุจุช ู
ู ุฌูุฉ ุงููุณุงุฑ ุจูุธู a y inverse ุชุณุงูู |
|
|
|
424 |
|
00:45:56,310 --> 00:46:03,130 |
|
y inverse ูู a ูุจูู ุงูุด ู
ุนูู ูุฐุง ุงูููุงู
ุฃู ุงูู y |
|
|
|
425 |
|
00:46:03,130 --> 00:46:09,370 |
|
inverse ู
ูุฌูุฏ ูู ุงูู centralizer ูุฅูู ูุฐุง ู
ุนูุงู ุฃู |
|
|
|
426 |
|
00:46:09,370 --> 00:46:14,450 |
|
ุงูู y inverse ู
ูุฌูุฏ ูู ุงูู centralizer ูุฅูู ูุจูู |
|
|
|
427 |
|
00:46:14,450 --> 00:46:20,870 |
|
ุจูุงุก ุนููู ุงูู element y ู
ูุฌูุฏ ูู ุงูู centralizer |
|
|
|
428 |
|
00:46:20,870 --> 00:46:27,030 |
|
ูุฅูู ุฅุฐุง ู
ุนููุณู ูููู ูุฐูู ู
ูุฌูุฏ ูู ุงูู centralizer |
|
|
|
429 |
|
00:46:27,030 --> 00:46:31,110 |
|
ูุฅูู ูุฐุง ู
ุนูุงุชู ุฃู y inverse ู
ูุฌูุฏ ูู ุงูู |
|
|
|
430 |
|
00:46:31,110 --> 00:46:37,710 |
|
centralizer ูุฅูู ูุงุนุชุจุฑ ููุฐู ุงูููู
ููุฉ ุงูููุทุฉ ุงูุฃููู |
|
|
|
431 |
|
00:46:37,710 --> 00:46:45,670 |
|
ูุจูู ููุชุจ ุงูููู
ุฉ ุงููู ููููุงูุง ูุจูู this means that |
|
|
|
432 |
|
00:46:45,670 --> 00:46:52,710 |
|
ูุฐุง ูุนูู ุฃู if ุงูู y ู
ูุฌูุฏ ูู ุงูู centralizer ูู a |
|
|
|
433 |
|
00:46:52,710 --> 00:47:03,380 |
|
then ุงูู Y ู
ูุฌูุฏ ูู ุงูู Centralizer ูู |
|
|
|
434 |
|
00:47:03,380 --> 00:47:10,880 |
|
A ุซู
ุงูู Y Inverse ุซู
ุฃู ุงูู Y ู
ูุฌูุฏุฉ ูู ุงูู |
|
|
|
435 |
|
00:47:10,880 --> 00:47:17,780 |
|
Centralizer ูู A Inverse ูุง ูุง ุงูู Y Inverse |
|
|
|
436 |
|
00:47:17,780 --> 00:47:24,550 |
|
ู
ูุฌูุฏุฉ ูู ุงูู Centralizer ูู A ุชู
ุงู
ุงูุขู ูู ุฌูุช |
|
|
|
437 |
|
00:47:24,550 --> 00:47:39,110 |
|
ููุช ูู consider ุฎุฏ ูู ุงููู ูู ุงูู X Y inverse A ูุฐุง |
|
|
|
438 |
|
00:47:39,110 --> 00:47:45,310 |
|
ุงูููุงู
ุจุฏู ูุณุงูู ุฅุฐุง ูุฏุฑุช ุฃุซุจุช ุฃู ุงูู x y inverse a |
|
|
|
439 |
|
00:47:45,310 --> 00:47:52,290 |
|
ุจูููู a x y inverse ุจูุชู
ุงูู
ุทููุจ ูุจูู ูุฐุง x y |
|
|
|
440 |
|
00:47:52,290 --> 00:47:58,010 |
|
inverse ุงูู a ุจูุฏุฑ ุฃูุชุจูุง a inverse inverse ูุจูู |
|
|
|
441 |
|
00:47:58,010 --> 00:48:07,470 |
|
ูุฐุง ุงูููุงู
ุจูููู x ูููุง a inverse y ุงููู inverse |
|
|
|
442 |
|
00:48:07,470 --> 00:48:09,510 |
|
ู
ุธุจูุท |
|
|
|
443 |
|
00:48:10,530 --> 00:48:16,310 |
|
ูุนูู ุฌู
ุนุช ููุง ุงูู inverse inverse ุฑุฌุนุชูู
ูุฃุตููู
|
|
|
|
444 |
|
00:48:16,310 --> 00:48:24,110 |
|
ูุงุญุฏุฉ ุจุงูุดูู ููุง ุงูุขู ุฃูุง ุนูุฏู ููุง a inverse |
|
|
|
445 |
|
00:48:24,110 --> 00:48:30,990 |
|
ู
ูุชูุจุฉ ุงู ุณูุฉ ุณูุฉ ุดููุฉ ุงูุด ุงููู ุณููุชูุงุ a inverse y |
|
|
|
446 |
|
00:48:30,990 --> 00:48:34,990 |
|
ุทูุจ ููุง ููุช ุฏู ุงุณู
ุงูุงููุชุฑูู ู
ูุฌูุฏ ูู ุงูู |
|
|
|
447 |
|
00:48:34,990 --> 00:48:38,910 |
|
centralizer then y inverse ู
ูุฌูุฏ |
|
|
|
448 |
|
00:48:45,110 --> 00:48:56,690 |
|
ูููุ ุจุฏู ูุงุญุฏ ุจุณ ูุญููุ ูุงุญุฏ ูุญูู ุจููุ ุงููุ ุงูุ |
|
|
|
449 |
|
00:48:56,690 --> 00:49:00,850 |
|
ูุนูู ูููุ ุจุฑุถู ู
ุธุจูุทุ ู
ู
ูู ูุงุฎุฏ x,y ูู
ู
ูู ูุงุฎุฏ x,y |
|
|
|
450 |
|
00:49:00,850 --> 00:49:04,090 |
|
inverse ู
ุฑุฉ ูุงุญุฏุ ุนุดูุชููุ ูุง ูุงุณ ุถุฑูุฑุฉุ ู
ู
ูู |
|
|
|
451 |
|
00:49:04,090 --> 00:49:06,770 |
|
ุงุณุชููุฏ ู
ู ูุฐูุ ุฃู ุงูู A |
|
|
|
452 |
|
00:49:17,330 --> 00:49:22,150 |
|
ุนูู ุฃู ุญุงู ุจููู
ู ุงูู
ุฑุฉ ุงููุงุฏู
ุฉ ุฅู ุดุงุก ุงููู |
|
|