|
1 |
|
00:00:20,690 --> 00:00:24,770 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุนูุฏูุง ุนูู ุงูุจุฏุก ูู ุงูู
ุญุงุถุฑุงุช ูู |
|
|
|
2 |
|
00:00:24,770 --> 00:00:29,010 |
|
ุงููุชุฑุฉ ุงูุตุจุงุญูุฉ ูุชุจูุง ูุธุฑูุฉ ุนุจุงุฑุฉ ุนู ุณุช ููุงุท |
|
|
|
3 |
|
00:00:29,010 --> 00:00:33,450 |
|
ููุทุชูู ูุงูุชุง ู
ุจุฑููุงุชูู ุณุงุจูุง ูู ู
ูุถูุน ุงู isomorphism |
|
|
|
4 |
|
00:00:33,450 --> 00:00:38,870 |
|
ู
ุจุฑูููุง ููุทุชูู ููุฐู ูู ุงูููุทุฉ ุงูุฎุงู
ุณุฉ ูุจูู ุงูููุทุฉ |
|
|
|
5 |
|
00:00:38,870 --> 00:00:42,430 |
|
ุงูุฎุงู
ุณุฉ ุจุชููู ุฅูู phi of a ุจุฏู ูุณุงูู phi of b if |
|
|
|
6 |
|
00:00:42,430 --> 00:00:46,990 |
|
and only if ุงู a ูู ุงู kernel ุจุฏู ูุณุงูู ุงู b ูู ุงู |
|
|
|
7 |
|
00:00:46,990 --> 00:00:52,660 |
|
kernel ูุจูู ุจุฏูุง ูุจุฑูู ุตุญุฉ ูุฐู ุงูููุทุฉ ูุจุงุฌู ุจููู ูู |
|
|
|
8 |
|
00:00:52,660 --> 00:00:59,340 |
|
ุงู proof ูู ูุงู ุงู phi of a ุจุฏู ูุณุงูู ุงู phi of b |
|
|
|
9 |
|
00:00:59,340 --> 00:01:06,210 |
|
ูุฐุง ุงูููุงู
ุตุญูุญ if and only if ูู ุถุฑุจูุง ูู ุงูู
ุนููุณ |
|
|
|
10 |
|
00:01:06,210 --> 00:01:11,990 |
|
ุชุจุนูุง ู
ู ุฌูุฉ ุงูุดู
ุงู ุจูููู ู
ููุ ุจูููู phi of b |
|
|
|
11 |
|
00:01:11,990 --> 00:01:18,190 |
|
ููู inverse ูู phi of a ุจุฏู ูุณุงูู ุงู identity |
|
|
|
12 |
|
00:01:18,190 --> 00:01:25,690 |
|
element ุชุจุน ู
ูุ ุชุจุน ุงููG bar ูุฃู phi of a ููู phi of b |
|
|
|
13 |
|
00:01:25,690 --> 00:01:32,440 |
|
ู
ูุฌูุฏุฉ ุชุงุชููู ูู ุงููG bar ุงูููุงู
ูุฐุง ุตุญูุญ if and |
|
|
|
14 |
|
00:01:32,440 --> 00:01:48,720 |
|
only if ุงูููุงู
|
|
|
|
15 |
|
00:01:48,720 --> 00:01:53,570 |
|
ูุฐุง ุตุญูุญ if and only if ุงูู Phi ุฃูู ู
ุง ุฃุฎุฐูุงูุง ูู |
|
|
|
16 |
|
00:01:53,570 --> 00:02:03,110 |
|
Homomorphismุ ุฅุฐุง phi of b inverse a ุจุฏู |
|
|
|
17 |
|
00:02:03,110 --> 00:02:08,650 |
|
ุณุจุจ ู
ู ุงูู Identity Element ุชุจุน ุงูู Gยฏ ุฅูุด ุชูุณูุฑู |
|
|
|
18 |
|
00:02:08,650 --> 00:02:13,810 |
|
ููุฐู ุงูุนุจุงุฑุฉ phi ูู
ุง ุฃุซุฑุช ุนูู element ุฃุนุทุชูู ุงู |
|
|
|
19 |
|
00:02:13,810 --> 00:02:17,510 |
|
identity element ูุจูู ูุฐุง ุงู element ููู ู
ูุฌูุฏุ ุงู |
|
|
|
20 |
|
00:02:17,510 --> 00:02:22,950 |
|
kernel ูุจูู ูุฐุง .. ูุงููู ูุฐุง ู
ุนูุงุชู if and only if |
|
|
|
21 |
|
00:02:22,950 --> 00:02:28,770 |
|
ููู ู
ุงุดููู ุจ if and only if ุงู b inverse a ู
ูุฌูุฏ |
|
|
|
22 |
|
00:02:28,770 --> 00:02:35,190 |
|
ูู ุงู kernel ูููphi ู
ุนููู ูุฐุง ุงูููุงู
ุฃู ุงููb inverse |
|
|
|
23 |
|
00:02:35,190 --> 00:02:41,030 |
|
a ูู ุงููkernel ูููphi ุจุฏู ูุณุงูู ุงููkernel ูููphi |
|
|
|
24 |
|
00:02:41,030 --> 00:02:46,350 |
|
itself ูู ุถุฑุจูุง ุงูุทุฑููู ูู ุงููb ู
ู ุฌูุชู ุงูุดู
ุงู |
|
|
|
25 |
|
00:02:46,350 --> 00:02:50,650 |
|
ูุจูู ุจุตูุฑ if and only if ุงููa ูู ุงูkernel ูููphi |
|
|
|
26 |
|
00:02:50,650 --> 00:02:56,130 |
|
ุจุฏู ูุณุงูู b ูู ุงูkernel ูููphi ุฃุธู ููู ุงูู
ุทููุจ |
|
|
|
27 |
|
00:02:56,130 --> 00:03:05,820 |
|
ุงูููุทุฉ ุงูุณุงุฏุณุฉ ุงูููุทุฉ ุงูุณุงุฏุณุฉ ุจุชููู ู
ุง ูุฃุชู ูู ูุงู |
|
|
|
28 |
|
00:03:05,820 --> 00:03:12,220 |
|
ุงูู phi of g ุจุฏู ูุณุงูู ุงูู g prime ุงู phi of g ุจุฏู |
|
|
|
29 |
|
00:03:12,220 --> 00:03:20,470 |
|
ูุณุงูู ุงู g prime ุงููphi inverse of g' ุจุฏู ูุณุงูู ุงููg |
|
|
|
30 |
|
00:03:20,470 --> 00:03:24,430 |
|
ูู ุงููKernel ูููphi ูุฑุงุญ ุงูู
ุนุฑูุฉ ูุฐู ูู ุงููx ุงููู |
|
|
|
31 |
|
00:03:24,430 --> 00:03:27,750 |
|
ู
ูุฌูุฏุฉ ูู g ุจูุญูุท ุงููphi of x ุจุฏู ูุณุงูู ู
ููุ ุจุฏู |
|
|
|
32 |
|
00:03:27,750 --> 00:03:33,490 |
|
ูุณุงูู g' ุจุฏูุง ูุฑูุญ ูุซุจุช ุตุญุฉ ูุฐุง ุงูููุงู
ุงูููุทุฉ ูุฐู |
|
|
|
33 |
|
00:03:33,490 --> 00:03:38,030 |
|
ุชุนุงู ูุดูู ุฅูุด ู
ูููู
ูุง ูุจู ู
ุง ูุจุฑูู ุจุฏูุง ูููู
ู
ุง |
|
|
|
34 |
|
00:03:38,030 --> 00:03:42,770 |
|
ูู ู
ูุถูุน ูุฐู ุงูููุทุฉ ุดูู ูุง ุณูุฏู ุฅุญูุง ุนูุฏูุง phi ู
ู |
|
|
|
35 |
|
00:03:42,770 --> 00:03:48,150 |
|
ุงู group g ุฅูู ุงู group g bar ุชู
ุงู
ูุงู ูู phi of g |
|
|
|
36 |
|
00:03:48,150 --> 00:03:52,200 |
|
ุจุฏู ูุณุงูู g prime ูููู ูู g prime ููู ู
ูุฌูุฏุฉุ ูู ุงููg |
|
|
|
37 |
|
00:03:52,200 --> 00:03:56,840 |
|
bar ูุงููg ูุฐู ู
ูุฌูุฏุฉ ูู ุงููg ุทูุจ ูููุณ ุฅุฐุง ูุฐู |
|
|
|
38 |
|
00:03:56,840 --> 00:04:02,140 |
|
ู
ุนููู
ุฉ ุงูุขู ุฅูุด ุจููู ูู ุจููุ ุจุฏู ูููู ุงููphi inverse |
|
|
|
39 |
|
00:04:02,140 --> 00:04:07,960 |
|
ูููg prime ุชุณุงูู g ู
ุถุฑูุจุฉ ูู ุงู kernel ูุนูู ูู
ุง ูุฃุฎุฐ phi |
|
|
|
40 |
|
00:04:07,960 --> 00:04:11,260 |
|
inverse ููุทุฑููู ู
ุด ูุฑูุญ ุฃููู phi inverse of g |
|
|
|
41 |
|
00:04:11,260 --> 00:04:16,930 |
|
prime ุชุณุงูู g ููุดุ ููุดุ ูุฃููุง ูุงูุช one to one ุตุญูุญ ูุฐุง |
|
|
|
42 |
|
00:04:16,930 --> 00:04:20,250 |
|
ููุณ isomorphismุ ุฅู ูุคูุงุก ุนุจุงุฑุฉ ุนู ู
ุฌู
ูุนุฉ ู
ู |
|
|
|
43 |
|
00:04:20,250 --> 00:04:24,690 |
|
ุงูููุงุท ุตูุฑุชูู
ุงููIdentity. ุฅุฐู ุนูุฏู
ุง ุฃุฏุฎู ููุนูุณุ |
|
|
|
44 |
|
00:04:24,690 --> 00:04:28,170 |
|
ูุฅู ุงููphi inverse ููุฐุง ุงูุนูู
ุณูููู ู
ุฌู
ูุนุฉ ู
ู |
|
|
|
45 |
|
00:04:28,170 --> 00:04:33,490 |
|
ุงูููุงุท ูููุณ ููุทุฉ ูุงุญุฏุฉ. ููุฐุง ู
ุง ุณูุซุจุชู ุจุนุฏ ูููู ูู |
|
|
|
46 |
|
00:04:33,490 --> 00:04:38,420 |
|
ุงููุธุฑูุฉ ุงููุงุฏู
ุฉ. ูุจูู phi inverse g prime ูุจูู ู
ูู |
|
|
|
47 |
|
00:04:38,420 --> 00:04:41,680 |
|
ูุณุงูู g ูู ุงู kernel ุงููู ูู ูุฐุง ุงููู ุนุงูุฒูู ุฅู ุชุจุฏู |
|
|
|
48 |
|
00:04:41,680 --> 00:04:45,340 |
|
ูุฏูู two sets are equal ูุจูู ุจุฏู ุงุฑูุญ ุฃุฃุฎุฐ element |
|
|
|
49 |
|
00:04:45,340 --> 00:04:48,800 |
|
ููุง ุฃุซุจุช ุฅูู ู
ูุฌูุฏ ููุง ูุฃุนู
ู ุงูุฃุนู
ุงู ุงูุนูุณูุฉ ุขุฎุฐ |
|
|
|
50 |
|
00:04:48,800 --> 00:04:52,840 |
|
element ููุง ูุฃุซุจุช ุฅูู ู
ูุฌูุฏ ููุง ูุจูู ู
ุดุงู ููู |
|
|
|
51 |
|
00:04:52,840 --> 00:04:59,900 |
|
ุจุงุฌู ุฃููู ูู let ุงู x ู
ูุฌูุฏุฉ ูู phi inverse g prime |
|
|
|
52 |
|
00:05:01,340 --> 00:05:09,260 |
|
ุทุจุนุง ูุจูู ูู ุฃุซุฑุช ุจู
ููุ ุจ phi ุนูู ุงูุทุฑููู ุจุตูุฑ phi |
|
|
|
53 |
|
00:05:09,260 --> 00:05:17,880 |
|
of x ุจุฏูุง ุชุณุงูู g prime ุทูุจ ูุฐุง ู
ุนูุงู ุฅูู phi of x |
|
|
|
54 |
|
00:05:17,880 --> 00:05:24,500 |
|
ูุณุงูู ุฃุธู g prime ู
ูุงุทุนู ู
ุง ุฃูุฏุฑุด ุจ phi of g ูุจูู ูุฐุง |
|
|
|
55 |
|
00:05:24,500 --> 00:05:31,090 |
|
phi of g ุจุงูุดูู ุงููู ุนูุฏูุง ููุง ุทูุจ ูู ุฑุญุช ู
ู ูุฐุง |
|
|
|
56 |
|
00:05:31,090 --> 00:05:37,250 |
|
ุงูููุงู
ุถุฑุจุช ุงูุทุฑููู ูู ู
ุนููุณ ูุฐุง ุงู element ูุจูู |
|
|
|
57 |
|
00:05:37,250 --> 00:05:45,810 |
|
ุจุฏู ูุตูุฑ phi of g ุงููู inverse ูู ุงู |
|
|
|
58 |
|
00:05:45,810 --> 00:05:50,290 |
|
phi of x ุจุฏู ูุณุงูู ุงูุทุฑู ุงููู
ูู ุงููู ูู ุงู |
|
|
|
59 |
|
00:05:50,290 --> 00:05:56,610 |
|
identity element ุชุจุน g bar ุชุจุน ุงู g ุจุนุถู ุจููุณ ุงูู
ูููู
|
|
|
|
60 |
|
00:05:56,610 --> 00:06:02,810 |
|
ูุฐุง ุฅูุด ู
ุนูุงูุ ู
ุนูุงู ุฅูู phi of g inverse ูู phi |
|
|
|
61 |
|
00:06:02,810 --> 00:06:08,310 |
|
of x ุจุฏู ูุณุงูู ุงู identity element ุชุจุน ุงู g bar ุฃู |
|
|
|
62 |
|
00:06:08,310 --> 00:06:15,250 |
|
ุฅู ุดุฆุชู
ูููููุง phi of g inverse x ุจุฏู ูุณุงูู ุงู |
|
|
|
63 |
|
00:06:15,250 --> 00:06:20,470 |
|
identity element ุชุจุน ุงู g bar ู
ุนูู ูุฐุง ุงูููุงู
ุฃู |
|
|
|
64 |
|
00:06:20,470 --> 00:06:24,690 |
|
ูุฐุง ุงู element ุจูู ุงูููุณูู ููู ู
ูุฌูุฏุ ูู ุงู kernel |
|
|
|
65 |
|
00:06:24,690 --> 00:06:29,690 |
|
ูุฃูู ุตูุฑุชู ุงู identity ูุจูู ุจุฏู ูุตูุฑ g inverse x |
|
|
|
66 |
|
00:06:29,690 --> 00:06:36,490 |
|
ู
ูุฌูุฏ ูู ุงู kernel ูููphi ุทุจ ูู ุถุฑุจุช ุงูุทุฑููู ูู g |
|
|
|
67 |
|
00:06:36,490 --> 00:06:42,130 |
|
ู
ู ุฌูุฉ ุงูุดู
ุงู ูุจูู ุจุธู x ู
ูุฌูุฏ ูู ุงู g ูู |
|
|
|
68 |
|
00:06:42,130 --> 00:06:48,480 |
|
ุงู kernel ูููphi ูุจูู ุฃูุง ุฃุฎุฐุช x ู
ูุฌูุฏ ูู ุงู phi |
|
|
|
69 |
|
00:06:48,480 --> 00:06:53,940 |
|
inverse ูููg' ูููุชู ู
ูุฌูุฏ ูููุ ูู g ูู ุงู kernel |
|
|
|
70 |
|
00:06:53,940 --> 00:07:00,020 |
|
ู
ุนูุงุชู ุงูุณุช ุงูุฃููุงููุฉ subset ู
ู ุงูุณุช ุงูุซุงููุฉ ูุจูู |
|
|
|
71 |
|
00:07:00,020 --> 00:07:08,060 |
|
ููุง phi inverse of g' subset ู
ู ู
ููุ ู
ู ุงู g ูู |
|
|
|
72 |
|
00:07:08,060 --> 00:07:13,580 |
|
ุงู kernel ูููphi ุงุนุชุจุฑ ูุฐู ูู ุงูููุทุฉ ุงูุฃููู ุจุงูุฏุฑุฌุฉ |
|
|
|
73 |
|
00:07:13,580 --> 00:07:21,300 |
|
ููููุทุฉ ุงูุซุงููุฉ on the other hand ุจุงูุฏุฑุฌุฉ |
|
|
|
74 |
|
00:07:21,300 --> 00:07:28,940 |
|
ูุฃุฎุฐ x ู
ูุฌูุฏุฉ ูู ุงู g ูู ุงู kernel ูููphi ุฎุฐ ูู x |
|
|
|
75 |
|
00:07:28,940 --> 00:07:35,380 |
|
ู
ูุฌูุฏุฉ ูู ุงู g ูู ุงู kernel ูููphi ุฅุฐุง ููุช ุฃุซุจุช ุฅู |
|
|
|
76 |
|
00:07:35,380 --> 00:07:39,700 |
|
ุงู x ูุฐู ู
ูุฌูุฏุฉ ููุง ุจูููู ุชู
ุงูู
ุทููุจ ูููู ุงูุชูููุง |
|
|
|
77 |
|
00:07:39,700 --> 00:07:45,600 |
|
ู
ู ุงูู
ุณุฃูุฉ ุงููู ุนูุฏูุง ูุจูู then ุงู x ูุฐู ูุง ุดุจุงุจ |
|
|
|
78 |
|
00:07:45,600 --> 00:07:51,200 |
|
ุจูุฏุฑ ุฃููู ูู ุงู g ู
ุถุฑูุจุฉ ูู element ู
ู ู
ููุ ู
ู |
|
|
|
79 |
|
00:07:51,200 --> 00:07:59,080 |
|
ุงู kernel ุชุจุน ุงููphi ููููู ุงููู ูู k ูุจูู x ุจุฏุฃุช |
|
|
|
80 |
|
00:07:59,080 --> 00:08:09,660 |
|
ุชุณุงูู gk for some for some k ุงููู ู
ูุฌูุฏุฉ ูู ุงู kernel |
|
|
|
81 |
|
00:08:09,660 --> 00:08:17,100 |
|
ู phi ุทูุจ ุดู ุฑุฃูู ุฃุซุฑ ุนูู ุงูุชูุชูู ุจ phi ูุจูู ุฅูุด ุจุฏู |
|
|
|
82 |
|
00:08:17,100 --> 00:08:25,960 |
|
ูุตูุฑุ ุจุฏู ูุตูุฑ phi of x ุจุฏู ูุณุงูู phi of g ูู phi of k ูุนูู |
|
|
|
83 |
|
00:08:25,960 --> 00:08:32,540 |
|
ู
ุนูู ูุฐุง ุงูููุงู
ุฅูู phi of x ุจุฏู ูุณุงูู phi of g ูู |
|
|
|
84 |
|
00:08:32,540 --> 00:08:42,240 |
|
phi of .. ุงููู ูู small k ูุฐุง ุงูููุงู
ูุณุงูู ุฃู ูุฐุง |
|
|
|
85 |
|
00:08:42,240 --> 00:08:49,680 |
|
ุจุฏู ูุนุทููุง ุงูุทุฑู ุงูุดู
ุงู phi of x ุงูุทุฑู ุงููู
ูู phi |
|
|
|
86 |
|
00:08:49,680 --> 00:08:55,860 |
|
of g ูุฏู ู
ุนุทู ู
ู ุฑุฃุณ ุงูู
ุณุฃูุฉุ g prime ูุจูู |
|
|
|
87 |
|
00:08:55,860 --> 00:09:04,900 |
|
ูุฐุง phi of g ุจุฏู ูุณุงูู g prime ุทูุจ phi of k ูุฏู ุฅูุดุ |
|
|
|
88 |
|
00:09:04,900 --> 00:09:10,080 |
|
ุทูุน ููู ููุงุ ุฅุญูุง ุฌุจูุงูุง ู
ู ููู ุงู k ูุฐุงุ ู
ูุฌูุฏุฉ |
|
|
|
89 |
|
00:09:10,080 --> 00:09:13,200 |
|
ูู ุงู kernel for some k ุงูู
ูุฌูุฏุฉ ูู ุงู kernel |
|
|
|
90 |
|
00:09:13,200 --> 00:09:18,880 |
|
ูุจูู phi of k ุจูุฏ ุฅูุดุ ุจุงู identity ูุจูู ูุฐุง ุจุงู |
|
|
|
91 |
|
00:09:18,880 --> 00:09:27,880 |
|
identity ุชุจุน ุงู g bar ููุดุ since ุงููู ูู ุงู k ูุฐู |
|
|
|
92 |
|
00:09:27,880 --> 00:09:33,300 |
|
ู
ูุฌูุฏุฉ ูู ุงู kernel ูููphi ุงููุธุฑ ุงููู ู
ูุฌูุฏุฉ ููุง |
|
|
|
93 |
|
00:09:33,300 --> 00:09:39,400 |
|
ุจุชุนุทููุง ุงู identity element ูุจูู ููุง ุงูุณุงุนุฉ ุงู |
|
|
|
94 |
|
00:09:39,400 --> 00:09:45,860 |
|
phi of x ุจุฏู ูุณุงูู ู
ู ุงู g' ููุดุ ุฅู ุงู g' ู
ูุฌูุฏุฉ |
|
|
|
95 |
|
00:09:45,860 --> 00:09:50,380 |
|
ูู g' ูุงู identity ูู ุชุจุน ุงู g' ูุจูู ุญุงุตู ุงูุถุฑุจ |
|
|
|
96 |
|
00:09:50,380 --> 00:09:58,050 |
|
ุจูุนุทููุง ู
ู g' ูุจูู ู
ุนูู ูุฐุง ุงูููุงู
ุฅู ุงู x ุจุชููู |
|
|
|
97 |
|
00:09:58,050 --> 00:10:06,270 |
|
ู
ูุฌูุฏุฉ ูู ุงู phi inverse of g' ูุงุญุธ ู
ุง ูุฃุชู ุฅูุด |
|
|
|
98 |
|
00:10:06,270 --> 00:10:11,070 |
|
ูุชุจุช ุฃูุง ุงูุณุทุฑ ุงูุฃุฎูุฑ ุฃูุง ูุตูุช ูุบุงูุฉ ููุง phi of x |
|
|
|
99 |
|
00:10:11,070 --> 00:10:15,470 |
|
ุจุฏู ูุณุงูู g' ูู ุงู identity ูุจูู phi of x ุจุฏู |
|
|
|
100 |
|
00:10:15,470 --> 00:10:22,230 |
|
ูุณุงูู g' ุฅูุด ุฑุญุช ูุชุจุชูุ ูุจูู ุงู x ู
ุง ูุชุจุชุด ุชุณุงูู ูู |
|
|
|
101 |
|
00:10:22,230 --> 00:10:27,490 |
|
inverse of g' ูุชุจุช ุงู x ู
ูุฌูุฏุฉ ูู ุงู phi inverse of g' |
|
|
|
102 |
|
00:10:27,890 --> 00:10:33,270 |
|
ููุดุ ุฅู ุงู phi inverse of g' ุนุฏุฉ ููุงุท ู
ุด ููุทุฉ ูุงุญุฏุฉ ูู |
|
|
|
103 |
|
00:10:33,270 --> 00:10:39,650 |
|
ูุงูุช ููุทุฉ ูุงุญุฏุฉ ููุชุจุช ุฅูุดุ ููุชุจุช ุงููุณุงูู ุชู
ุงู
ุฅุฐุง x |
|
|
|
104 |
|
00:10:41,450 --> 00:10:43,270 |
|
ู
ุงุดู ููู ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช |
|
|
|
105 |
|
00:10:43,270 --> 00:10:44,270 |
|
ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช |
|
|
|
106 |
|
00:10:44,270 --> 00:10:44,630 |
|
ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช |
|
|
|
107 |
|
00:10:44,630 --> 00:10:45,630 |
|
ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช |
|
|
|
108 |
|
00:10:45,630 --> 00:10:47,230 |
|
ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช |
|
|
|
109 |
|
00:10:47,230 --> 00:10:50,470 |
|
ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช ูุงูุช |
|
|
|
110 |
|
00:10:50,470 --> 00:10:54,770 |
|
ูุงูุช ูุงูุช ูุงูุช ูุงูุช |
|
|
|
111 |
|
00:11:02,630 --> 00:11:07,710 |
|
ุงููู ูู subset ู
ู ู
ููุ ู
ู ุงู phi inverse of g |
|
|
|
112 |
|
00:11:07,710 --> 00:11:12,990 |
|
prime ููุฐู ุงูุนูุงูุฉ ุฑูู
ุงุชููู ูุจูู ุจุงุฌู ุจููู from |
|
|
|
113 |
|
00:11:12,990 --> 00:11:23,810 |
|
ูุงุญุฏ and ุงุชููู we have ุฅู ุงู phi inverse of g |
|
|
|
114 |
|
00:11:23,810 --> 00:11:28,510 |
|
prime ุจุฏู ูุณุงูู g ูู ุงู kernel ูููphi |
|
|
|
115 |
|
00:11:34,710 --> 00:11:38,890 |
|
ูุนุทูู ู
ุซุงู ุชูุถูุญ ุนูู ุฐูู ูุฃู ูู ุฎูุตุช ุงููุธุฑูุฉ |
|
|
|
116 |
|
00:11:38,890 --> 00:11:44,870 |
|
example ุจููู |
|
|
|
117 |
|
00:11:44,870 --> 00:11:49,610 |
|
suppose that |
|
|
|
118 |
|
00:11:49,610 --> 00:12:01,130 |
|
ุงูุชุฑุถ ุฃู phi ู
ู z ุซูุงุซูู ุฅูู z ุซูุงุซูู A |
|
|
|
119 |
|
00:12:01,130 --> 00:12:07,730 |
|
homomorphism suppose that phi is a homomorphism |
|
|
|
120 |
|
00:12:07,730 --> 00:12:12,510 |
|
and ุงู kernel |
|
|
|
121 |
|
00:12:12,510 --> 00:12:22,390 |
|
ูููุงู ูู ุงูุนูุงุตุฑ zero ู ุนุดุฑุฉ ู ุนุดุฑูู ุจูููู ู f ุฅุฐุง |
|
|
|
122 |
|
00:12:22,390 --> 00:12:30,290 |
|
ูุงู ุงู phi ู 23 ูู ุนุจุงุฑุฉ ุนู 9 ุงูุณุคุงู ูู |
|
|
|
123 |
|
00:12:30,290 --> 00:12:33,990 |
|
determine |
|
|
|
124 |
|
00:12:33,990 --> 00:12:38,510 |
|
all |
|
|
|
125 |
|
00:12:41,760 --> 00:12:51,300 |
|
elements that map maps to ุชุณุนุฉ ูู ุงู elements ุงููู |
|
|
|
126 |
|
00:12:51,300 --> 00:13:02,040 |
|
ูู
maps to ุชุณุนุฉ ุงูุณุคุงู |
|
|
|
127 |
|
00:13:02,040 --> 00:13:06,480 |
|
ู
ุฑุฉ ุชุงููุฉ ูููุง ุงูููุงู ู
ู Z 30 ู Z 30 |
|
|
|
128 |
|
00:13:06,480 --> 00:13:10,870 |
|
homomorphism ููุฐุง ุญุณุจูุง ูู ููุฑู ุงููู ุฌููุง ููุฑูู |
|
|
|
129 |
|
00:13:10,870 --> 00:13:16,190 |
|
zero ูุนุดุฑุฉ ูุนุดุฑูู ูุฐู ู
ุนููู
ุฉ ูุฒูุงุฏุฉ ุนูู ุฐูู five |
|
|
|
130 |
|
00:13:16,190 --> 00:13:20,590 |
|
of ุชูุงุชุฉ ูุนุดุฑูู ูุณุงูู ุชุณุนุฉ ูุงู ูู ูุงุชูู ูู ุงู |
|
|
|
131 |
|
00:13:20,590 --> 00:13:25,250 |
|
elements ุงููู maps to ุชุณุนุฉ ูุนูู ุจุฏู ูู ุงูุนูุงุตุฑ |
|
|
|
132 |
|
00:13:25,250 --> 00:13:29,810 |
|
ุงููู ูู ุฒุฏ ุชูุงุชูู ูุงููู ุตุงุฑุชูู
ุจุชููู ู
ุงู ุชุณุนุฉ ูุนูู |
|
|
|
133 |
|
00:13:29,810 --> 00:13:33,750 |
|
ู
ุด ุน ุฌุฏ ุชูุงุชุฉ ูุนุดุฑูู ูุจูู ุจุงูู ุงู elements ุงููู |
|
|
|
134 |
|
00:13:33,750 --> 00:13:39,990 |
|
ูุตุฑุชูู
ุจุชููู ุชุณุนุฉ ุชุทูุนูู ูู ุงูููุทุฉ ุงูุฃุฎูุฑุฉ ุฑูู
ุณุชุฉ |
|
|
|
135 |
|
00:13:39,990 --> 00:13:45,270 |
|
ูุฎูููุง ูู ุฏู
ุงุบู ุฃูุง ุนูุฏู ูู of G ูุณุงูู G prime ูุฃูู |
|
|
|
136 |
|
00:13:45,270 --> 00:13:50,030 |
|
G ูุฐู main ุชูุงุชุฉ ูุนุดุฑูู ูุงู G prime ูู main ุงูุชุณุนุฉ |
|
|
|
137 |
|
00:13:50,030 --> 00:13:55,510 |
|
ูุจูู ุงู ูู inverse of G prime ุจุฏู ูุณุงูู ุงู G ูู ุงู |
|
|
|
138 |
|
00:13:55,510 --> 00:14:00,750 |
|
kernel ูููู ูุจูู ุจูุงุก ุนููู ุฃูุง ุนูุฏู ูุงู of ุชูุงุชุฉ |
|
|
|
139 |
|
00:14:00,750 --> 00:14:07,250 |
|
ูุนุดุฑูู ูุณุงูู ุชุณุนุฉ ุดู ุฑุงูู ุขุฎุฐ ู
ุนููุณ ุงููุงู ููุทุฑููู |
|
|
|
140 |
|
00:14:07,250 --> 00:14:14,370 |
|
ูุจูู ุงูุด ุจุตูุฑ ุนูุฏู ุจุตูุฑ ุงููุงู inverse of ุชุณุนุฉ ุจุฏู |
|
|
|
141 |
|
00:14:14,370 --> 00:14:18,930 |
|
ูุณุงูู ุงู element ุงููู ุนูุฏูุง ุงููู ูู ุชูุงุชุฉ ูุนุดุฑูู |
|
|
|
142 |
|
00:14:18,930 --> 00:14:27,530 |
|
ูู ุงู kernel ูููุงูุชู
ุงู
ุ ููู ูู
ุง ูุงูุช ุงูุนู
ููุฉ ุนู
ููุฉ |
|
|
|
143 |
|
00:14:27,530 --> 00:14:31,890 |
|
ุฌุงู
ุนุฉ ุฅุฐุง ู
ุง ุจูุชุจุด ุชูุงุชุฉ ูุนุดุฑูู ู
ุถุฑูุจุฉ ูู ุงู |
|
|
|
144 |
|
00:14:31,890 --> 00:14:37,990 |
|
kernel ูุฅูู
ุง ุจูุชุจ ุชูุงุชุฉ ูุนุดุฑูู ุฒุงุฆุฏ ุงู kernel ูู
ูุ |
|
|
|
145 |
|
00:14:37,990 --> 00:14:44,890 |
|
ูู ูู ูุจูู ูุฐุง ุงูููุงู
ุจุฏุฑุณุงูู ุชูุงุชุฉ ูุนุดุฑูู ุฒุงุฆุฏ ุงู |
|
|
|
146 |
|
00:14:44,890 --> 00:14:53,110 |
|
kernel ูู ูู ูู ู
ูุฌูุฏ ููู ูุจูู zero ูุนุดุฑุฉ ูุนุดุฑูู ู
ุด |
|
|
|
147 |
|
00:14:53,110 --> 00:14:57,070 |
|
ุชุฑูุญ ุชููู ููุง ูุงูููุฑุณ ูุชุณุนุฉ ุงููุงูููุฑุณ ูุชุถุฑุน |
|
|
|
148 |
|
00:14:57,070 --> 00:14:57,650 |
|
ุงููุงูููุฑุณ ูุชุถุฑุน ุงููุงูููุฑุณ ุชุถุฑุน ุงููุงูููุฑุณ ุชุถุฑุน |
|
|
|
149 |
|
00:14:57,650 --> 00:14:57,950 |
|
ุงููุงูููุฑุณ ุชุถุฑุน ุงููุงูููุฑุณ ุชุถุฑุน ุงููุงูููุฑุณ ุชุถุฑุน |
|
|
|
150 |
|
00:14:57,950 --> 00:14:58,630 |
|
ุงููุงูููุฑุณ ุชุถุฑุน ุงููุงูููุฑุณ ุชุถุฑุน ุงููุงูููุฑุณ ุชุถุฑุน |
|
|
|
151 |
|
00:14:58,630 --> 00:14:59,010 |
|
ุงููุงูููุฑุณ ุชุถุฑุน ุงููุงูููุฑุณ ุชุถุฑุน ุงููุงูููุฑุณ ุชุถุฑุน |
|
|
|
152 |
|
00:14:59,010 --> 00:15:01,730 |
|
ุงููุงูููุฑุณ ุชุถุฑุน ุงููุงูููุฑุณ ุชุถุฑุน ุงููุงูููุฑุณ ุชุถุฑุน |
|
|
|
153 |
|
00:15:01,730 --> 00:15:07,210 |
|
ุงููุงูููุฑุณ ุชุถุฑุน ุงููุงูููุฑุณ ุชุถุฑุน ุงููุงูููุฑุณ ุชุถุฑุน |
|
|
|
154 |
|
00:15:07,210 --> 00:15:14,830 |
|
ุงููุงูููุฑุณ ุชุถุฑุน ุงููุงูููุฑุณ |
|
|
|
155 |
|
00:15:14,830 --> 00:15:18,880 |
|
ุชูู ุงูู
ุซู ูุฃู ุงู operation ุนู
ููุฉ ุฌู
ุน ูุฐุง ุงูููุงู
|
|
|
|
156 |
|
00:15:18,880 --> 00:15:22,460 |
|
ุจุฏู ูุณุงูู ุจุฏู ูุฌู
ุน ูู ุนูุตุฑ ู
ุน ูุธูุฑู ูุจูู ูุฐุง |
|
|
|
157 |
|
00:15:22,460 --> 00:15:27,460 |
|
ุชูุงุชุฉ ูุนุดุฑูู ุชูุงุชุฉ ูุนุดุฑูู ูุนุดุฑุฉ ุชูุงุชุฉ ูุชูุงุชูู ูู |
|
|
|
158 |
|
00:15:27,460 --> 00:15:32,980 |
|
ุฒุฏ ุชูุงุชูู ุจูุทูุน ุชูุงุชุฉ ูุชูุงุชูู ูุงุฑุจุนูู ูู ุฒู ุงูุชูุงุชูู |
|
|
|
159 |
|
00:15:32,980 --> 00:15:37,340 |
|
ุจูุทูุน ุชูุงุชุงุด ุจูุทูุน ุชูุงุชุงุด ุฅุฐุง ุงูุนูุงุตุฑ ูู ุตุฑุชูู
|
|
|
|
160 |
|
00:15:37,340 --> 00:15:42,140 |
|
ุชุณุนุฉ ูู ุชูุงุชุฉ ูุนุดุฑูู ููู ู
ุนุทุงุฉ ููุฐูู ูู of ุชูุงุชุฉ |
|
|
|
161 |
|
00:15:42,140 --> 00:15:46,160 |
|
ููู of ุชูุงุชุงุด ูู ุงููู ุจุชุณุงูููู
ูู ุงููู ุจุชุณุงูู ุชุณุนุฉ |
|
|
|
162 |
|
00:15:46,160 --> 00:15:52,240 |
|
ูุจูู ุฏูุฑ ุจุงูู ู
ู ูุฐู ุงูููุทุฉ ููุชูู ุงูุขู ุฅูู ุงููุธุฑูุฉ |
|
|
|
163 |
|
00:15:52,240 --> 00:15:56,480 |
|
ุงูุชุงููุฉ ูุจูู ุจุงูุฏุงุฌู ู theorem |
|
|
|
164 |
|
00:15:59,090 --> 00:16:07,770 |
|
ูุฐู ูุธุฑูุฉ ุจุชุชุญุฏุซ ุนู properties of |
|
|
|
165 |
|
00:16:07,770 --> 00:16:15,270 |
|
subgroups under |
|
|
|
166 |
|
00:16:15,270 --> 00:16:18,470 |
|
homomorphism |
|
|
|
167 |
|
00:16:27,200 --> 00:16:36,600 |
|
ุชูุต ุนูู ู
ูุงุชู ูุช ุงููุงู ุจ homomorphism |
|
|
|
168 |
|
00:16:36,600 --> 00:16:47,240 |
|
from a group g to a group g bar |
|
|
|
169 |
|
00:17:02,150 --> 00:17:10,650 |
|
ุงูููุทุฉ ุงูุฃููู ูุงู ุงู ุงุชุด ูุงุจุชู ุงุชุด ุงููู ูู ูู |
|
|
|
170 |
|
00:17:10,650 --> 00:17:19,080 |
|
ุงูุนูุงุตุฑ ูู ุงู ุงุชุด ุจุญูุซ ุงูุงุชุด ู
ูุฌูุฏุฉ ูู ุงูุงุชุด is a |
|
|
|
171 |
|
00:17:19,080 --> 00:17:24,240 |
|
subgroup ู
ู ุงูู G bar ูุจูู ูุฐู ุงู subgroup ู
ู ุงู G |
|
|
|
172 |
|
00:17:24,240 --> 00:17:34,120 |
|
bar ุงูููุทุฉ ุงูุซุงููุฉ ูู ูุงูุช ุงู H Cyclic F ุงู H is |
|
|
|
173 |
|
00:17:34,120 --> 00:17:43,340 |
|
Cyclic ูู ูุงูุช ุงู H Cyclic then Phi of H ุตูุฑุชูุง is |
|
|
|
174 |
|
00:17:43,340 --> 00:17:56,420 |
|
Cyclic ุงูููุทุฉ ุงูุชุงูุชุฉ ูู ูุงูุช ุงู h is abelian then |
|
|
|
175 |
|
00:17:56,420 --> 00:18:04,740 |
|
ูู five of h is abelian five of h is abelian |
|
|
|
176 |
|
00:18:04,740 --> 00:18:14,120 |
|
ุงูููุทุฉ ุงูุฑุงุจุนุฉ ูู ูุงูุช ุงูู H is a normal subgroup |
|
|
|
177 |
|
00:18:14,120 --> 00:18:25,200 |
|
ู
ู G then Phi of H is a normal subgroup ู
ู Phi of |
|
|
|
178 |
|
00:18:25,200 --> 00:18:28,620 |
|
G ุงูููุทุฉ |
|
|
|
179 |
|
00:18:28,620 --> 00:18:42,540 |
|
ุงูุฎุงู
ุณุฉ ุฅุฐุง ูุงูุช ุฃุนุถุงุก ููุฑูุงู ููุง ูู ูุฉ ุซู
ููุง ุซู
|
|
|
|
180 |
|
00:18:42,540 --> 00:18:56,080 |
|
ููุง ูู ูุฉ ุฅูู ูุงุญุฏุฉ ูุฉ ุฅูู ูุงุญุฏุฉ ู
ุงุจููุฌ ู
ู |
|
|
|
181 |
|
00:18:58,300 --> 00:19:10,500 |
|
from g to phi of g ุงูููุทุฉ |
|
|
|
182 |
|
00:19:10,500 --> 00:19:22,480 |
|
ุงูุณุงุฏุณุฉ ุจูููู if ุงู order ูู H ูุงู ูุณุงูู N then ุงู |
|
|
|
183 |
|
00:19:22,480 --> 00:19:27,420 |
|
order ูู phi of H ุจุฏู ููุณู
|
|
|
|
184 |
|
00:19:29,960 --> 00:19:33,980 |
|
ุงูู N ุงูููุทุฉ |
|
|
|
185 |
|
00:19:33,980 --> 00:19:46,000 |
|
ุงูุณุงุจุนุฉ ุจูููู ูู if ุงู K bar if ุงู K bar is a |
|
|
|
186 |
|
00:19:46,000 --> 00:19:55,620 |
|
subgroup ู
ู ุงู G bar then ุงูู Phi inverse of ุงูู K |
|
|
|
187 |
|
00:19:55,620 --> 00:20:05,940 |
|
bar ุงููู ูู ูู ุงู K ุงููู ู
ูุฌูุฏุฉ ูู G such that Phi |
|
|
|
188 |
|
00:20:05,940 --> 00:20:16,410 |
|
of K Phi of K ู
ูุฌูุฏุฉ ูู ุงู K bar ู
ุง ููุง ูุฐู is a |
|
|
|
189 |
|
00:20:16,410 --> 00:20:28,390 |
|
subgroup of G ูุจูู ูุฐู is a subgroup of G ุงูููุทุฉ |
|
|
|
190 |
|
00:20:28,390 --> 00:20:35,370 |
|
ุงูุซุงู
ูุฉ ุจููู ูู ูุงู ุงู K bar is a normal subgroup |
|
|
|
191 |
|
00:20:35,370 --> 00:20:43,010 |
|
if ุงู K bar is a normal subgroup ู
ู ุงู G bar then |
|
|
|
192 |
|
00:20:45,860 --> 00:20:54,920 |
|
then ุงูู Phi inverse of K bar ูุฐู |
|
|
|
193 |
|
00:20:54,920 --> 00:21:04,360 |
|
ูู ุงูุนูุงุตุฑ K ุงููู ู
ูุฌูุฏุฉ ูู G ุจุญูุซ ุงู Phi of K |
|
|
|
194 |
|
00:21:04,360 --> 00:21:07,620 |
|
ู
ูุฌูุฏ ูู K bar |
|
|
|
195 |
|
00:21:24,440 --> 00:21:31,720 |
|
ุงูููุทุฉ ุงูุชุงุณุนุฉ ูุงูุฃุฎูุฑุฉ ุจููู ูู ูุงูุช ุงููุงู is onto |
|
|
|
196 |
|
00:21:31,720 --> 00:21:39,240 |
|
f ุงููุงู is onto ูู ูุงูุช ุงููphi ุตูุฏูู ุงูู and |
|
|
|
197 |
|
00:21:39,240 --> 00:21:42,260 |
|
ุงูููุฑูู |
|
|
|
198 |
|
00:21:42,260 --> 00:21:49,120 |
|
ูููphi ุจุฏู ูุณุงูู ุงูู identity element ุชุจุน ุงููG |
|
|
|
199 |
|
00:22:03,460 --> 00:22:14,140 |
|
ู
ู ุงูู ุงูู ุงูู ู
ู ุฌูู ูุฌูู ุจุงุฑ ู
ู ุฌูู |
|
|
|
200 |
|
00:22:14,140 --> 00:22:16,980 |
|
ูุฌูู ุจุงุฑ |
|
|
|
201 |
|
00:22:41,150 --> 00:22:48,850 |
|
Nigel will prove the |
|
|
|
202 |
|
00:22:48,850 --> 00:23:02,990 |
|
parts ุงููุงุญุฏ ูุงุชููู and ุชูุงุชุฉ are identical |
|
|
|
203 |
|
00:23:02,990 --> 00:23:05,510 |
|
to |
|
|
|
204 |
|
00:23:07,260 --> 00:23:17,740 |
|
are identical to the probes of ุฃุฑุจุนุฉ |
|
|
|
205 |
|
00:23:17,740 --> 00:23:27,640 |
|
ูุงุชููู and ูุงุญุฏ of |
|
|
|
206 |
|
00:23:27,640 --> 00:23:40,060 |
|
theorem of theorem ุณุชุฉ ุชูุงุชุฉ ุจุตูุญุงุช |
|
|
|
207 |
|
00:23:40,060 --> 00:23:44,540 |
|
ู
ูุฉ ูุณุจุนุฉ ูุนุดุฑูู respectively |
|
|
|
208 |
|
00:24:12,850 --> 00:24:16,630 |
|
ูุฑุฌุน ุซุงูู ูููุธุฑูุฉ ุงููู ุงุญูุง ูุงุชุจูููุง ูุญุงูู ููุฑุฃูุง |
|
|
|
209 |
|
00:24:16,630 --> 00:24:21,250 |
|
ูู
ุงู ู
ุฑุฉ ูุชููู
ูู ู
ุง ูููุง ุจุนุฏ ููู ุจูุฑูุญ ุฅูู |
|
|
|
210 |
|
00:24:21,250 --> 00:24:26,610 |
|
ุงูุจุฑูุงู ุงูู
ุฑุฉ ุงููู ูุงุชุช ุงููุธุฑูุฉ ุงููู ูุงุชุช ูุงูุช |
|
|
|
211 |
|
00:24:26,610 --> 00:24:29,610 |
|
ุจูุดุชุบู ุนูู ุงู elements homomorphism ุนูู ุงู |
|
|
|
212 |
|
00:24:29,610 --> 00:24:34,010 |
|
elements ููุง ุงู subgroups under ุงู homomorphism |
|
|
|
213 |
|
00:24:34,010 --> 00:24:36,970 |
|
ูุฌูุจ ุฌุงู ุงู homomorphism ูุดุชุบู ุนุงูู
ูุง ุนูู ุงู |
|
|
|
214 |
|
00:24:36,970 --> 00:24:41,500 |
|
subgroups ูููุณ ุนูู ุงู elements ู
ููู ูู ูุงูุช ูุงู ู
ู |
|
|
|
215 |
|
00:24:41,500 --> 00:24:46,180 |
|
ุฌู ุฅูู ุฌู ุจุงุฑ ูู hemomorphism ููุงูุช ุงู H subgroup |
|
|
|
216 |
|
00:24:46,180 --> 00:24:52,620 |
|
ู
ู ุฌู then ูุงู of Hุ H ูุฐู sub set ู
ู ู
ูู ุฃู |
|
|
|
217 |
|
00:24:52,620 --> 00:24:56,260 |
|
subgroup ู
ู ุฌู ุฅุฐุง ุตูุฑุชูุง ุฅุฐุง ููุช ุฃุฑูุฏ ุฃู ุชููู |
|
|
|
218 |
|
00:24:56,260 --> 00:25:02,380 |
|
ู
ูุฌูุฏุฉ ูู ุฌู ุจุงุฑ ูู ุฌู ุจุงุฑ ูู ุฌู ุจุงุฑ ูู ุฌู ุจุงุฑ ูู |
|
|
|
219 |
|
00:25:02,380 --> 00:25:06,980 |
|
ุฌู ุจุงุฑ ูู ุฌู ุจุงุฑ ูู ุฌู ุจุงุฑ ูู ุฌู ุจุงุฑ ูู ุฌู ุจุงุฑ ูู |
|
|
|
220 |
|
00:25:06,980 --> 00:25:13,870 |
|
ุฌู ุจุงุฑ ู
ู ุงูุฌูู ุงูู
ูุงุจู ูุจูู ุงู subgroup ุตูุฑุชูุง |
|
|
|
221 |
|
00:25:13,870 --> 00:25:18,130 |
|
subgroup ุฃุฎุฑู ุชุญุช ุชุฃุซูุฑ ุงู homomorphism ุงููุงุญูุฉ |
|
|
|
222 |
|
00:25:18,130 --> 00:25:22,650 |
|
ุงูุซุงููุฉ ูู ูุงูุช ูุฐู ุงู subgroup cyclic ูุจูู ุตูุฑุชูุง |
|
|
|
223 |
|
00:25:22,650 --> 00:25:27,570 |
|
ูู
ุงู cyclic ูุนูู ููุณุช ููุท subgroup ู ูุฐูู cycle |
|
|
|
224 |
|
00:25:27,570 --> 00:25:32,530 |
|
group ุทุจ ูู ูุงูุช ุงู H abelian ูุจูู ุตูุฑุชูุง ูุฐูู ู
ุง |
|
|
|
225 |
|
00:25:32,530 --> 00:25:37,520 |
|
ููุง abelian group ูุฐูู ูุงุญุฏ ูุงุชููู ูุชูุงุชุฉ ุจุฑูููู
|
|
|
|
226 |
|
00:25:37,520 --> 00:25:43,680 |
|
ูุจู ููู ูู ุงููุธุฑูุฉ ุงููู ูู ุตูุญุฉ 127 ูุธุฑูุฉ 6 3 ูุฐูู |
|
|
|
227 |
|
00:25:43,680 --> 00:25:48,000 |
|
ุงูููุทุฉ ุงูุฃููู ู
ูุงูุฆุฉ ูู ููุณ ุงูููุทุฉ 4 ูู ุงููุธุฑูุฉ |
|
|
|
228 |
|
00:25:48,000 --> 00:25:53,670 |
|
ุงูููุทุฉ 2 ูู 2 ุงูููุทุฉ 3 ูู ููุทุฉ 1 ูู ุฑุฌุนูุง ููุฐู |
|
|
|
229 |
|
00:25:53,670 --> 00:25:57,530 |
|
ุงููุธุฑูุฉ ูู ุตุญูุฉ 127 ู
ู ุงููุชุงุจ ูุฌุฏ ุงูุชูุงุชุฉ ุงููู |
|
|
|
230 |
|
00:25:57,530 --> 00:26:01,410 |
|
ุนูุฏูุง ูุฐุง ูุฌู ููุฑุจุน ุงูุฑุงุจุน ุจูููู ูู ูุงูุช ุงู H |
|
|
|
231 |
|
00:26:01,410 --> 00:26:06,990 |
|
normal subgroup ูุฌู ุตูุฑุชูุง normal ูู ุตูุฑุฉ ุงู G |
|
|
|
232 |
|
00:26:06,990 --> 00:26:12,810 |
|
ูููุง ูุฃู ุงู Phi of G ููุณ ุจุงูุถุฑูุฑุฉ ุฃู ุชุบุทู ูู |
|
|
|
233 |
|
00:26:12,810 --> 00:26:17,730 |
|
ุนูุงุตุฑ G ุจุฑุดููุฉ ู
ููู
ูู
ู
ูู ุชุบุทููู
ูููู
ุณูุงู ุณูุงุก |
|
|
|
234 |
|
00:26:17,730 --> 00:26:21,840 |
|
ูุงู ููู ุงุญูุง in general ุจูููู ูุฃ ุทูุจ ูุจูู ูู ูุงูุช |
|
|
|
235 |
|
00:26:21,840 --> 00:26:27,620 |
|
ูุฐู normal ุตูุฑุชูุง normal ูู ุตูุฑุฉ G ุทุจ ูู ูุงู ุงู |
|
|
|
236 |
|
00:26:27,620 --> 00:26:33,200 |
|
kernel ูู N ู
ู ุงูุนูุงุตุฑ ุงู order ูู ูุณุงูู N ูุจูู ุงู |
|
|
|
237 |
|
00:26:33,200 --> 00:26:35,300 |
|
N ูุฏูู ุจุฏูู
ูุฑูุญูุง ููููุ |
|
|
|
238 |
|
00:26:37,710 --> 00:26:42,050 |
|
ููููุ ููู identity ู
ู
ุชุงุฒ ุฌุฏุง ูุจูู ุขุซุงุฑ ุงู |
|
|
|
239 |
|
00:26:42,050 --> 00:26:47,010 |
|
homomorphism N to 1 ุงูุชูุงุชุฉ ุฃู ุงูุฃุฑุจุนุฉ ุฃู ุงูุนุดุฑุฉ |
|
|
|
240 |
|
00:26:47,010 --> 00:26:50,490 |
|
ุฑุงุญูุง ุงูุนูุตุฑ ูุงุญุฏ ูุจูู ุจููู ุนุดุฑุฉ to one ู
ุด one to |
|
|
|
241 |
|
00:26:50,490 --> 00:26:54,950 |
|
one ุจููู ุงูุฃุฑุจุนุฉ to one ุฃู ุงูุฎู
ุณุฉ to one ุฃู ุงูุณุชุฉ |
|
|
|
242 |
|
00:26:54,950 --> 00:26:59,950 |
|
ุฌุฏู
ุง ูููู ุงู order one to one mapping ู
ู ุงู G on |
|
|
|
243 |
|
00:26:59,950 --> 00:27:04,840 |
|
two ุงูุชูุง ูุงุฏู ุฏู ุจุงูู ู
ุด ููููู ุงูุชูุง ุงูู ูุฎูุงุต |
|
|
|
244 |
|
00:27:04,840 --> 00:27:09,280 |
|
ูููุณู ูุงุจุฏ ุชุบุทู ุฌู
ูุน ุนูุงุตุฑ five of G ููุฐุง ุงููู |
|
|
|
245 |
|
00:27:09,280 --> 00:27:12,540 |
|
ู
ุทููุจ ู
ุด ุฑูุญ ูุจุฑู ุงู ูุฏู ูููุณู ูุฏู ูุฃ ูุฃ ูุฃ ูุฏูู |
|
|
|
246 |
|
00:27:12,540 --> 00:27:18,020 |
|
ููุทุชูู ูููุณุช ููุทุฉ ูุงุญุฏุฉ ุงูุณุงุฏุณุฉ ูู ูุงู ุงู order ู |
|
|
|
247 |
|
00:27:18,020 --> 00:27:23,620 |
|
in ุจุฏู ูุณุงูู ุงู H ูุจูู ุงู order ููุตูุฑุฉ ุจุฏู ููุณู
ุงู |
|
|
|
248 |
|
00:27:23,620 --> 00:27:28,640 |
|
order ุชุจุน ู
ูุ ุชุจุน ุงู H ุฃุธู ุญูููุง ู
ุซุงู ุดุจูู ุจูุง ูุจู |
|
|
|
249 |
|
00:27:28,640 --> 00:27:36,540 |
|
ุดููุฉ ุงูุขู ูู ูุงูุช ููุงุจุงุฑ subgroup ู
ู ุฌูุจุงุฑ ูุจูู |
|
|
|
250 |
|
00:27:36,540 --> 00:27:40,780 |
|
ุตูุฑุชูุง subgroup ููู ูุงูุช ูุฐู ุงู subgroup normal |
|
|
|
251 |
|
00:27:40,780 --> 00:27:46,400 |
|
ูุจูู ุตูุฑุชูุง normal ุงุชููู ูุฐูู ุจููุฏุฑ ูุฏู
ุฌูู
ุจู band |
|
|
|
252 |
|
00:27:46,400 --> 00:27:47,060 |
|
ูุงุญุฏ |
|
|
|
253 |
|
00:28:06,500 --> 00:28:12,150 |
|
ุงูููุทุฉ ุงูุฃุฎูุฑุฉ ูู ูุงูุช Phi is onto ูุงูู Kernel |
|
|
|
254 |
|
00:28:12,150 --> 00:28:15,930 |
|
ู
ุงููุด ููู ุฅูุง ุงูู Identity Element ูุจูู ุงูู Phi |
|
|
|
255 |
|
00:28:15,930 --> 00:28:20,970 |
|
ุนุจุงุฑุฉ ุนู ุฅูุดุ Isomorphism ุทุจ ูู ุฃุนุทุงูู Phi ุฃูุชู
|
|
|
|
256 |
|
00:28:20,970 --> 00:28:25,710 |
|
ู ุฃุนุทุงูู ููุง Phi ูู
ูู
ูุฑูุฒู
ุจูู ุนููู ุจุงุณู
ูู ูุนูู ูู |
|
|
|
257 |
|
00:28:25,710 --> 00:28:29,470 |
|
ุฃุซุจุชุช ุฃู Phi one to one ุจูููู ุฎูุตูุง ู
ู ุงูู
ูุถูุน |
|
|
|
258 |
|
00:28:29,470 --> 00:28:33,910 |
|
ุจูููู ุฎูุงุต ุงูุชูููุง ู
ูู ูุจูู ุจุณ ู
ุทููุจ ุฃุซุจุช ุฃู Phi |
|
|
|
259 |
|
00:28:33,910 --> 00:28:38,240 |
|
one to one ุทูุจ ููุฌู ููุจุฑูุงู ูุจูู ุฃูู ุซูุงุซ ููุงุท |
|
|
|
260 |
|
00:28:38,240 --> 00:28:42,260 |
|
ุชูุงุฌุฆูุง ุนูููู
ููุฌู ููุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ H Normal ุจุฏู ุฃุซุจุช |
|
|
|
261 |
|
00:28:42,260 --> 00:28:46,760 |
|
ุฃู ุงูู Phi of H ูุฐู ุฅูู ุงููู ูู
ุงููุง normal |
|
|
|
262 |
|
00:28:46,760 --> 00:28:51,700 |
|
subgroup ู
ู main ู
ู ุงูู Phi of G ูุฐูู ุจุฏู ุฃุฑูุญ |
|
|
|
263 |
|
00:28:51,700 --> 00:28:57,080 |
|
ุฃุฎุฏูู element ูู H ู ุฃุฎุฏ element ู
ู G ู ุฃุดูู ูููู |
|
|
|
264 |
|
00:28:57,080 --> 00:29:03,160 |
|
ุจุฏู ููุตู ูุงูุฏููุง ูุฐู ูุจูู ุจุงุฌู ุจูููู ููุง ูู ุฃุฎุฏูุง |
|
|
|
265 |
|
00:29:03,160 --> 00:29:15,050 |
|
ุงูู G ู
ูุฌูุฏ ูู G ู ุฃุฎุฏูุง ุงูู H ู
ูุฌูุฏ ูู H then ุฅูุด |
|
|
|
266 |
|
00:29:15,050 --> 00:29:18,710 |
|
ุดุฑุงูู ูู ุงูู GHG inverseุ |
|
|
|
267 |
|
00:29:22,660 --> 00:29:29,260 |
|
ุจููุชู
ู ูู
ููุ ุฃููุฉ ูุจูู ูุฐุง belongs to H ุงูุณุจุจ |
|
|
|
268 |
|
00:29:29,260 --> 00:29:35,860 |
|
because ุฃู ุงูู H is a normal subgroup ู
ู G ุทุจ ุงุญูุง |
|
|
|
269 |
|
00:29:35,860 --> 00:29:40,260 |
|
ูู
ุง ูุชููู
ุนูู Phiุงุช ูุจูู ูุจุฏุฃ ูุงุฎุฏ ุงูู Phiุงุช ููุง ูุจูู |
|
|
|
270 |
|
00:29:40,260 --> 00:29:47,560 |
|
ูู ุฑูุญุช ุฃุฎุฏุช ุงูู phi of GHG inverse ููููู ู
ูุฌูุฏ ูู |
|
|
|
271 |
|
00:29:47,560 --> 00:29:55,310 |
|
ุงูู phi of H ุทุจ ุงูู Phi homomorphism ูุจูู ุจุฏู ุฃูู |
|
|
|
272 |
|
00:29:55,310 --> 00:30:04,710 |
|
ูุฏูู ูุจูุงุด ุจุตูุฑ ุฃู ูุง Phi of G Phi of H Phi of G |
|
|
|
273 |
|
00:30:04,710 --> 00:30:14,450 |
|
inverse ูุฐุง ู
ูุฌูุฏ ูู ู
ููุ ูู ุงูู Phi of H ุทูุจุ ุฃูุณุง |
|
|
|
274 |
|
00:30:14,450 --> 00:30:23,910 |
|
ูุฐุง Phi of G Phi of H Phi of G ููู Inverse ู
ูุฌูุฏ |
|
|
|
275 |
|
00:30:23,910 --> 00:30:30,950 |
|
ูู Phi of H ุชุนุงููุง ูุดูู ุชุนุงููุง ูุดูู ูุฐุง ููู ู
ูุฌูุฏ ูุง |
|
|
|
276 |
|
00:30:30,950 --> 00:30:37,790 |
|
ุดุจุงุจุ ูู ุงูู Phi of G ูุจูู ูุฐุง belongs to Phi of G |
|
|
|
277 |
|
00:30:37,790 --> 00:30:46,670 |
|
ุทูุจ ูุฐุง Phi of H belongs to Phi of H ูุฐุง ุจู belongs |
|
|
|
278 |
|
00:30:46,670 --> 00:30:54,540 |
|
to Phi of G ุตุญุ ุทูุจ ู
ู
ุชุงุฒ ุฌุฏุง ูุจูู ุงูุขู ุฃูุง ูุงู |
|
|
|
279 |
|
00:30:54,540 --> 00:30:59,000 |
|
ุงููู ุจุฏูุชูุง ุงูู normality ูุจูู ุฃุฎุฏุช element ู
ู ููุง |
|
|
|
280 |
|
00:30:59,000 --> 00:31:03,220 |
|
ู element ู
ู ููุง ุถุฑุจุช ุงูู element ู
ู ููุง ูู ุงูู |
|
|
|
281 |
|
00:31:03,220 --> 00:31:07,180 |
|
element ู
ู ููุง ูู ู
ุนููุณ ูุฐุง ุงูู element ูุฌุชู ู
ูุฌูุฏ |
|
|
|
282 |
|
00:31:07,180 --> 00:31:12,760 |
|
ูู Phi H ูุจูู ุฅูุด ุชูุชูุฑู ููุฐุง ุงูููุงู
ุฃู Phi H is |
|
|
|
283 |
|
00:31:12,760 --> 00:31:18,830 |
|
normal ูุจูู ูุฐุง ุจุฏู ูุนุทููุง ุงูู Phi of H is a normal |
|
|
|
284 |
|
00:31:18,830 --> 00:31:24,670 |
|
subgroup ู
ู ู
ู ุงูู Phi of G ุทุจุนุง ุฑุจ ูุงุญุฏ ูููู
ูุงุนุฏ |
|
|
|
285 |
|
00:31:24,670 --> 00:31:28,910 |
|
ุจูููุฑ ููู ู ูุงู ูู ุทุจ ุงุณุชูู ุดููุฉ ุฃูุช ุฌุจุช ูุต ุงูุจุฑูุงู |
|
|
|
286 |
|
00:31:28,910 --> 00:31:32,890 |
|
ู ุฃูู ุงููุต ุงูุซุงูู ุจูููู ุฅูุด ุงููุต ุงูุซุงูู ูุงู ูู ุงูู |
|
|
|
287 |
|
00:31:32,890 --> 00:31:36,070 |
|
Phi of H is a subgroup ุจูููู ุงู ู
ุง ูู ูู ุนูุฏู ุฑูู
|
|
|
|
288 |
|
00:31:36,070 --> 00:31:40,110 |
|
ูุงุญุฏ ูุฐุง ู
ุทููุจุ ููุจูู ุจุงุนุชุจุงุฑู ู
ุซุจุชุ ููุจูู ู
ุซุจุช |
|
|
|
289 |
|
00:31:40,110 --> 00:31:45,790 |
|
ู
ุนุงู ูุฅู ูู
ููู ู
ุซุจุชูุงุ ูุฃุซุจุชูุงู ุฃูููุงุ ุซู
ุฃุซุจุชูุง |
|
|
|
290 |
|
00:31:45,790 --> 00:31:50,430 |
|
ู
ููุ ุงูู Normality ูุจูู ูู ุงูููุงู
ุตุญูุญุ ูุฐุง ุงูููุทุฉ |
|
|
|
291 |
|
00:31:50,430 --> 00:31:55,370 |
|
ุฃุฑุจุนุฉ ุจุฏูุง ูุฑูุญ ููููุทุฉ ุฑูู
ุฎู
ุณุฉ ุงูููุทุฉ ุฑูู
ุฎู
ุณุฉ |
|
|
|
292 |
|
00:31:55,370 --> 00:31:58,770 |
|
ุจุชููู ูู ูู ูุงู assume |
|
|
|
293 |
|
00:32:23,000 --> 00:32:24,960 |
|
ุฅุฐุง ุฃุฑุฏุช ุฃู ุฃุฑุฏุช ุฃู ุฃุฑุฏุช ุฃู ุฃุฑุฏุช ุฃู ุฃุฑุฏุช ุฃู ุฃุฑุฏุช |
|
|
|
294 |
|
00:32:24,960 --> 00:32:25,500 |
|
ุฃู ุฃุฑุฏุช ุฃู ุฃุฑุฏุช ุฃู ุฃุฑุฏุช ุฃู ุฃุฑุฏุช ุฃู ุฃุฑุฏุช ุฃู ุฃุฑุฏุช ุฃู |
|
|
|
295 |
|
00:32:25,500 --> 00:32:25,840 |
|
ุฃุฑุฏุช ุฃู ุฃุฑุฏุช ุฃู ุฃุฑุฏุช ุฃู ุฃุฑุฏุช ุฃู ุฃุฑุฏุช ุฃู ุฃุฑุฏุช ุฃู |
|
|
|
296 |
|
00:32:25,840 --> 00:32:30,720 |
|
ุฃุฑุฏุช ุฃู ุฃุฑุฏุช ุฃู ุงูู Kernel ูู Phi ูุฌุจ ุฃู ูุณุงููุ |
|
|
|
297 |
|
00:32:30,720 --> 00:32:34,320 |
|
ูุฌุจ ุฃู ุฃุถุน ููู N ู
ู ุงูุนูุงุตุฑุ ุฃุธู ุฃู ุงูู Identity |
|
|
|
298 |
|
00:32:34,320 --> 00:32:41,520 |
|
ุชุจุน ุงูู G ู
ููู
ูุจูู G ู
ููู
ุ ููุฌุจ ุฃู ุฃููู G1 ู G2 |
|
|
|
299 |
|
00:32:41,520 --> 00:32:43,280 |
|
ููุจูู ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ |
|
|
|
300 |
|
00:32:43,280 --> 00:32:43,920 |
|
ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ |
|
|
|
301 |
|
00:32:43,920 --> 00:32:48,960 |
|
ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ |
|
|
|
302 |
|
00:32:48,960 --> 00:32:49,280 |
|
ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ |
|
|
|
303 |
|
00:32:49,280 --> 00:32:49,320 |
|
ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ |
|
|
|
304 |
|
00:32:49,320 --> 00:32:53,270 |
|
ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงูุฉ ู
ุงุฒุงููุจูู let ุงูููุงู
then ูุฐุง |
|
|
|
305 |
|
00:32:53,270 --> 00:32:59,450 |
|
ุฅูุด ู
ุนูุงูุ ู
ุนูุงู ุฃู ุงูู Phi of ุงูู identity element |
|
|
|
306 |
|
00:32:59,450 --> 00:33:03,510 |
|
ุชุจุน ุงูู G ุจุฏู ูุณุงูู ุงูู identity element ุชุจุน ุงูู G |
|
|
|
307 |
|
00:33:03,510 --> 00:33:09,430 |
|
bar ูุงูู Phi of G1 ุจุฏู ูุณุงูู ุงูู identity element |
|
|
|
308 |
|
00:33:09,430 --> 00:33:15,110 |
|
ุชุจุน ุงูู G bar ูุงูู Phi of G2 ุจุฏู ูุณุงูู ุงูู identity |
|
|
|
309 |
|
00:33:15,110 --> 00:33:20,820 |
|
element ุชุจุน ุงูู G bar ูุงูู Phi of G N minus ุงูู one |
|
|
|
310 |
|
00:33:20,820 --> 00:33:26,600 |
|
ุจุฏู ูุณุงูู ุงูู identity ุชุจุน ุงูู G bar ูุจูู ุฃูุง ุตุงุฑ |
|
|
|
311 |
|
00:33:26,600 --> 00:33:30,980 |
|
ุนูุฏู N ู
ู ุงูุนูุงุตุฑ ููู
ุตูุฑุฉ ูุงุญุฏุฉ ูุจูู ุงูู Phi is |
|
|
|
312 |
|
00:33:30,980 --> 00:33:41,960 |
|
into one ูุจูู ูุฐุง this means that ุฃู ุงูู Phi is |
|
|
|
313 |
|
00:33:41,960 --> 00:33:45,440 |
|
into one |
|
|
|
314 |
|
00:33:52,040 --> 00:34:02,440 |
|
ูุจูู ูุงูุงุช ู
ุซูุง ู
ู G ูู G ู
ู from G to G bar ููู
|
|
|
|
315 |
|
00:34:02,440 --> 00:34:09,970 |
|
ุฃููู unto G bar ูุจูู ุฏู ูุตุฉ ุงูู onto ูุฐู ุจุฏูุง |
|
|
|
316 |
|
00:34:09,970 --> 00:34:15,270 |
|
ุฅุซุจุงุช ูุจูู ุจุฏุฃ ุฃุฑูุญ ุฃุฎุฏ element ูู Phi of G ู |
|
|
|
317 |
|
00:34:15,270 --> 00:34:24,870 |
|
ุฃุซุจุช ุฃูู ูู ุฃุตู ููู ูู G ุทูุจ ูููุณ ุงู ู
ุด ุจุฏูุง ูุซุจุช |
|
|
|
318 |
|
00:34:24,870 --> 00:34:30,760 |
|
ุฃููุง onto ูู G bar ูุฃ ูู of G ูู ู
ู ุนูุงุตุฑ G bar |
|
|
|
319 |
|
00:34:30,760 --> 00:34:35,380 |
|
ุฌุฒุก ู
ููุง ููู ูู ุชุณูููุง ุฃู ูุง ุชุณูููุง ูุฏ ูููู ู ูุฏ |
|
|
|
320 |
|
00:34:35,380 --> 00:34:41,120 |
|
ูุง ูููู ูุนูู ูุง ุดุจุงุจ ูู ุงุชุฎูููุง ุฃู ูุฐู ูููุง ูู G |
|
|
|
321 |
|
00:34:41,120 --> 00:34:49,500 |
|
bar ู ุฃูุง ุนูุฏู Phi ู
ู ุงูู G ู
ู ุงูู G ุฅูู ุงูู G bar ูู
ูู |
|
|
|
322 |
|
00:34:49,500 --> 00:34:57,460 |
|
ูุฏูู ูุฐุง ููู ูุทูุน ูู Phi of G ููู ูุฐุง ููุง ู
ุงููุด ููุง |
|
|
|
323 |
|
00:34:57,460 --> 00:35:04,100 |
|
ุนูุตุฑ ุชู
ุงู
ูุจูู ุฌุฒุก ุจููู ูุฐูู ุฃูุง ู
ุฑูุฒ ุนูู Phi of G |
|
|
|
324 |
|
00:35:04,100 --> 00:35:10,160 |
|
on to Phi of G ูุนูู ูู element ูู ูุฐู ุงูู set ุจุฏู |
|
|
|
325 |
|
00:35:10,160 --> 00:35:15,580 |
|
ุฃุซุจุช ุฃูู ูู ุฃุตู ููู ูู G ูููุณ ูุฐูู ู
ุถุงุฌู ุฃูููู |
|
|
|
326 |
|
00:35:15,580 --> 00:35:25,360 |
|
ุฎุฏูู y ุงูุขู ุจุฏู ุฃุซุจุช ูู ุฃู ูุงู is onto ูุจูู ุจุฏุงุฌุฉ |
|
|
|
327 |
|
00:35:25,360 --> 00:35:34,880 |
|
ุฃูููู let ู
ุซูุง y belongs to ูุงู of g ูุงู of ูุงุจุชู |
|
|
|
328 |
|
00:35:34,880 --> 00:35:44,120 |
|
G ุชู
ุงู
ุ then ุงูู y ูุฐู ุจุฏูุง ุชุณุงูู ูุงู of g for some |
|
|
|
329 |
|
00:35:44,120 --> 00:35:52,310 |
|
g ุงููู ู
ูุฌูุฏุฉ ูู G ู
ุตุจูุท ููู ูุจูู ุฃูุง ุฃุฎุฏุช element |
|
|
|
330 |
|
00:35:52,310 --> 00:35:56,610 |
|
ูู ุงูุตูุฑุฉ ู ุฑูุญุช ุฃุฎุฏุช element ู
ู ููุง ูุจูู ุงูู five |
|
|
|
331 |
|
00:35:56,610 --> 00:36:02,890 |
|
ุฏู ุณูุงุก five of g for some ุฃููุฉ ุทูุจ ุฃูุง ุจุฏู ุฅูุด ุงูู |
|
|
|
332 |
|
00:36:02,890 --> 00:36:07,490 |
|
element ุงููู ุฃุฎุฏุชู ูู ุงูู five of g ุจุฏู ุฃุซุจุช ุฃูู ูู |
|
|
|
333 |
|
00:36:07,490 --> 00:36:13,810 |
|
ุฃุตู ูู g ุฃู ูู ุฃุตูู ู
ู
ูู ูููู ุฃุตูู ู
ุด ุฃุตู ู
ู
ูู ูููู |
|
|
|
334 |
|
00:36:13,810 --> 00:36:20,230 |
|
ูุชุงุฑ ุฃูุชู
ุฃุซุจุชูุง ุฃู ุฃูุชู
ูุจูู ุฃุตูู ูููุณ ุฃุตู ุชู
ุงู
|
|
|
|
335 |
|
00:36:20,230 --> 00:36:29,110 |
|
ูุจูู ุงูู Phi inverse ูุจูู ุจูุงุก ุนูู ูู ุฃุฎุฏุช ุงูู Phi inverse |
|
|
|
336 |
|
00:36:29,110 --> 00:36:35,230 |
|
of Y ูุจูู ุงูู Phi inverse of Y ุนุดุงู ุจุฏู ูุณุงูู G ูู ุงูู |
|
|
|
337 |
|
00:36:35,230 --> 00:36:40,450 |
|
Kernel ูุง ุฏู ุฑุจุงูู ูุจูู ูุฐุง ุจุฏู ูุณุงูู ุงูู Phi |
|
|
|
338 |
|
00:36:40,450 --> 00:36:46,970 |
|
inverse of Y ุจุฏู ูุณุงูู ุงูู G ูู ุงูู Kernel ูู
ููุ ูู |
|
|
|
339 |
|
00:36:46,970 --> 00:36:52,490 |
|
ุงูู Kernel ููู Phi ู
ุนูุงู ูุฐุง ุงูููุงู
ุฃูู ุทุจุนุง Phi |
|
|
|
340 |
|
00:36:52,490 --> 00:36:57,850 |
|
inverse of Y ู
ุด ุนูุตุฑ ูุงุญุฏ ูู ุจุฏู ุฃุดุชุบู ุญุฑูู ูู |
|
|
|
341 |
|
00:36:57,850 --> 00:37:02,830 |
|
ุจููู ุนูุตุฑ ูุงุญุฏ ููู ูุฐู ุนูุงุตุฑ ูุจุงูุชุงูู ูุซูุฑ ู
ู |
|
|
|
342 |
|
00:37:02,830 --> 00:37:08,390 |
|
ุงูุนูุงุตุฑ ุงููู ูู ุงูู Y ูุฐู ูุฏ ูููู ูู ุตูุฑุชูุง ูุจุฌู |
|
|
|
343 |
|
00:37:08,390 --> 00:37:15,650 |
|
ุจูููู ูุจูู ุงูู order ููู Phi inverse of Y ุจุฏู ูุณุงูู |
|
|
|
344 |
|
00:37:15,650 --> 00:37:22,990 |
|
ุงูู order ููู G ูู ุงูู kernel ููู Phi. ู
ุธุจูุท ููุง ูุงุ |
|
|
|
345 |
|
00:37:22,990 --> 00:37:29,150 |
|
ุทุจ ุฅูุด ุงูุนูุงูุฉุ ุงูุขู ูุฐุง ููุณ left coset G ูู |
|
|
|
346 |
|
00:37:29,150 --> 00:37:33,350 |
|
ุงูู Kernel ุงูู Phi ู
ุด left coset ุตุญ ููุง ูุงุ ุทุจ ุฅุฐุง ุงูู |
|
|
|
347 |
|
00:37:33,350 --> 00:37:37,990 |
|
order ุฅูู ุงููู ููุณุงูู ุงูู order ูู ุงูู subgroup ููุณู |
|
|
|
348 |
|
00:37:37,990 --> 00:37:43,090 |
|
ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ุงูู order ููู Kernel ุงูู Phi |
|
|
|
349 |
|
00:37:43,090 --> 00:37:49,190 |
|
ุงููู ูู ุฌุฏุงุด ุงูู N ูุนูู ู
ุนูู ูุฐุง ุงูููุงู
ุฅู ุงูู Y |
|
|
|
350 |
|
00:37:49,190 --> 00:37:55,770 |
|
ุงููู ุนูุฏู ุฃุฎุฏุช ูุฐู ูุฌุชููุง ุฃุตูู ุนุฏุฏูู
N ุชู
ุงู
ูุจูู |
|
|
|
351 |
|
00:37:55,770 --> 00:38:04,900 |
|
on to ูุจูู this means that .. ูุจูู this means that |
|
|
|
352 |
|
00:38:04,900 --> 00:38:08,240 |
|
ุฃู |
|
|
|
353 |
|
00:38:08,240 --> 00:38:16,600 |
|
ุงูู Phi maps in elements from |
|
|
|
354 |
|
00:38:18,360 --> 00:38:26,080 |
|
G to Y ุงููู ู
ูุฌูุฏ ููู ูู G bar ุฃู ู
ูุฌูุฏ ูู Phi |
|
|
|
355 |
|
00:38:26,080 --> 00:38:37,560 |
|
of G ุจุงูุชุญุฏูุฏ ู
ูุฌูุฏ ูู Phi of G so Phi is onto ุทูุจุ |
|
|
|
356 |
|
00:38:37,560 --> 00:38:43,320 |
|
ูุฐู ุงูููุทุฉ ุฅููุ ุงูููุทุฉ ุงูุฎุงู
ุณุฉ ุงููู ุฎุงุทุฑ ู
ุฏุงู
ุญููุง |
|
|
|
357 |
|
00:38:43,320 --> 00:38:48,680 |
|
ุฒููุง ูุจูู ุงูููุทุฉ ุงูุณุงุฏุณุฉ ูุฐู ุฃููู ููู
exercise ุทุจุนุง |
|
|
|
358 |
|
00:38:48,680 --> 00:38:52,780 |
|
ู
ุจุฑููุฉ ูู ุงููุชุงุจุ ุจุณ ุจุนู
ู restriction ุนูู ุงูู Phi |
|
|
|
359 |
|
00:38:52,780 --> 00:38:56,700 |
|
ูุนูู ุจูุฎูููุงุด ุนูู ุฅุทูุงููุงุ ุจุณ ุนูู ุนูุงุตุฑ ุฅูุดุ ูุจูู |
|
|
|
360 |
|
00:38:56,700 --> 00:39:02,300 |
|
ูุง ุฑูุช ู
ู ุงููุชุงุจ ุชุฑูุญ ุชุฌุฑูุง ูุชุฑุชุจ ุฃู
ูุฑูุง ุงูุขู ูู |
|
|
|
361 |
|
00:39:02,300 --> 00:39:07,660 |
|
ุจุงุฑ ุณุงุจู ุฑูุจ ู
ู G bar ูุจูู Phi inverse of K ุจุฏู |
|
|
|
362 |
|
00:39:07,660 --> 00:39:12,780 |
|
ุฃุซุจุชูุง ุณุงุจู ุฑูุจ ู
ู ู
ููุ ู
ู ุงูู G ุทูุจ ู
ุดุงู ุฃุซุจุชูุง |
|
|
|
363 |
|
00:39:12,780 --> 00:39:18,600 |
|
ุงูุณุงุจู ุฑูุจ ุจุฏู ุฃุซุจุชู conditions ูุจูู ุจุฏู ุฃุฑูุญ ูู
ููุ |
|
|
|
364 |
|
00:39:18,600 --> 00:39:24,620 |
|
ููููุทุฉ ุงูุณุงุจุนุฉ ู
ุดุงู ุฃุฑูุญ ููููุทุฉ ุงูุณุงุจุนุฉ ุจุฏู ุฃุซุจุช |
|
|
|
365 |
|
00:39:24,620 --> 00:39:31,160 |
|
ูุฐู Phi inverse subgroup ู
ู ู
ููุ ู
ู ุงูู G ูุฐุง ุงููู |
|
|
|
366 |
|
00:39:31,160 --> 00:39:35,460 |
|
ุนุงูุฒููู ุฃุซุจุชู ู
ุดุงู ููู ุจุฏู ุฃุซุจุช ูู ุฃู ูุฐู non-empty |
|
|
|
367 |
|
00:39:35,460 --> 00:39:39,000 |
|
ู ูู ุฃุฎุฏุช ุนูุตุฑูู ู
ููุง ุจุฏู ุฃุซุจุช ุฃู ุงูุฃูู ูู ู
ุนููุณ ุงูุซุงูู ู
ูุฌูุฏ ูููุง ูุจุงูุชุงูู ุจูุตูุฑ a subgroup |
|
|
|
368 |
|
00:39:39,000 --> 00:39:43,020 |
|
ูุจุงูุชุงูู ุจูุตูุฑ a subgroup |
|
|
|
369 |
|
00:39:45,060 --> 00:39:52,840 |
|
ูุจูู ุจุถุงุฌู ุฃููู ูู assume ุฃูุชุฑุถ ุฃู ุงูู K bar ูู |
|
|
|
370 |
|
00:39:52,840 --> 00:40:01,600 |
|
ุนุจุงุฑุฉ ุนู subgroup ู
ู ุงูู G bar ูุจูู |
|
|
|
371 |
|
00:40:01,600 --> 00:40:10,020 |
|
ูุฐู subgroup ู
ู ุงูู G bar then ุงูู Phi inverse of K |
|
|
|
372 |
|
00:40:10,020 --> 00:40:14,180 |
|
bar is non-empty |
|
|
|
373 |
|
00:40:20,320 --> 00:40:25,200 |
|
ุงูู Phi of ุงูู Identity ุชุจุน ุงูู G ุจุฏู ูุนุทููู ู
ูู |
|
|
|
374 |
|
00:40:25,200 --> 00:40:33,300 |
|
ุงูู Identity ุชุจุน ู
ูุ ุชุจุน ุงูู G bar ูุนูู ุฅูุดุ ูุฐุง |
|
|
|
375 |
|
00:40:33,300 --> 00:40:43,430 |
|
ุจุฏู ูุนุทูู ุฃู ุงูู Phi Inverse of ุงูู Identity ุชุจุน |
|
|
|
376 |
|
00:40:43,430 --> 00:40:48,190 |
|
ุงูู G Bar ุจุฏู ุฃุณูู ุงูู Identity Element ุชุจุน ุงูู G |
|
|
|
377 |
|
00:40:48,190 --> 00:40:55,030 |
|
ู
ุธุจูุทุ ูุจูู ู
ุนูุง ูุฐุง ุงูููุงู
ุฅู ุงูู Identity ุชุจุน |
|
|
|
378 |
|
00:40:55,030 --> 00:41:02,830 |
|
ุงูู G ู
ูุฌูุฏ ูู ุงูู Phi Inverse of ุงูู K Bar ุจุนุฏ |
|
|
|
379 |
|
00:41:02,830 --> 00:41:10,120 |
|
ููู ุจุชุฑูุญ ุฃุฎุฏ two elements ุงูู X ู ุงูู Y ู
ูุฌูุฏุฉ ูู |
|
|
|
380 |
|
00:41:10,120 --> 00:41:18,780 |
|
ุงูู Phi inverse of ุงูู K bar ู
ุนูู ูุฐุง ุงูููุงู
ุฃู |
|
|
|
381 |
|
00:41:18,780 --> 00:41:28,520 |
|
ุงูู X ุจุฏู ูุณุงูู Phi inverse of K1 ู
ุซูุง ู ุงูู Y ุจุฏู |
|
|
|
382 |
|
00:41:28,520 --> 00:41:32,800 |
|
ูุณุงูู Phi inverse of K2 |
|
|
|
383 |
|
00:41:36,280 --> 00:41:42,310 |
|
ูููุณ ูุจูู ุจุฏู ุฃุฑูุญ ุฃุฎุฏ ุงูู X Y inverse ุฃุดูู ูู |
|
|
|
384 |
|
00:41:42,310 --> 00:41:45,930 |
|
ู
ูุฌูุฏุฉ ููุง ููุง ูุฃ ุฅุฐุง ุทูุนุช ู
ูุฌูุฏุฉ ุจูููู ููู ุงููู |
|
|
|
385 |
|
00:41:45,930 --> 00:41:53,370 |
|
ุงูู
ุคู
ููู ูุจูู ุจุฏู ุฃุฑูุญ ุฃุฎุฏ ูู ุงูู X Y inverse ูุจูู |
|
|
|
386 |
|
00:41:53,370 --> 00:41:59,190 |
|
ุฃู ุงูู Phi ุฎููู |
|
|
|
387 |
|
00:41:59,190 --> 00:42:03,610 |
|
ุฃุดูู ุงูู X Y inverse ูุจูู ุงูู X ุงููู ุนุจุงุฑุฉ ุนู Phi |
|
|
|
388 |
|
00:42:03,610 --> 00:42:12,100 |
|
inverse of ุงูููุงููู ุงูู Phi inverse of K2 ููู |
|
|
|
389 |
|
00:42:12,100 --> 00:42:25,400 |
|
inverse ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ูุฐุง |
|
|
|
390 |
|
00:42:25,400 --> 00:42:31,900 |
|
ุงูููุงู
ุจุฏู ูุณุงูู Phi inverse of K1 ูู Phi inverse |
|
|
|
391 |
|
00:42:31,900 --> 00:42:40,870 |
|
of K2 inverse ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ูู ุงููุฑุณ of K1 |
|
|
|
392 |
|
00:42:40,870 --> 00:42:49,640 |
|
K2 ุงููุฑุณ ูุฐุง ููู ู
ููุ ุงููู ูู ุงูู X Y inverse ูู |
|
|
|
393 |
|
00:42:49,640 --> 00:43:00,080 |
|
ูุฐุง ุงูุขู ู
ูุฌูุฏ ูู ุงูู Phi inverse of K barุ ููุดุ |
|
|
|
394 |
|
00:43:00,080 --> 00:43:04,740 |
|
ูุฃู ูุฏูู ุญุงุตู ุถุฑุจูู
ู
ูุฌูุฏ ูู K bar ูุฃู ุฃูู ู
ุง ุฌููุง |
|
|
|
395 |
|
00:43:04,740 --> 00:43:09,220 |
|
ููุง K bar ู
ุง ููุง subgroup ู
ู G ุจูู closed under |
|
|
|
396 |
|
00:43:09,220 --> 00:43:13,480 |
|
multiplication ูุจูู ูุฐุง ู
ูุฌูุฏ ูู ุงููPhi inverse of |
|
|
|
397 |
|
00:43:13,480 --> 00:43:22,060 |
|
K bar ูุจูู ุจูุงุก ุนููู ุงููPhi inverse of K bar is a |
|
|
|
398 |
|
00:43:22,060 --> 00:43:27,160 |
|
subgroup ู
ู ุฌููุ ู
ู G ูุงูุชูููุง ู
ููุง ุจุฏูุง ูุฑูุญ |
|
|
|
399 |
|
00:43:27,160 --> 00:43:36,840 |
|
ููููุทุฉ ุงููู ุจุนุฏูุง ููู ุฎุงุตูุฉ ุงู normality ุฃููุฉ ุนุฑู |
|
|
|
400 |
|
00:43:36,840 --> 00:43:42,730 |
|
ูู ู
ุงููุชุด homomorphism ุฃู
ุฑูุง ู
ุง ุจูุตูุฑ ููุงู
ูุง ุฏู |
|
|
|
401 |
|
00:43:42,730 --> 00:43:51,470 |
|
ุตุญูุญ ูุญุณุจ |
|
|
|
402 |
|
00:43:51,470 --> 00:43:55,670 |
|
ุงูุชุนุฑูู ุงููู ุนูุฏู ุญุณุจ ุงูุชุนุฑูู ูุนูู ุนุฑููุง ุงููPhi |
|
|
|
403 |
|
00:43:55,670 --> 00:44:00,210 |
|
Inverse ููู ุนุฑููุงู ูุงููู ู
ุณุญูุง.. ู
ุณุญูุง.. ูุง |
|
|
|
404 |
|
00:44:00,210 --> 00:44:04,230 |
|
ุฃููุฉ ุฃููุฉ ูู ุงููK ุงููู ู
ูุฌูุฏุฉ ูู ุฌุจูุงุช ุงููPhi of K |
|
|
|
405 |
|
00:44:04,230 --> 00:44:07,670 |
|
ู
ูุฌูุฏุฉ ูููุ ูู ุงููK bar ุฃููุฉ |
|
|
|
406 |
|
00:44:14,620 --> 00:44:30,300 |
|
ุชุงูู ุชุงูู ุณุคุงูู ุณุทุฑ ุงูุชุงูู ููุง ูููู ุงู ุงู |
|
|
|
407 |
|
00:44:30,300 --> 00:44:37,200 |
|
ูุฐุง ูุง ุงุจูู ุฃูุง ุจููู ูุณุงูู ุงู identity ุชุจุน ุงู ุฌู |
|
|
|
408 |
|
00:44:37,200 --> 00:44:42,220 |
|
ุจุงุฑ ุงุซุฑ ุนูู ุงูุทุฑููู ุจุงููุงู ุงููุฑุณ ูุง ู
ุงูุนุซุฑูุง ุจูุนู |
|
|
|
409 |
|
00:44:42,220 --> 00:44:46,900 |
|
ู
ุด ูุชุงุทููู ุงู identity ูุนูู ุงููู ูู .. ูุฐุง ูู ููุช |
|
|
|
410 |
|
00:44:46,900 --> 00:44:51,000 |
|
ุฃุฑูุฏ ู
ูุฑูุฒู
ุ ุนูุตุฑ ูุงุญุฏ. ุฃูุง ุจูู
ูู ุงูุนูุตุฑุ ุจุฏู ุฃุฌูุจ |
|
|
|
411 |
|
00:44:51,000 --> 00:44:55,000 |
|
ุนูุตุฑุ ุจุฏูุด ุฃุฌูุจ ูุซูุฑุ ุจููููู ู
ูู ุนูุตุฑุ ูุฐุง ูู
ุดู ุฃู |
|
|
|
412 |
|
00:44:55,000 --> 00:45:02,260 |
|
ุฃุซุจุช ุฃููุง non-emptyุ ุชู
ุงู
ุ ุทูุจุ ุฃูุง ุฅูู ูุฌูุฉ ูุธุฑ |
|
|
|
413 |
|
00:45:02,260 --> 00:45:07,980 |
|
ุฃุฎุฑูุ ุฅูู ูุฌูุฉ ูุธุฑ ุฃุฎุฑู ูู ูุฐุง ุงูููุงู
ุ ูุนูู ูู |
|
|
|
414 |
|
00:45:07,980 --> 00:45:12,820 |
|
ุจุฏูุง ูุดู ูู ูุฐุง ูู ูู homomorphism ููุง ูุงุ ุจููุฏุฑ |
|
|
|
415 |
|
00:45:12,820 --> 00:45:18,450 |
|
ูููู ุงูุฎุทูุฉ ูุฐู ุงุณุชูู ุดููุฉุ ุงูุญูู ูู ุฌูุช ููุง ูุงู of |
|
|
|
416 |
|
00:45:18,450 --> 00:45:26,950 |
|
ุงู X Y inverse ุฃููุณุช ูู ูุงู ููุงู inverse of K1 K2 |
|
|
|
417 |
|
00:45:26,950 --> 00:45:35,530 |
|
inverse ุตุญ ููุง ูุง ุฃุซุฑ ููุง ุจูุงู ู ุฃุซุฑ ููุง ุจูุงู ูุจูู |
|
|
|
418 |
|
00:45:35,530 --> 00:45:40,250 |
|
ุงููุชูุฌุฉ |
|
|
|
419 |
|
00:45:40,250 --> 00:45:47,640 |
|
K1 K2 Inverse ุงููู ู
ูุฌูุฏุฉ ูู ุงููK bar ุตุญ ููุง ูุง |
|
|
|
420 |
|
00:45:47,640 --> 00:45:55,440 |
|
ูุจูู ุตุงุฑ ุนูุฏู ุงููู ูู ุงู X Y inverse ู
ูุฌูุฏุฉ ุงู X Y |
|
|
|
421 |
|
00:45:55,440 --> 00:46:05,560 |
|
inverse ุจุฏูุง ุชุณุงูู ุงููู ุจุฏูุง ุชุณุงูู ุฃู ูุฐู ู
ู .. |
|
|
|
422 |
|
00:46:05,560 --> 00:46:11,190 |
|
ุงุณุชูู ุดููุฉ ุจุฏู ุฃูุบู ูุฐู ุฃูุบูุชูุง ุจู
ูู ุฃุซุฑุช ุนูููุง ููู |
|
|
|
423 |
|
00:46:11,190 --> 00:46:16,070 |
|
ุฃุตุจุญุช X Y inverse ุจุฏู ุฃุฌูุจูุง ููุง ูุจูู ุจุฏูุง ุชุณุงูู |
|
|
|
424 |
|
00:46:16,070 --> 00:46:24,030 |
|
ุงูู Phi of ุงูู K ูุงุญุฏ K ุงุชููู inverse ุงููู ูู ูุฐู |
|
|
|
425 |
|
00:46:24,030 --> 00:46:32,490 |
|
ู
ูุฌูุฏุฉ ูู ุงูู
ูู ูู ุงู Phi of Phi of K ูPhi of K |
|
|
|
426 |
|
00:46:32,490 --> 00:46:43,590 |
|
Phi of K ูุฃ ุงุญูุง ุงุญูุง ุฎููู ู
ุนุงูุง ุงุญูุง ุฎููู .. ูุงู |
|
|
|
427 |
|
00:46:43,590 --> 00:46:49,270 |
|
ุงููู ูุตููุง X Y inverse ุจุฏู ูุณุงูู ูู ุงููุฑุณุช ู K1 K2 |
|
|
|
428 |
|
00:46:49,270 --> 00:46:53,830 |
|
ุจุฏู ุงุซุฑ ููุง ุจูู ู ุงุซุฑ ููุง ุจูู ูุงู ุงุซุฑูุง ุจูู ู |
|
|
|
429 |
|
00:46:53,830 --> 00:46:59,390 |
|
ุงุซุฑูุง ููุง ุจูู ูุฐู ูุชูุบู ุงูุชุงููุฉ ุจุตูุฑ ุงููู ูู X Y |
|
|
|
430 |
|
00:46:59,390 --> 00:47:06,100 |
|
inverse ุจุฏู ูุณุงูู ูู of K1 K2 inverse ุชู
ุงู
ุ ูุจูู |
|
|
|
431 |
|
00:47:06,100 --> 00:47:20,100 |
|
ูุฐู ู
ูุฌูุฏุฉ ูู Phi of K ู Phi of K ูุญุธุฉ |
|
|
|
432 |
|
00:47:20,100 --> 00:47:25,880 |
|
ุดููุฉ ุนูุฏู ุงุนุชุฑุงุถ ุนูู ูุฐู ุงูุนุจุงุฑุฉุ ุงูุฎุทูุฉ ุงููู ุจุนุฏูุง |
|
|
|
433 |
|
00:47:25,880 --> 00:47:31,680 |
|
ุชู
ุงู
ุฃูุง ุฌูุช ุงุซุฑู ุจูุงู ุนูู XY inverse ุทุจ ูุฏู ุชุณุงูู |
|
|
|
434 |
|
00:47:31,680 --> 00:47:35,460 |
|
ูุฏู ู
ุดููุง ูุบุงูุฉ ููุง ูู ูููุง ู
ุด ุนุงุฑููู ูู |
|
|
|
435 |
|
00:47:35,460 --> 00:47:40,240 |
|
homomorphism ููุง ูุฃ ูุจูู ูุงู ุตุงุฑ ูู ุงูุดุบู ูุฏู ู
ุด |
|
|
|
436 |
|
00:47:40,240 --> 00:47:45,350 |
|
ุตุญูุญ ุฅุฐุง ูู homomorphism ุบุตุจ ุนูู ู
ุง ูุฑุถู ูุฅูุง ูุงู |
|
|
|
437 |
|
00:47:45,350 --> 00:47:48,530 |
|
ูุฐุง ุงูููุงู
.. ููุฏ ููุช ุงู inverse ุตุญ ููู ู
ุตูุฑ ูุฐุง |
|
|
|
438 |
|
00:47:48,530 --> 00:47:52,910 |
|
ุงูููุงู
ุตุญูุญ ููุณ ุตุญูุญุง ุฅูุง ุฅุฐุง ูุงูุช homomorphism |
|
|
|
439 |
|
00:47:52,910 --> 00:48:00,130 |
|
ุชู
ุงู
ุ ุนูู .. ุฃููุฉ ุงู homomorphism ู
ุด ุถุฑูุฑู ูููู |
|
|
|
440 |
|
00:48:00,130 --> 00:48:04,010 |
|
ู
ุฏุจู ุตุญูุญ ูู
ุง ุชุฌูุจ ูู ุงููุต ุจุทู ุงูุชุฑุงู ุฃุตูุง ู
ุตูุฑ |
|
|
|
441 |
|
00:48:04,010 --> 00:48:08,490 |
|
ุงููุงุญุฏ ุงููู ุนูุฏ ุงูุตูุฑ ู
ุธุจูุท ู
ุด ู
ุชุจุทู ุงุฎุชุฑุงุน ุฃุตูุง ู
ุด |
|
|
|
442 |
|
00:48:08,490 --> 00:48:12,350 |
|
ู
ุชุจุทู homomorphism ู
ุชุจุทู ุงุฎุชุฑุงุน ู
ุนุฑู ุฃุตูุง ุชุตูุฑ |
|
|
|
443 |
|
00:48:12,350 --> 00:48:15,470 |
|
ุงูุตูุฑุฉ ุงูุนูุตุฑ ุงููู ูู ุฃูุซุฑ ู
ู ุงูุตูุฑุฉ ูููู ุฃูุช |
|
|
|
444 |
|
00:48:15,470 --> 00:48:18,130 |
|
ุจุชุงุฎุฏ ุงููู ูู ุฃูุซุฑ ู
ู ุงูุตูุฑุฉ ุงูุนูุตุฑ ุงููู ูู ุฃูุซุฑ |
|
|
|
445 |
|
00:48:18,130 --> 00:48:21,210 |
|
ู
ู ุงูุตูุฑุฉ ุงุญูุง ุจูุญูู homomorphism ูููุณ function |
|
|
|
446 |
|
00:48:21,210 --> 00:48:27,050 |
|
ุฅุฐุง ูููุง function ู
ุงูู isomorphism function ูุนูู |
|
|
|
447 |
|
00:48:27,050 --> 00:48:30,230 |
|
ู
ูุฉ ุงูู
ูุฉ ุจุณ ุงู homomorphism ูุฏ ูููู ู ูุฏ ูุง ูููู |
|
|
|
448 |
|
00:48:31,440 --> 00:48:36,400 |
|
ุฃู ูุฏ ูููู ู ูุฏ ูุง ูููู ุชู
ุงู
ุทูุจ ุงุญูุง ูุฐู ุงูููุทุฉ |
|
|
|
449 |
|
00:48:36,400 --> 00:48:42,740 |
|
ุฑูู
ูุฏุงุด ูู ุณุจุนุฉ ุงูููุทุฉ ูุฐู ุฑูู
ุณุจุนุฉ ุฑูู
ุณุจุนุฉ |
|
|
|
450 |
|
00:48:42,740 --> 00:48:50,600 |
|
ู
ุงุดููู ููู ุตุญ ููุฐู ุชู
ุงู
ูุงุฎุฏูุง x y inverse ู ุฃุซุฑูุง |
|
|
|
451 |
|
00:48:50,600 --> 00:48:55,180 |
|
ุนูููุง ุจูุงูุฉ ู ุทูุน ู ูุงุญุฏ ูุชููู ุงููู ู
ูุฌูุฏุฉ ูู ู |
|
|
|
452 |
|
00:48:55,180 --> 00:49:01,270 |
|
ู
ุธุจูุท ูุจูู ู
ู ูุฐุง ุงูููุงู
ุจููุฏุฑ ูููู X Y inverse |
|
|
|
453 |
|
00:49:01,270 --> 00:49:08,490 |
|
ู
ูุฌูุฏุฉ ูู ุงูู Phi ูู ุงู Phi of K ุตุญูุญ ูุจูู ุจูููู |
|
|
|
454 |
|
00:49:08,490 --> 00:49:16,550 |
|
ููุง ุงูููุทุฉ ุงูุฃุฎูุฑุฉ ุฃู ุงู X Y inverse ูุฐู ู
ูุฌูุฏุฉ ูู |
|
|
|
455 |
|
00:49:16,550 --> 00:49:25,650 |
|
ุงู Phi inverse ูู ุงู Phi inverse ูู ุงู Phi inverse |
|
|
|
456 |
|
00:49:25,650 --> 00:49:31,360 |
|
of K ุจุงุฑ ุงููู ููู ุจุงูุธุจุท ุชู
ุงู
ุง ุฎูุงุต ูุจูู ููุด ูุนูุฏูุง |
|
|
|
457 |
|
00:49:31,360 --> 00:49:36,220 |
|
ูุฐู ูููุง ู
ุงูุงุด ูุฒูู ูู ุงู X Y ุงููุฑุณุช ู
ูุฌูุฏุฉ ูู |
|
|
|
458 |
|
00:49:36,220 --> 00:49:40,840 |
|
ุงููุงู ุงููุฑุณุช ูุฐุง ููู ุฒูุงุฏุฉ ุตูุชูุง ูุฐู ุงูุฎุทูุฉ ุฒูุงุฏุฉ |
|
|
|
459 |
|
00:49:40,840 --> 00:49:45,660 |
|
ุชู
ุงู
ูุจูู ู
ูุฌูุฏุฉ ูู ุงูู Phi inverse of K bar ูุจูู |
|
|
|
460 |
|
00:49:45,660 --> 00:49:50,920 |
|
ุจูุงุก ุงููู ุนููู Phi inverse of K bar is a subgroup |
|
|
|
461 |
|
00:49:50,920 --> 00:49:59,100 |
|
ูุจูู ููุง Phi inverse of K bar is a subgroup ู
ู |
|
|
|
462 |
|
00:49:59,100 --> 00:50:05,840 |
|
ู
ููุ ู
ู ุงู G ุจุฏูุง ููุฌู ููููุทุฉ ุงูุซุงู
ูุฉ ุฎูู ุจุงูู |
|
|
|
463 |
|
00:50:05,840 --> 00:50:10,900 |
|
ู
ุนุงูุง ุงูููุทุฉ ุงูุซุงู
ูุฉ ุงููู ุฌุจูุงูุง ูุฐู ุงูู subgroup |
|
|
|
464 |
|
00:50:10,900 --> 00:50:16,160 |
|
ู
ู G ุจูุง ูุซุจุช ุฃููุง normal ุจุณ ุจุดุฑุท ุฃู ุงู K bar |
|
|
|
465 |
|
00:50:16,160 --> 00:50:23,320 |
|
normal ู
ู G ูุจูู ุจุงุฌู ุจูููู assume ุงูุชุฑุถ ุฃู ุงู K |
|
|
|
466 |
|
00:50:23,320 --> 00:50:30,840 |
|
bar is a normal subgroup ู
ู G bar ุจุงูุฏุงูู ุงุซุจุช ุฃู |
|
|
|
467 |
|
00:50:30,840 --> 00:50:38,520 |
|
ุงููุงู |
|
|
|
468 |
|
00:50:38,520 --> 00:50:49,580 |
|
ุงููุฑุณ of K bar is a normal subgroup ู
ู ู
ู ู
ู ุงู G |
|
|
|
469 |
|
00:50:50,950 --> 00:51:00,270 |
|
ูููุณ ูุฐูู ุจุฏุฑูุน ุฃุฎุฏ let ุงูุฌู ู
ูุฌูุฏุฉ ูู ุฌู and ุงู X |
|
|
|
470 |
|
00:51:00,270 --> 00:51:11,210 |
|
ู
ูุฌูุฏ ูู ุงููุงู ุงููุฑุณ of ุงููุจุงุฑ then ุงูุฌู ู
ูุฌูุฏุฉ ูู |
|
|
|
471 |
|
00:51:11,210 --> 00:51:20,950 |
|
ุงูุฌู ู ุงูู X ูุฐู ุจุฏูุง ุชุณุงูู ูู ุงููุฑุณ ูู ุงููุฑุณ of K |
|
|
|
472 |
|
00:51:20,950 --> 00:51:29,760 |
|
ุนูู ุณุจูู ุงูู
ุซุงู ูุจูู ูุฐุง ู
ุนูุงู ุฃู ุฌู ู
ูุฌูุฏ ูู ุฌู |
|
|
|
473 |
|
00:51:29,760 --> 00:51:37,360 |
|
and ูุงู of ุงูุณ ูุงู of ุงูุณ ุจุฏู ูุณุงูู ูู
ุ ุจุฏู ูุณุงูู |
|
|
|
474 |
|
00:51:37,360 --> 00:51:44,700 |
|
ูู
ุทุจ ูู ุฃุฎุฏุช ุงูุฌู ุงูุณ ุฌู ุงููุฑุณ ู
ุดุงู ุงุซุจุงุช ุงู |
|
|
|
475 |
|
00:51:44,700 --> 00:51:51,000 |
|
normality ูุงุฎุฏ ุชุฃุซูุฑ ุงูู Phi ุนูููุง ูุจูู ูุฐุง ุงูููุงู
|
|
|
|
476 |
|
00:51:51,000 --> 00:51:59,700 |
|
ุจุฏู ูุณุงูู Phi of G Phi of X Phi of G inverse ูุจูู |
|
|
|
477 |
|
00:51:59,700 --> 00:52:06,420 |
|
ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู Phi of G Phi of X ุงููู ูู |
|
|
|
478 |
|
00:52:06,420 --> 00:52:12,400 |
|
main ุงููู ูู ุงุจ K Phi of X ุงููู ูู ู ุงู K normal |
|
|
|
479 |
|
00:52:12,400 --> 00:52:21,200 |
|
ุงููู ูู K ู ุงูู Phi ูุฐู of G ููู inverse ุจุงูุดูู ุงููู |
|
|
|
480 |
|
00:52:21,200 --> 00:52:28,620 |
|
ุนูุฏูุง ููุง ุชู
ุงู
ุ ุงูุญูู ูุฐู ู
ูุฌูุฏุฉ ูู G ููุฐู ู
ูุฌูุฏุฉ |
|
|
|
481 |
|
00:52:28,620 --> 00:52:36,240 |
|
ูู ุงููPhi inverse of K ููุฐู ู
ูุฌูุฏุฉ ูู G ุฃุฎุฏูุง |
|
|
|
482 |
|
00:52:36,240 --> 00:52:41,720 |
|
ุชุฃุซูุฑ ุงููPhi ุนูููู
ูุทูุน ุนูุฏูุง ูุฐุง ุงููElement ููุฐุง |
|
|
|
483 |
|
00:52:41,720 --> 00:52:49,100 |
|
ููุฐุง ุงููK bar ุฃูุง ุฌุงู ุนูููุง normal ูุจูู ูู ุฃุฎุฏุช |
|
|
|
484 |
|
00:52:49,100 --> 00:52:56,580 |
|
element ู
ู G bar ูุฐุง ู
ูุฌูุฏ ูู G bar ููุฐุง ู
ูุฌูุฏ ูู |
|
|
|
485 |
|
00:52:56,580 --> 00:53:04,000 |
|
ุฌู ุจุงุฑ ููุฐุง ู
ูุฌูุฏ ูู ุงููุงู ุงููุฑุณ ูุฐุง ู
ูุฌูุฏ ูู |
|
|
|
486 |
|
00:53:04,000 --> 00:53:10,460 |
|
ุงููุงู ุงููุฑุณ of K ุฅุฐุง ูุฐุง ููู ู
ูุฌูุฏ ูู ุงููุงู ุงููุฑุณ |
|
|
|
487 |
|
00:53:10,460 --> 00:53:17,680 |
|
of K ุจุงุฑ ุจุงูุดูู ุงููู ุนูุฏูุง K ุจุงุฑ ูุจูู ุจูุงุก ุนููู |
|
|
|
488 |
|
00:53:17,680 --> 00:53:21,500 |
|
ุงููุงู |
|
|
|
489 |
|
00:53:21,890 --> 00:53:30,270 |
|
ุฅููุฑุณุช ู
ู K ุจุงุฑ ูู ุนุถู ุนุงู
ู
ู ุฌูู |
|
|