abdullah's picture
Add files using upload-large-folder tool
9fbc638 verified
raw
history blame
52.5 kB
1
00:00:20,690 --> 00:00:24,770
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุนูˆุฏู†ุง ุนู„ู‰ ุงู„ุจุฏุก ููŠ ุงู„ู…ุญุงุถุฑุงุช ููŠ
2
00:00:24,770 --> 00:00:29,010
ุงู„ูุชุฑุฉ ุงู„ุตุจุงุญูŠุฉ ูƒุชุจู†ุง ู†ุธุฑูŠุฉ ุนุจุงุฑุฉ ุนู† ุณุช ู†ู‚ุงุท
3
00:00:29,010 --> 00:00:33,450
ู†ู‚ุทุชูŠู† ูƒุงู†ุชุง ู…ุจุฑู‡ู†ุงุชูŠู† ุณุงุจู‚ุง ููŠ ู…ูˆุถูˆุน ุงู„ isomorphism
4
00:00:33,450 --> 00:00:38,870
ู…ุจุฑู‡ู†ู†ุง ู†ู‚ุทุชูŠู† ูˆู‡ุฐู‡ ู‡ูŠ ุงู„ู†ู‚ุทุฉ ุงู„ุฎุงู…ุณุฉ ูŠุจู‚ู‰ ุงู„ู†ู‚ุทุฉ
5
00:00:38,870 --> 00:00:42,430
ุงู„ุฎุงู…ุณุฉ ุจุชู‚ูˆู„ ุฅู†ู‡ phi of a ุจุฏูˆ ูŠุณุงูˆูŠ phi of b if
6
00:00:42,430 --> 00:00:46,990
and only if ุงู„ a ููŠ ุงู„ kernel ุจุฏูˆ ูŠุณุงูˆูŠ ุงู„ b ููŠ ุงู„
7
00:00:46,990 --> 00:00:52,660
kernel ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุจุฑู‡ู† ุตุญุฉ ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ูุจุงุฌูŠ ุจู‚ูˆู„ ู„ู‡
8
00:00:52,660 --> 00:00:59,340
ุงู„ proof ู„ูˆ ูƒุงู† ุงู„ phi of a ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ phi of b
9
00:00:59,340 --> 00:01:06,210
ู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญ if and only if ู„ูˆ ุถุฑุจู†ุง ููŠ ุงู„ู…ุนูƒูˆุณ
10
00:01:06,210 --> 00:01:11,990
ุชุจุนู‡ุง ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ุจูŠูƒูˆู† ู…ูŠู†ุŸ ุจูŠูƒูˆู† phi of b
11
00:01:11,990 --> 00:01:18,190
ู„ูƒู„ inverse ููŠ phi of a ุจุฏูˆ ูŠุณุงูˆูŠ ุงู„ identity
12
00:01:18,190 --> 00:01:25,690
element ุชุจุน ู…ู†ุŸ ุชุจุน ุงู„ู€G bar ู„ุฃู† phi of a ูˆููŠ phi of b
13
00:01:25,690 --> 00:01:32,440
ู…ูˆุฌูˆุฏุฉ ุชุงุชูˆูŠู† ููŠ ุงู„ู€G bar ุงู„ูƒู„ุงู… ู‡ุฐุง ุตุญูŠุญ if and
14
00:01:32,440 --> 00:01:48,720
only if ุงู„ูƒู„ุงู…
15
00:01:48,720 --> 00:01:53,570
ู‡ุฐุง ุตุญูŠุญ if and only if ุงู„ู€ Phi ุฃูˆู„ ู…ุง ุฃุฎุฐู†ุงู‡ุง ู‡ูˆ
16
00:01:53,570 --> 00:02:03,110
HomomorphismุŒ ุฅุฐุง phi of b inverse a ุจุฏู„
17
00:02:03,110 --> 00:02:08,650
ุณุจุจ ู…ู† ุงู„ู€ Identity Element ุชุจุน ุงู„ู€ Gยฏ ุฅูŠุด ุชูุณูŠุฑูƒ
18
00:02:08,650 --> 00:02:13,810
ู„ู‡ุฐู‡ ุงู„ุนุจุงุฑุฉ phi ู„ู…ุง ุฃุซุฑุช ุนู„ู‰ element ุฃุนุทุชู†ูŠ ุงู„
19
00:02:13,810 --> 00:02:17,510
identity element ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ element ูˆูŠู† ู…ูˆุฌูˆุฏุŸ ุงู„
20
00:02:17,510 --> 00:02:22,950
kernel ูŠุจู‚ู‰ ู‡ุฐุง .. ูˆุงู„ู„ู‡ ู‡ุฐุง ู…ุนู†ุงุชู‡ if and only if
21
00:02:22,950 --> 00:02:28,770
ูƒู„ู‡ ู…ุงุดูŠูŠู† ุจ if and only if ุงู„ b inverse a ู…ูˆุฌูˆุฏ
22
00:02:28,770 --> 00:02:35,190
ููŠ ุงู„ kernel ู„ู„ู€phi ู…ุนู†ู€ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู† ุงู„ู€b inverse
23
00:02:35,190 --> 00:02:41,030
a ููŠ ุงู„ู€kernel ู„ู„ู€phi ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€kernel ู„ู„ู€phi
24
00:02:41,030 --> 00:02:46,350
itself ู„ูˆ ุถุฑุจู†ุง ุงู„ุทุฑููŠู† ููŠ ุงู„ู€b ู…ู† ุฌู‡ุชูŠ ุงู„ุดู…ุงู„
25
00:02:46,350 --> 00:02:50,650
ูŠุจู‚ู‰ ุจุตูŠุฑ if and only if ุงู„ู€a ููŠ ุงู„kernel ู„ู„ู€phi
26
00:02:50,650 --> 00:02:56,130
ุจุฏู‡ ูŠุณุงูˆูŠ b ููŠ ุงู„kernel ู„ู„ู€phi ุฃุธู† ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ
27
00:02:56,130 --> 00:03:05,820
ุงู„ู†ู‚ุทุฉ ุงู„ุณุงุฏุณุฉ ุงู„ู†ู‚ุทุฉ ุงู„ุณุงุฏุณุฉ ุจุชู‚ูˆู„ ู…ุง ูŠุฃุชูŠ ู„ูˆ ูƒุงู†
28
00:03:05,820 --> 00:03:12,220
ุงู„ู€ phi of g ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ g prime ุงู„ phi of g ุจุฏู‡
29
00:03:12,220 --> 00:03:20,470
ูŠุณุงูˆูŠ ุงู„ g prime ุงู„ู€phi inverse of g' ุจุฏูˆ ูŠุณุงูˆูŠ ุงู„ู€g
30
00:03:20,470 --> 00:03:24,430
ููŠ ุงู„ู€Kernel ู„ู„ู€phi ูˆุฑุงุญ ุงู„ู…ุนุฑูุฉ ู‡ุฐู‡ ูƒู„ ุงู„ู€x ุงู„ู„ูŠ
31
00:03:24,430 --> 00:03:27,750
ู…ูˆุฌูˆุฏุฉ ููŠ g ุจูŠุญูŠุท ุงู„ู€phi of x ุจุฏูˆ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏูˆ
32
00:03:27,750 --> 00:03:33,490
ูŠุณุงูˆูŠ g' ุจุฏู†ุง ู†ุฑูˆุญ ู†ุซุจุช ุตุญุฉ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู„ู†ู‚ุทุฉ ู‡ุฐู‡
33
00:03:33,490 --> 00:03:38,030
ุชุนุงู„ ู†ุดูˆู ุฅูŠุด ู…ูู‡ูˆู…ู‡ุง ู‚ุจู„ ู…ุง ู†ุจุฑู‡ู† ุจุฏู†ุง ู†ูู‡ู… ู…ุง
34
00:03:38,030 --> 00:03:42,770
ู‡ูˆ ู…ูˆุถูˆุน ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุดูˆู ูŠุง ุณูŠุฏูŠ ุฅุญู†ุง ุนู†ุฏู†ุง phi ู…ู†
35
00:03:42,770 --> 00:03:48,150
ุงู„ group g ุฅู„ู‰ ุงู„ group g bar ุชู…ุงู… ู‚ุงู„ ู„ูŠ phi of g
36
00:03:48,150 --> 00:03:52,200
ุจุฏู‡ ูŠุณุงูˆูŠ g prime ูŠู‚ูˆู„ ู„ูŠ g prime ูˆูŠู† ู…ูˆุฌูˆุฏุฉุŸ ููŠ ุงู„ู€g
37
00:03:52,200 --> 00:03:56,840
bar ูˆุงู„ู€g ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€g ุทูŠุจ ูƒูˆูŠุณ ุฅุฐุง ู‡ุฐู‡
38
00:03:56,840 --> 00:04:02,140
ู…ุนู„ูˆู…ุฉ ุงู„ุขู† ุฅูŠุด ุจู‚ูˆู„ ู„ูŠ ุจู‚ู‰ุŸ ุจุฏูŠ ูŠูƒูˆู† ุงู„ู€phi inverse
39
00:04:02,140 --> 00:04:07,960
ู„ู„ู€g prime ุชุณุงูˆูŠ g ู…ุถุฑูˆุจุฉ ููŠ ุงู„ kernel ูŠุนู†ูŠ ู„ู…ุง ู†ุฃุฎุฐ phi
40
00:04:07,960 --> 00:04:11,260
inverse ู„ู„ุทุฑููŠู† ู…ุด ู‡ุฑูˆุญ ุฃู‚ูˆู„ phi inverse of g
41
00:04:11,260 --> 00:04:16,930
prime ุชุณุงูˆูŠ g ู„ูŠุดุŸ ู„ูŠุดุŸ ู„ุฃู†ู‡ุง ูƒุงู†ุช one to one ุตุญูŠุญ ู‡ุฐุง
42
00:04:16,930 --> 00:04:20,250
ู„ูŠุณ isomorphismุŒ ุฅู† ู‡ุคู„ุงุก ุนุจุงุฑุฉ ุนู† ู…ุฌู…ูˆุนุฉ ู…ู†
43
00:04:20,250 --> 00:04:24,690
ุงู„ู†ู‚ุงุท ุตูˆุฑุชู‡ู… ุงู„ู€Identity. ุฅุฐู† ุนู†ุฏู…ุง ุฃุฏุฎู„ ู„ู„ุนูƒุณุŒ
44
00:04:24,690 --> 00:04:28,170
ูุฅู† ุงู„ู€phi inverse ู„ู‡ุฐุง ุงู„ุนู„ู… ุณูŠูƒูˆู† ู…ุฌู…ูˆุนุฉ ู…ู†
45
00:04:28,170 --> 00:04:33,490
ุงู„ู†ู‚ุงุท ูˆู„ูŠุณ ู†ู‚ุทุฉ ูˆุงุญุฏุฉ. ูˆู‡ุฐุง ู…ุง ุณู†ุซุจุชู‡ ุจุนุฏ ู‚ู„ูŠู„ ููŠ
46
00:04:33,490 --> 00:04:38,420
ุงู„ู†ุธุฑูŠุฉ ุงู„ู‚ุงุฏู…ุฉ. ูŠุจู‚ู‰ phi inverse g prime ูŠุจู‚ู‰ ู…ูŠู†
47
00:04:38,420 --> 00:04:41,680
ูŠุณุงูˆูŠ g ููŠ ุงู„ kernel ุงู„ู„ูŠ ููŠ ู‡ุฐุง ุงู„ู„ูŠ ุนุงูŠุฒูŠู† ุฅู† ุชุจุฏูˆ
48
00:04:41,680 --> 00:04:45,340
ู‡ุฏูˆู„ two sets are equal ูŠุจู‚ู‰ ุจุฏูŠ ุงุฑูˆุญ ุฃุฃุฎุฐ element
49
00:04:45,340 --> 00:04:48,800
ู‡ู†ุง ุฃุซุจุช ุฅู†ู‡ ู…ูˆุฌูˆุฏ ู‡ู†ุง ูˆุฃุนู…ู„ ุงู„ุฃุนู…ุงู„ ุงู„ุนูƒุณูŠุฉ ุขุฎุฐ
50
00:04:48,800 --> 00:04:52,840
element ู‡ู†ุง ูˆุฃุซุจุช ุฅู†ู‡ ู…ูˆุฌูˆุฏ ู‡ู†ุง ูŠุจู‚ู‰ ู…ุดุงู† ู‡ูŠูƒ
51
00:04:52,840 --> 00:04:59,900
ุจุงุฌูŠ ุฃู‚ูˆู„ ู„ู‡ let ุงู„ x ู…ูˆุฌูˆุฏุฉ ููŠ phi inverse g prime
52
00:05:01,340 --> 00:05:09,260
ุทุจุนุง ูŠุจู‚ู‰ ู„ูˆ ุฃุซุฑุช ุจู…ูŠู†ุŸ ุจ phi ุนู„ู‰ ุงู„ุทุฑููŠู† ุจุตูŠุฑ phi
53
00:05:09,260 --> 00:05:17,880
of x ุจุฏู‡ุง ุชุณุงูˆูŠ g prime ุทูŠุจ ู‡ุฐุง ู…ุนู†ุงู‡ ุฅู†ู‡ phi of x
54
00:05:17,880 --> 00:05:24,500
ูŠุณุงูˆูŠ ุฃุธู† g prime ู…ูˆุงุทุนู‡ ู…ุง ุฃู‚ุฏุฑุด ุจ phi of g ูŠุจู‚ู‰ ู‡ุฐุง
55
00:05:24,500 --> 00:05:31,090
phi of g ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ุทูŠุจ ู„ูˆ ุฑุญุช ู…ู† ู‡ุฐุง
56
00:05:31,090 --> 00:05:37,250
ุงู„ูƒู„ุงู… ุถุฑุจุช ุงู„ุทุฑููŠู† ููŠ ู…ุนูƒูˆุณ ู‡ุฐุง ุงู„ element ูŠุจู‚ู‰
57
00:05:37,250 --> 00:05:45,810
ุจุฏู‡ ูŠุตูŠุฑ phi of g ุงู„ูƒู„ inverse ููŠ ุงู„
58
00:05:45,810 --> 00:05:50,290
phi of x ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ุทุฑู ุงู„ูŠู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„
59
00:05:50,290 --> 00:05:56,610
identity element ุชุจุน g bar ุชุจุน ุงู„ g ุจุนุถู‡ ุจู†ูุณ ุงู„ู…ูู‡ูˆู…
60
00:05:56,610 --> 00:06:02,810
ู‡ุฐุง ุฅูŠุด ู…ุนู†ุงู‡ุŸ ู…ุนู†ุงู‡ ุฅู†ู‡ phi of g inverse ููŠ phi
61
00:06:02,810 --> 00:06:08,310
of x ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ identity element ุชุจุน ุงู„ g bar ุฃูˆ
62
00:06:08,310 --> 00:06:15,250
ุฅู† ุดุฆุชู… ูู‚ูˆู„ูˆุง phi of g inverse x ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„
63
00:06:15,250 --> 00:06:20,470
identity element ุชุจุน ุงู„ g bar ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู†
64
00:06:20,470 --> 00:06:24,690
ู‡ุฐุง ุงู„ element ุจูŠู† ุงู„ู‚ูˆุณูŠู† ูˆูŠู† ู…ูˆุฌูˆุฏุŸ ููŠ ุงู„ kernel
65
00:06:24,690 --> 00:06:29,690
ู„ุฃู†ู‡ ุตูˆุฑุชู‡ ุงู„ identity ูŠุจู‚ู‰ ุจุฏู‡ ูŠุตูŠุฑ g inverse x
66
00:06:29,690 --> 00:06:36,490
ู…ูˆุฌูˆุฏ ููŠ ุงู„ kernel ู„ู„ู€phi ุทุจ ู„ูˆ ุถุฑุจุช ุงู„ุทุฑููŠู† ููŠ g
67
00:06:36,490 --> 00:06:42,130
ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ูŠุจู‚ู‰ ุจุธู„ x ู…ูˆุฌูˆุฏ ููŠ ุงู„ g ููŠ
68
00:06:42,130 --> 00:06:48,480
ุงู„ kernel ู„ู„ู€phi ูŠุจู‚ู‰ ุฃู†ุง ุฃุฎุฐุช x ู…ูˆุฌูˆุฏ ููŠ ุงู„ phi
69
00:06:48,480 --> 00:06:53,940
inverse ู„ู„ู€g' ู„ู‚ูŠุชู‡ ู…ูˆุฌูˆุฏ ูˆูŠู†ุŸ ููŠ g ููŠ ุงู„ kernel
70
00:06:53,940 --> 00:07:00,020
ู…ุนู†ุงุชู‡ ุงู„ุณุช ุงู„ุฃูˆู„ุงู†ูŠุฉ subset ู…ู† ุงู„ุณุช ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰
71
00:07:00,020 --> 00:07:08,060
ู‡ู†ุง phi inverse of g' subset ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ g ููŠ
72
00:07:08,060 --> 00:07:13,580
ุงู„ kernel ู„ู„ู€phi ุงุนุชุจุฑ ู‡ุฐู‡ ู‡ูŠ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุจุงู„ุฏุฑุฌุฉ
73
00:07:13,580 --> 00:07:21,300
ู„ู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ on the other hand ุจุงู„ุฏุฑุฌุฉ
74
00:07:21,300 --> 00:07:28,940
ูŠุฃุฎุฐ x ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ g ููŠ ุงู„ kernel ู„ู„ู€phi ุฎุฐ ู„ู„ x
75
00:07:28,940 --> 00:07:35,380
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ g ููŠ ุงู„ kernel ู„ู„ู€phi ุฅุฐุง ูƒู†ุช ุฃุซุจุช ุฅู†
76
00:07:35,380 --> 00:07:39,700
ุงู„ x ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ุจูŠูƒูˆู† ุชู… ุงู„ู…ุทู„ูˆุจ ูŠูƒูˆู† ุงู†ุชู‡ูŠู†ุง
77
00:07:39,700 --> 00:07:45,600
ู…ู† ุงู„ู…ุณุฃู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰ then ุงู„ x ู‡ุฐู‡ ูŠุง ุดุจุงุจ
78
00:07:45,600 --> 00:07:51,200
ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ูŠ ุงู„ g ู…ุถุฑูˆุจุฉ ููŠ element ู…ู† ู…ูŠู†ุŸ ู…ู†
79
00:07:51,200 --> 00:07:59,080
ุงู„ kernel ุชุจุน ุงู„ู€phi ูˆู„ูŠูƒู† ุงู„ู„ูŠ ู‡ูˆ k ูŠุจู‚ู‰ x ุจุฏุฃุช
80
00:07:59,080 --> 00:08:09,660
ุชุณุงูˆูŠ gk for some for some k ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ kernel
81
00:08:09,660 --> 00:08:17,100
ู„ phi ุทูŠุจ ุดูˆ ุฑุฃูŠูƒ ุฃุซุฑ ุนู„ู‰ ุงู„ุชู†ุชูŠู† ุจ phi ูŠุจู‚ู‰ ุฅูŠุด ุจุฏู‡
82
00:08:17,100 --> 00:08:25,960
ูŠุตูŠุฑุŸ ุจุฏู‡ ูŠุตูŠุฑ phi of x ุจุฏู‡ ูŠุณุงูˆูŠ phi of g ููŠ phi of k ูŠุนู†ูŠ
83
00:08:25,960 --> 00:08:32,540
ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฅู†ู‡ phi of x ุจุฏู‡ ูŠุณุงูˆูŠ phi of g ููŠ
84
00:08:32,540 --> 00:08:42,240
phi of .. ุงู„ู„ูŠ ู‡ูˆ small k ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุฃูˆ ู‡ุฐุง
85
00:08:42,240 --> 00:08:49,680
ุจุฏู‡ ูŠุนุทูŠู†ุง ุงู„ุทุฑู ุงู„ุดู…ุงู„ phi of x ุงู„ุทุฑู ุงู„ูŠู…ูŠู† phi
86
00:08:49,680 --> 00:08:55,860
of g ูƒุฏู‡ ู…ุนุทู‰ ู…ู† ุฑุฃุณ ุงู„ู…ุณุฃู„ุฉุŸ g prime ูŠุจู‚ู‰
87
00:08:55,860 --> 00:09:04,900
ู‡ุฐุง phi of g ุจุฏู‡ ูŠุณุงูˆูŠ g prime ุทูŠุจ phi of k ูƒุฏู‡ ุฅูŠุดุŸ
88
00:09:04,900 --> 00:09:10,080
ุทู„ุน ู„ูŠู‡ ู‡ู†ุงุŸ ุฅุญู†ุง ุฌุจู†ุงู‡ุง ู…ู† ูˆูŠู† ุงู„ k ู‡ุฐุงุŸ ู…ูˆุฌูˆุฏุฉ
89
00:09:10,080 --> 00:09:13,200
ููŠ ุงู„ kernel for some k ุงู„ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ kernel
90
00:09:13,200 --> 00:09:18,880
ูŠุจู‚ู‰ phi of k ุจู‚ุฏ ุฅูŠุดุŸ ุจุงู„ identity ูŠุจู‚ู‰ ู‡ุฐุง ุจุงู„
91
00:09:18,880 --> 00:09:27,880
identity ุชุจุน ุงู„ g bar ู„ูŠุดุŸ since ุงู„ู„ูŠ ู‡ูˆ ุงู„ k ู‡ุฐู‡
92
00:09:27,880 --> 00:09:33,300
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ kernel ู„ู„ู€phi ุงู„ู†ุธุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง
93
00:09:33,300 --> 00:09:39,400
ุจุชุนุทูŠู†ุง ุงู„ identity element ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ุณุงุนุฉ ุงู„
94
00:09:39,400 --> 00:09:45,860
phi of x ุจุฏู‡ ูŠุณุงูˆูŠ ู…ู† ุงู„ g' ู„ูŠุดุŸ ุฅู† ุงู„ g' ู…ูˆุฌูˆุฏุฉ
95
00:09:45,860 --> 00:09:50,380
ููŠ g' ูˆุงู„ identity ู‡ูŠ ุชุจุน ุงู„ g' ูŠุจู‚ู‰ ุญุงุตู„ ุงู„ุถุฑุจ
96
00:09:50,380 --> 00:09:58,050
ุจูŠุนุทูŠู†ุง ู…ู† g' ูŠุจู‚ู‰ ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฅู† ุงู„ x ุจุชูƒูˆู†
97
00:09:58,050 --> 00:10:06,270
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ phi inverse of g' ู„ุงุญุธ ู…ุง ูŠุฃุชูŠ ุฅูŠุด
98
00:10:06,270 --> 00:10:11,070
ูƒุชุจุช ุฃู†ุง ุงู„ุณุทุฑ ุงู„ุฃุฎูŠุฑ ุฃู†ุง ูˆุตู„ุช ู„ุบุงูŠุฉ ู‡ู†ุง phi of x
99
00:10:11,070 --> 00:10:15,470
ุจุฏู‡ ูŠุณุงูˆูŠ g' ููŠ ุงู„ identity ูŠุจู‚ู‰ phi of x ุจุฏู‡
100
00:10:15,470 --> 00:10:22,230
ูŠุณุงูˆูŠ g' ุฅูŠุด ุฑุญุช ูƒุชุจุชูŠุŸ ูŠุจู‚ู‰ ุงู„ x ู…ุง ูƒุชุจุชุด ุชุณุงูˆูŠ ููŠ
101
00:10:22,230 --> 00:10:27,490
inverse of g' ูƒุชุจุช ุงู„ x ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ phi inverse of g'
102
00:10:27,890 --> 00:10:33,270
ู„ูŠุดุŸ ุฅู† ุงู„ phi inverse of g' ุนุฏุฉ ู†ู‚ุงุท ู…ุด ู†ู‚ุทุฉ ูˆุงุญุฏุฉ ู„ูˆ
103
00:10:33,270 --> 00:10:39,650
ูƒุงู†ุช ู†ู‚ุทุฉ ูˆุงุญุฏุฉ ู„ูƒุชุจุช ุฅูŠุดุŸ ู„ูƒุชุจุช ุงู„ูŠุณุงูˆูŠ ุชู…ุงู… ุฅุฐุง x
104
00:10:41,450 --> 00:10:43,270
ู…ุงุดูŠ ูˆู„ูˆ ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช
105
00:10:43,270 --> 00:10:44,270
ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช
106
00:10:44,270 --> 00:10:44,630
ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช
107
00:10:44,630 --> 00:10:45,630
ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช
108
00:10:45,630 --> 00:10:47,230
ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช
109
00:10:47,230 --> 00:10:50,470
ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช
110
00:10:50,470 --> 00:10:54,770
ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช ูˆุงู†ุช
111
00:11:02,630 --> 00:11:07,710
ุงู„ู„ูŠ ู‡ูˆ subset ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ phi inverse of g
112
00:11:07,710 --> 00:11:12,990
prime ูˆู‡ุฐู‡ ุงู„ุนู„ุงู‚ุฉ ุฑู‚ู… ุงุชู†ูŠู† ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ from
113
00:11:12,990 --> 00:11:23,810
ูˆุงุญุฏ and ุงุชู†ูŠู† we have ุฅู† ุงู„ phi inverse of g
114
00:11:23,810 --> 00:11:28,510
prime ุจุฏู‡ ูŠุณุงูˆูŠ g ููŠ ุงู„ kernel ู„ู„ู€phi
115
00:11:34,710 --> 00:11:38,890
ู†ุนุทูŠูƒ ู…ุซุงู„ ุชูˆุถูŠุญ ุนู„ู‰ ุฐู„ูƒ ู„ุฃู† ู‡ูŠ ุฎู„ุตุช ุงู„ู†ุธุฑูŠุฉ
116
00:11:38,890 --> 00:11:44,870
example ุจู‚ูˆู„
117
00:11:44,870 --> 00:11:49,610
suppose that
118
00:11:49,610 --> 00:12:01,130
ุงูุชุฑุถ ุฃู† phi ู…ู† z ุซู„ุงุซูŠู† ุฅู„ู‰ z ุซู„ุงุซูŠู† A
119
00:12:01,130 --> 00:12:07,730
homomorphism suppose that phi is a homomorphism
120
00:12:07,730 --> 00:12:12,510
and ุงู„ kernel
121
00:12:12,510 --> 00:12:22,390
ู„ู„ูุงูŠ ู‡ูŠ ุงู„ุนู†ุงุตุฑ zero ูˆ ุนุดุฑุฉ ูˆ ุนุดุฑูŠู† ุจูŠู‚ูˆู„ ู„ f ุฅุฐุง
122
00:12:22,390 --> 00:12:30,290
ูƒุงู† ุงู„ phi ู„ 23 ู‡ูŠ ุนุจุงุฑุฉ ุนู† 9 ุงู„ุณุคุงู„ ู‡ูˆ
123
00:12:30,290 --> 00:12:33,990
determine
124
00:12:33,990 --> 00:12:38,510
all
125
00:12:41,760 --> 00:12:51,300
elements that map maps to ุชุณุนุฉ ูƒู„ ุงู„ elements ุงู„ู„ูŠ
126
00:12:51,300 --> 00:13:02,040
ู‡ู… maps to ุชุณุนุฉ ุงู„ุณุคุงู„
127
00:13:02,040 --> 00:13:06,480
ู…ุฑุฉ ุชุงู†ูŠุฉ ููŠู‡ุง ุงู„ู†ูุงูŠ ู…ู† Z 30 ู„ Z 30
128
00:13:06,480 --> 00:13:10,870
homomorphism ูˆู‡ุฐุง ุญุณุจู†ุง ู„ู‡ ูƒูŠุฑู† ุงู„ู„ูŠ ุฌูŠู†ุง ูƒูŠุฑู†ู‡
129
00:13:10,870 --> 00:13:16,190
zero ูˆุนุดุฑุฉ ูˆุนุดุฑูŠู† ู‡ุฐู‡ ู…ุนู„ูˆู…ุฉ ูˆุฒูŠุงุฏุฉ ุนู„ู‰ ุฐู„ูƒ five
130
00:13:16,190 --> 00:13:20,590
of ุชู„ุงุชุฉ ูˆุนุดุฑูŠู† ูŠุณุงูˆูŠ ุชุณุนุฉ ู‚ุงู„ ู„ูŠ ู‡ุงุชู„ูŠ ูƒู„ ุงู„
131
00:13:20,590 --> 00:13:25,250
elements ุงู„ู„ูŠ maps to ุชุณุนุฉ ูŠุนู†ูŠ ุจุฏูŠ ูƒู„ ุงู„ุนู†ุงุตุฑ
132
00:13:25,250 --> 00:13:29,810
ุงู„ู„ูŠ ููŠ ุฒุฏ ุชู„ุงุชูŠู† ูˆุงู„ู„ูŠ ุตุงุฑุชู‡ู… ุจุชูƒูˆู† ู…ุงู† ุชุณุนุฉ ูŠุนู†ูŠ
133
00:13:29,810 --> 00:13:33,750
ู…ุด ุน ุฌุฏ ุชู„ุงุชุฉ ูˆุนุดุฑูŠู† ูŠุจู‚ู‰ ุจุงู‚ูŠ ุงู„ elements ุงู„ู„ูŠ
134
00:13:33,750 --> 00:13:39,990
ูˆุตุฑุชู‡ู… ุจุชูƒูˆู† ุชุณุนุฉ ุชุทู„ุนู„ูŠ ููŠ ุงู„ู†ู‚ุทุฉ ุงู„ุฃุฎูŠุฑุฉ ุฑู‚ู… ุณุชุฉ
135
00:13:39,990 --> 00:13:45,270
ูˆุฎู„ูŠู‡ุง ููŠ ุฏู…ุงุบูƒ ุฃู†ุง ุนู†ุฏูŠ ููŠ of G ูŠุณุงูˆูŠ G prime ูƒุฃู†ู‡
136
00:13:45,270 --> 00:13:50,030
G ู‡ุฐู‡ main ุชู„ุงุชุฉ ูˆุนุดุฑูŠู† ูˆุงู„ G prime ู‡ูŠ main ุงู„ุชุณุนุฉ
137
00:13:50,030 --> 00:13:55,510
ูŠุจู‚ู‰ ุงู„ ููŠ inverse of G prime ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ G ููŠ ุงู„
138
00:13:55,510 --> 00:14:00,750
kernel ู„ู„ููŠ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุฃู†ุง ุนู†ุฏูŠ ูุงูŠ of ุชู„ุงุชุฉ
139
00:14:00,750 --> 00:14:07,250
ูˆุนุดุฑูŠู† ูŠุณุงูˆูŠ ุชุณุนุฉ ุดูˆ ุฑุงูŠูƒ ุขุฎุฐ ู…ุนูƒูˆุณ ุงู„ูุงูŠ ู„ู„ุทุฑููŠู†
140
00:14:07,250 --> 00:14:14,370
ูŠุจู‚ู‰ ุงูŠุด ุจุตูŠุฑ ุนู†ุฏูŠ ุจุตูŠุฑ ุงู„ูุงูŠ inverse of ุชุณุนุฉ ุจุฏู‡
141
00:14:14,370 --> 00:14:18,930
ูŠุณุงูˆูŠ ุงู„ element ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ ุชู„ุงุชุฉ ูˆุนุดุฑูŠู†
142
00:14:18,930 --> 00:14:27,530
ููŠ ุงู„ kernel ู„ู„ูุงูŠุชู…ุงู…ุŸ ู„ูƒู† ู„ู…ุง ูƒุงู†ุช ุงู„ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ
143
00:14:27,530 --> 00:14:31,890
ุฌุงู…ุนุฉ ุฅุฐุง ู…ุง ุจูƒุชุจุด ุชู„ุงุชุฉ ูˆุนุดุฑูŠู† ู…ุถุฑูˆุจุฉ ููŠ ุงู„
144
00:14:31,890 --> 00:14:37,990
kernel ูˆุฅู†ู…ุง ุจูƒุชุจ ุชู„ุงุชุฉ ูˆุนุดุฑูŠู† ุฒุงุฆุฏ ุงู„ kernel ู„ู…ู†ุŸ
145
00:14:37,990 --> 00:14:44,890
ู„ู„ ููŠ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏุฑุณุงูˆูŠ ุชู„ุงุชุฉ ูˆุนุดุฑูŠู† ุฒุงุฆุฏ ุงู„
146
00:14:44,890 --> 00:14:53,110
kernel ู„ู„ ููŠ ู‡ูŠ ู…ูˆุฌูˆุฏ ููˆู‚ ูŠุจู‚ู‰ zero ูˆุนุดุฑุฉ ูˆุนุดุฑูŠู† ู…ุด
147
00:14:53,110 --> 00:14:57,070
ุชุฑูˆุญ ุชู‚ูˆู„ ู‡ู†ุง ูุงูŠู†ูุฑุณ ูˆุชุณุนุฉ ุงู„ูุงูŠู†ูุฑุณ ูˆุชุถุฑุน
148
00:14:57,070 --> 00:14:57,650
ุงู„ูุงูŠู†ูุฑุณ ูˆุชุถุฑุน ุงู„ูุงูŠู†ูุฑุณ ุชุถุฑุน ุงู„ูุงูŠู†ูุฑุณ ุชุถุฑุน
149
00:14:57,650 --> 00:14:57,950
ุงู„ูุงูŠู†ูุฑุณ ุชุถุฑุน ุงู„ูุงูŠู†ูุฑุณ ุชุถุฑุน ุงู„ูุงูŠู†ูุฑุณ ุชุถุฑุน
150
00:14:57,950 --> 00:14:58,630
ุงู„ูุงูŠู†ูุฑุณ ุชุถุฑุน ุงู„ูุงูŠู†ูุฑุณ ุชุถุฑุน ุงู„ูุงูŠู†ูุฑุณ ุชุถุฑุน
151
00:14:58,630 --> 00:14:59,010
ุงู„ูุงูŠู†ูุฑุณ ุชุถุฑุน ุงู„ูุงูŠู†ูุฑุณ ุชุถุฑุน ุงู„ูุงูŠู†ูุฑุณ ุชุถุฑุน
152
00:14:59,010 --> 00:15:01,730
ุงู„ูุงูŠู†ูุฑุณ ุชุถุฑุน ุงู„ูุงูŠู†ูุฑุณ ุชุถุฑุน ุงู„ูุงูŠู†ูุฑุณ ุชุถุฑุน
153
00:15:01,730 --> 00:15:07,210
ุงู„ูุงูŠู†ูุฑุณ ุชุถุฑุน ุงู„ูุงูŠู†ูุฑุณ ุชุถุฑุน ุงู„ูุงูŠู†ูุฑุณ ุชุถุฑุน
154
00:15:07,210 --> 00:15:14,830
ุงู„ูุงูŠู†ูุฑุณ ุชุถุฑุน ุงู„ูุงูŠู†ูุฑุณ
155
00:15:14,830 --> 00:15:18,880
ุชููŠ ุงู„ู…ุซู„ ู„ุฃู† ุงู„ operation ุนู…ู„ูŠุฉ ุฌู…ุน ู‡ุฐุง ุงู„ูƒู„ุงู…
156
00:15:18,880 --> 00:15:22,460
ุจุฏู‡ ูŠุณุงูˆูŠ ุจุฏู‡ ูŠุฌู…ุน ูƒู„ ุนู†ุตุฑ ู…ุน ู†ุธูŠุฑู‡ ูŠุจู‚ู‰ ู‡ุฐุง
157
00:15:22,460 --> 00:15:27,460
ุชู„ุงุชุฉ ูˆุนุดุฑูŠู† ุชู„ุงุชุฉ ูˆุนุดุฑูŠู† ูˆุนุดุฑุฉ ุชู„ุงุชุฉ ูˆุชู„ุงุชูŠู† ููŠ
158
00:15:27,460 --> 00:15:32,980
ุฒุฏ ุชู„ุงุชูŠู† ุจูŠุทู„ุน ุชู„ุงุชุฉ ูˆุชู„ุงุชูŠู† ูˆุงุฑุจุนูŠู† ููŠ ุฒูŠ ุงู„ุชู„ุงุชูŠู†
159
00:15:32,980 --> 00:15:37,340
ุจูŠุทู„ุน ุชู„ุงุชุงุด ุจูŠุทู„ุน ุชู„ุงุชุงุด ุฅุฐุง ุงู„ุนู†ุงุตุฑ ู„ูˆ ุตุฑุชู‡ู…
160
00:15:37,340 --> 00:15:42,140
ุชุณุนุฉ ู‡ูŠ ุชู„ุงุชุฉ ูˆุนุดุฑูŠู† ูˆู‡ูŠ ู…ุนุทุงุฉ ูˆูƒุฐู„ูƒ ููŠ of ุชู„ุงุชุฉ
161
00:15:42,140 --> 00:15:46,160
ูˆููŠ of ุชู„ุงุชุงุด ู‡ูŠ ุงู„ู„ูŠ ุจุชุณุงูˆูŠู‡ู… ู‡ูŠ ุงู„ู„ูŠ ุจุชุณุงูˆูŠ ุชุณุนุฉ
162
00:15:46,160 --> 00:15:52,240
ูŠุจู‚ู‰ ุฏูŠุฑ ุจุงู„ูƒ ู…ู† ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ู†ู†ุชู‚ู„ ุงู„ุขู† ุฅู„ู‰ ุงู„ู†ุธุฑูŠุฉ
163
00:15:52,240 --> 00:15:56,480
ุงู„ุชุงู„ูŠุฉ ูŠุจู‚ู‰ ุจุงู„ุฏุงุฌูŠ ู„ theorem
164
00:15:59,090 --> 00:16:07,770
ู‡ุฐู‡ ู†ุธุฑูŠุฉ ุจุชุชุญุฏุซ ุนู† properties of
165
00:16:07,770 --> 00:16:15,270
subgroups under
166
00:16:15,270 --> 00:16:18,470
homomorphism
167
00:16:27,200 --> 00:16:36,600
ุชู†ุต ุนู„ู‰ ู…ูŠุงุชูŠ ู„ุช ุงู„ูุงูŠ ุจ homomorphism
168
00:16:36,600 --> 00:16:47,240
from a group g to a group g bar
169
00:17:02,150 --> 00:17:10,650
ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ูุงูŠ ุงู ุงุชุด ูƒุงุจุชู„ ุงุชุด ุงู„ู„ูŠ ู‡ูŠ ูƒู„
170
00:17:10,650 --> 00:17:19,080
ุงู„ุนู†ุงุตุฑ ููŠ ุงู ุงุชุด ุจุญูŠุซ ุงู„ุงุชุด ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ุงุชุด is a
171
00:17:19,080 --> 00:17:24,240
subgroup ู…ู† ุงู„ู€ G bar ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ subgroup ู…ู† ุงู„ G
172
00:17:24,240 --> 00:17:34,120
bar ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ู„ูˆ ูƒุงู†ุช ุงู„ H Cyclic F ุงู„ H is
173
00:17:34,120 --> 00:17:43,340
Cyclic ู„ูˆ ูƒุงู†ุช ุงู„ H Cyclic then Phi of H ุตูˆุฑุชู‡ุง is
174
00:17:43,340 --> 00:17:56,420
Cyclic ุงู„ู†ู‚ุทุฉ ุงู„ุชุงู„ุชุฉ ู„ูˆ ูƒุงู†ุช ุงู„ h is abelian then
175
00:17:56,420 --> 00:18:04,740
ู„ูˆ five of h is abelian five of h is abelian
176
00:18:04,740 --> 00:18:14,120
ุงู„ู†ู‚ุทุฉ ุงู„ุฑุงุจุนุฉ ู„ูˆ ูƒุงู†ุช ุงู„ู€ H is a normal subgroup
177
00:18:14,120 --> 00:18:25,200
ู…ู† G then Phi of H is a normal subgroup ู…ู† Phi of
178
00:18:25,200 --> 00:18:28,620
G ุงู„ู†ู‚ุทุฉ
179
00:18:28,620 --> 00:18:42,540
ุงู„ุฎุงู…ุณุฉ ุฅุฐุง ูƒุงู†ุช ุฃุนุถุงุก ูƒูŠุฑู†ุงู„ ููŠุง ู‡ูŠ ู†ุฉ ุซู… ููŠุง ุซู…
180
00:18:42,540 --> 00:18:56,080
ููŠุง ู‡ูŠ ู†ุฉ ุฅู„ู‰ ูˆุงุญุฏุฉ ู†ุฉ ุฅู„ู‰ ูˆุงุญุฏุฉ ู…ุงุจูŠู†ุฌ ู…ู†
181
00:18:58,300 --> 00:19:10,500
from g to phi of g ุงู„ู†ู‚ุทุฉ
182
00:19:10,500 --> 00:19:22,480
ุงู„ุณุงุฏุณุฉ ุจูŠู‚ูˆู„ if ุงู„ order ู„ู„ H ูƒุงู† ูŠุณุงูˆูŠ N then ุงู„
183
00:19:22,480 --> 00:19:27,420
order ู„ู„ phi of H ุจุฏู‡ ูŠู‚ุณู…
184
00:19:29,960 --> 00:19:33,980
ุงู„ู€ N ุงู„ู†ู‚ุทุฉ
185
00:19:33,980 --> 00:19:46,000
ุงู„ุณุงุจุนุฉ ุจูŠู‚ูˆู„ ู„ูŠ if ุงู„ K bar if ุงู„ K bar is a
186
00:19:46,000 --> 00:19:55,620
subgroup ู…ู† ุงู„ G bar then ุงู„ู€ Phi inverse of ุงู„ู€ K
187
00:19:55,620 --> 00:20:05,940
bar ุงู„ู„ูŠ ู‡ูˆ ูƒู„ ุงู„ K ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ G such that Phi
188
00:20:05,940 --> 00:20:16,410
of K Phi of K ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ K bar ู…ุง ู„ู‡ุง ู‡ุฐู‡ is a
189
00:20:16,410 --> 00:20:28,390
subgroup of G ูŠุจู‚ู‰ ู‡ุฐู‡ is a subgroup of G ุงู„ู†ู‚ุทุฉ
190
00:20:28,390 --> 00:20:35,370
ุงู„ุซุงู…ู†ุฉ ุจู‚ูˆู„ ู„ูˆ ูƒุงู† ุงู„ K bar is a normal subgroup
191
00:20:35,370 --> 00:20:43,010
if ุงู„ K bar is a normal subgroup ู…ู† ุงู„ G bar then
192
00:20:45,860 --> 00:20:54,920
then ุงู„ู€ Phi inverse of K bar ู‡ุฐู‡
193
00:20:54,920 --> 00:21:04,360
ูƒู„ ุงู„ุนู†ุงุตุฑ K ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ G ุจุญูŠุซ ุงู† Phi of K
194
00:21:04,360 --> 00:21:07,620
ู…ูˆุฌูˆุฏ ููŠ K bar
195
00:21:24,440 --> 00:21:31,720
ุงู„ู†ู‚ุทุฉ ุงู„ุชุงุณุนุฉ ูˆุงู„ุฃุฎูŠุฑุฉ ุจู‚ูˆู„ ู„ูˆ ูƒุงู†ุช ุงู„ูุงูŠ is onto
196
00:21:31,720 --> 00:21:39,240
f ุงู„ูุงูŠ is onto ู„ูˆ ูƒุงู†ุช ุงู„ู€phi ุตู†ุฏูˆู‚ ุงู„ู€ and
197
00:21:39,240 --> 00:21:42,260
ุงู„ูƒูŠุฑู†ู„
198
00:21:42,260 --> 00:21:49,120
ู„ู„ู€phi ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ identity element ุชุจุน ุงู„ู€G
199
00:22:03,460 --> 00:22:14,140
ู…ู† ุงูŠู† ุงู„ู‰ ุงูŠู† ู…ู† ุฌูŠู‡ ู„ุฌูŠู‡ ุจุงุฑ ู…ู† ุฌูŠู‡
200
00:22:14,140 --> 00:22:16,980
ู„ุฌูŠู‡ ุจุงุฑ
201
00:22:41,150 --> 00:22:48,850
Nigel will prove the
202
00:22:48,850 --> 00:23:02,990
parts ุงู„ูˆุงุญุฏ ูˆุงุชู†ูŠู† and ุชู„ุงุชุฉ are identical
203
00:23:02,990 --> 00:23:05,510
to
204
00:23:07,260 --> 00:23:17,740
are identical to the probes of ุฃุฑุจุนุฉ
205
00:23:17,740 --> 00:23:27,640
ูˆุงุชู†ูŠู† and ูˆุงุญุฏ of
206
00:23:27,640 --> 00:23:40,060
theorem of theorem ุณุชุฉ ุชู„ุงุชุฉ ุจุตูุญุงุช
207
00:23:40,060 --> 00:23:44,540
ู…ูŠุฉ ูˆุณุจุนุฉ ูˆุนุดุฑูŠู† respectively
208
00:24:12,850 --> 00:24:16,630
ู†ุฑุฌุน ุซุงู†ูŠ ู„ู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุงุญู†ุง ูƒุงุชุจูŠู†ู‡ุง ู†ุญุงูˆู„ ู†ู‚ุฑุฃู‡ุง
209
00:24:16,630 --> 00:24:21,250
ูƒู…ุงู† ู…ุฑุฉ ู†ุชูู‡ู… ูƒู„ ู…ุง ููŠู‡ุง ุจุนุฏ ู‡ูŠูƒ ุจู†ุฑูˆุญ ุฅู„ู‰
210
00:24:21,250 --> 00:24:26,610
ุงู„ุจุฑู‡ุงู† ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ูุงุชุช ูƒุงู†ุช
211
00:24:26,610 --> 00:24:29,610
ุจูŠุดุชุบู„ ุนู„ู‰ ุงู„ elements homomorphism ุนู„ู‰ ุงู„
212
00:24:29,610 --> 00:24:34,010
elements ู‡ู†ุง ุงู„ subgroups under ุงู„ homomorphism
213
00:24:34,010 --> 00:24:36,970
ูŠุฌูŠุจ ุฌุงู„ ุงู„ homomorphism ูŠุดุชุบู„ ุนุงู„ู…ูŠุง ุนู„ู‰ ุงู„
214
00:24:36,970 --> 00:24:41,500
subgroups ูˆู„ูŠุณ ุนู„ู‰ ุงู„ elements ู…ู‚ูˆู„ ู„ูˆ ูƒุงู†ุช ูุงูŠ ู…ู†
215
00:24:41,500 --> 00:24:46,180
ุฌูŠ ุฅู„ู‰ ุฌูŠ ุจุงุฑ ู‡ูŠ hemomorphism ูˆูƒุงู†ุช ุงู„ H subgroup
216
00:24:46,180 --> 00:24:52,620
ู…ู† ุฌูŠ then ูุงูŠ of HุŒ H ู‡ุฐู‡ sub set ู…ู† ู…ูŠู† ุฃูˆ
217
00:24:52,620 --> 00:24:56,260
subgroup ู…ู† ุฌูŠ ุฅุฐุง ุตูˆุฑุชู‡ุง ุฅุฐุง ูƒู†ุช ุฃุฑูŠุฏ ุฃู† ุชูƒูˆู†
218
00:24:56,260 --> 00:25:02,380
ู…ูˆุฌูˆุฏุฉ ููŠ ุฌูŠ ุจุงุฑ ููŠ ุฌูŠ ุจุงุฑ ููŠ ุฌูŠ ุจุงุฑ ููŠ ุฌูŠ ุจุงุฑ ููŠ
219
00:25:02,380 --> 00:25:06,980
ุฌูŠ ุจุงุฑ ููŠ ุฌูŠ ุจุงุฑ ููŠ ุฌูŠ ุจุงุฑ ููŠ ุฌูŠ ุจุงุฑ ููŠ ุฌูŠ ุจุงุฑ ููŠ
220
00:25:06,980 --> 00:25:13,870
ุฌูŠ ุจุงุฑ ู…ู† ุงู„ุฌูŠู„ ุงู„ู…ู‚ุงุจู„ ูŠุจู‚ู‰ ุงู„ subgroup ุตูˆุฑุชู‡ุง
221
00:25:13,870 --> 00:25:18,130
subgroup ุฃุฎุฑู‰ ุชุญุช ุชุฃุซูŠุฑ ุงู„ homomorphism ุงู„ู†ุงุญูŠุฉ
222
00:25:18,130 --> 00:25:22,650
ุงู„ุซุงู†ูŠุฉ ู„ูˆ ูƒุงู†ุช ู‡ุฐู‡ ุงู„ subgroup cyclic ูŠุจู‚ู‰ ุตูˆุฑุชู‡ุง
223
00:25:22,650 --> 00:25:27,570
ูƒู…ุงู† cyclic ูŠุนู†ูŠ ู„ูŠุณุช ูู‚ุท subgroup ูˆ ูƒุฐู„ูƒ cycle
224
00:25:27,570 --> 00:25:32,530
group ุทุจ ู„ูˆ ูƒุงู†ุช ุงู„ H abelian ูŠุจู‚ู‰ ุตูˆุฑุชู‡ุง ูƒุฐู„ูƒ ู…ุง
225
00:25:32,530 --> 00:25:37,520
ู„ู‡ุง abelian group ู‡ุฐูˆู„ ูˆุงุญุฏ ูˆุงุชู†ูŠู† ูˆุชู„ุงุชุฉ ุจุฑู‡ู†ู‡ู…
226
00:25:37,520 --> 00:25:43,680
ู‚ุจู„ ู‡ูŠูƒ ููŠ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ููŠ ุตูุญุฉ 127 ู†ุธุฑูŠุฉ 6 3 ู„ุฐู„ูƒ
227
00:25:43,680 --> 00:25:48,000
ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ู…ูƒุงูุฆุฉ ู‡ูŠ ู†ูุณ ุงู„ู†ู‚ุทุฉ 4 ููŠ ุงู„ู†ุธุฑูŠุฉ
228
00:25:48,000 --> 00:25:53,670
ุงู„ู†ู‚ุทุฉ 2 ู‡ูŠ 2 ุงู„ู†ู‚ุทุฉ 3 ู‡ูŠ ู†ู‚ุทุฉ 1 ู„ูˆ ุฑุฌุนู†ุง ู„ู‡ุฐู‡
229
00:25:53,670 --> 00:25:57,530
ุงู„ู†ุธุฑูŠุฉ ููŠ ุตุญูุฉ 127 ู…ู† ุงู„ูƒุชุงุจ ู†ุฌุฏ ุงู„ุชู„ุงุชุฉ ุงู„ู„ูŠ
230
00:25:57,530 --> 00:26:01,410
ุนู†ุฏู†ุง ู‡ุฐุง ู†ุฌูŠ ู„ู„ุฑุจุน ุงู„ุฑุงุจุน ุจูŠู‚ูˆู„ ู„ูˆ ูƒุงู†ุช ุงู„ H
231
00:26:01,410 --> 00:26:06,990
normal subgroup ูŠุฌูŠ ุตูˆุฑุชู‡ุง normal ููŠ ุตูˆุฑุฉ ุงู„ G
232
00:26:06,990 --> 00:26:12,810
ูƒู„ู‡ุง ู„ุฃู† ุงู„ Phi of G ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุฃู† ุชุบุทูŠ ูƒู„
233
00:26:12,810 --> 00:26:17,730
ุนู†ุงุตุฑ G ุจุฑุดูˆูŠุฉ ู…ู†ู‡ู… ูˆู…ู…ูƒู† ุชุบุทูŠู‡ู… ูƒู„ู‡ู… ุณูŠุงู† ุณูˆุงุก
234
00:26:17,730 --> 00:26:21,840
ูƒุงู† ู„ูƒู† ุงุญู†ุง in general ุจูŠู‚ูˆู„ ู„ุฃ ุทูŠุจ ูŠุจู‚ู‰ ู„ูˆ ูƒุงู†ุช
235
00:26:21,840 --> 00:26:27,620
ู‡ุฐู‡ normal ุตูˆุฑุชู‡ุง normal ููŠ ุตูˆุฑุฉ G ุทุจ ู„ูˆ ูƒุงู† ุงู„
236
00:26:27,620 --> 00:26:33,200
kernel ููŠ N ู…ู† ุงู„ุนู†ุงุตุฑ ุงู„ order ู„ู‡ ูŠุณุงูˆูŠ N ูŠุจู‚ู‰ ุงู„
237
00:26:33,200 --> 00:26:35,300
N ู‡ุฏูˆู„ ุจุฏู‡ู… ูŠุฑูˆุญูˆุง ู„ูˆูŠู†ุŸ
238
00:26:37,710 --> 00:26:42,050
ู„ูˆูŠู†ุŸ ู„ู„ู€ identity ู…ู…ุชุงุฒ ุฌุฏุง ูŠุจู‚ู‰ ุขุซุงุฑ ุงู„
239
00:26:42,050 --> 00:26:47,010
homomorphism N to 1 ุงู„ุชู„ุงุชุฉ ุฃูˆ ุงู„ุฃุฑุจุนุฉ ุฃูˆ ุงู„ุนุดุฑุฉ
240
00:26:47,010 --> 00:26:50,490
ุฑุงุญูˆุง ุงู„ุนู†ุตุฑ ูˆุงุญุฏ ูŠุจู‚ู‰ ุจู‚ูˆู„ ุนุดุฑุฉ to one ู…ุด one to
241
00:26:50,490 --> 00:26:54,950
one ุจู‚ูˆู„ ุงู„ุฃุฑุจุนุฉ to one ุฃูˆ ุงู„ุฎู…ุณุฉ to one ุฃูˆ ุงู„ุณุชุฉ
242
00:26:54,950 --> 00:26:59,950
ุฌุฏู…ุง ูŠูƒูˆู† ุงู„ order one to one mapping ู…ู† ุงู„ G on
243
00:26:59,950 --> 00:27:04,840
two ุงู†ุชูˆุง ู‡ุงุฏูŠ ุฏูŠ ุจุงู„ูƒ ู…ุด ู‡ู†ู‚ูˆู„ ุงู†ุชูˆุง ุงู†ู‡ ูˆุฎู„ุงุต
244
00:27:04,840 --> 00:27:09,280
ูˆู†ู†ุณู‰ ู„ุงุจุฏ ุชุบุทูŠ ุฌู…ูŠุน ุนู†ุงุตุฑ five of G ูˆู‡ุฐุง ุงู„ู„ูŠ
245
00:27:09,280 --> 00:27:12,540
ู…ุทู„ูˆุจ ู…ุด ุฑูˆุญ ู†ุจุฑู‡ ุงู† ู‡ุฏู‰ ูˆู†ู†ุณู‰ ู‡ุฏู‰ ู„ุฃ ู„ุฃ ู„ุฃ ู‡ุฏูˆู„
246
00:27:12,540 --> 00:27:18,020
ู†ู‚ุทุชูŠู† ูˆู„ูŠุณุช ู†ู‚ุทุฉ ูˆุงุญุฏุฉ ุงู„ุณุงุฏุณุฉ ู„ูˆ ูƒุงู† ุงู„ order ู„
247
00:27:18,020 --> 00:27:23,620
in ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ H ูŠุจู‚ู‰ ุงู„ order ู„ู„ุตูˆุฑุฉ ุจุฏู‡ ูŠู‚ุณู… ุงู„
248
00:27:23,620 --> 00:27:28,640
order ุชุจุน ู…ู†ุŸ ุชุจุน ุงู„ H ุฃุธู† ุญู„ูŠู†ุง ู…ุซุงู„ ุดุจูŠู‡ ุจูˆุง ู‚ุจู„
249
00:27:28,640 --> 00:27:36,540
ุดูˆูŠุฉ ุงู„ุขู† ู„ูˆ ูƒุงู†ุช ูƒูŠุงุจุงุฑ subgroup ู…ู† ุฌูŠุจุงุฑ ูŠุจู‚ู‰
250
00:27:36,540 --> 00:27:40,780
ุตูˆุฑุชู‡ุง subgroup ูˆู„ูˆ ูƒุงู†ุช ู‡ุฐู‡ ุงู„ subgroup normal
251
00:27:40,780 --> 00:27:46,400
ูŠุจู‚ู‰ ุตูˆุฑุชู‡ุง normal ุงุชู†ูŠู† ู‡ุฐูˆู„ ุจู†ู‚ุฏุฑ ู†ุฏู…ุฌู‡ู… ุจู€ band
252
00:27:46,400 --> 00:27:47,060
ูˆุงุญุฏ
253
00:28:06,500 --> 00:28:12,150
ุงู„ู†ู‚ุทุฉ ุงู„ุฃุฎูŠุฑุฉ ู„ูˆ ูƒุงู†ุช Phi is onto ูˆุงู„ู€ Kernel
254
00:28:12,150 --> 00:28:15,930
ู…ุงููŠุด ููŠู‡ ุฅู„ุง ุงู„ู€ Identity Element ูŠุจู‚ู‰ ุงู„ู€ Phi
255
00:28:15,930 --> 00:28:20,970
ุนุจุงุฑุฉ ุนู† ุฅูŠุดุŸ Isomorphism ุทุจ ู‡ูŠ ุฃุนุทุงู†ูŠ Phi ุฃู†ุชู…
256
00:28:20,970 --> 00:28:25,710
ูˆ ุฃุนุทุงู†ูŠ ู‡ู†ุง Phi ู‡ู…ูˆู…ูˆุฑูุฒู… ุจู‚ู‰ ุนู„ูŠู‡ ุจุงุณู…ูŠู† ูŠุนู†ูŠ ู„ูˆ
257
00:28:25,710 --> 00:28:29,470
ุฃุซุจุชุช ุฃู† Phi one to one ุจูŠูƒูˆู† ุฎู„ุตู†ุง ู…ู† ุงู„ู…ูˆุถูˆุน
258
00:28:29,470 --> 00:28:33,910
ุจูŠูƒูˆู† ุฎู„ุงุต ุงู†ุชู‡ูŠู†ุง ู…ู†ู‡ ูŠุจู‚ู‰ ุจุณ ู…ุทู„ูˆุจ ุฃุซุจุช ุฃู† Phi
259
00:28:33,910 --> 00:28:38,240
one to one ุทูŠุจ ู†ูŠุฌูŠ ู„ู„ุจุฑู‡ุงู† ูŠุจู‚ู‰ ุฃูˆู„ ุซู„ุงุซ ู†ู‚ุงุท
260
00:28:38,240 --> 00:28:42,260
ุชูุงุฌุฆู†ุง ุนู„ูŠู‡ู… ู†ูŠุฌูŠ ู„ู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ H Normal ุจุฏูŠ ุฃุซุจุช
261
00:28:42,260 --> 00:28:46,760
ุฃู† ุงู„ู€ Phi of H ู‡ุฐูŠ ุฅูŠู‡ ุงู„ู„ูŠ ู‡ู…ุงู„ู‡ุง normal
262
00:28:46,760 --> 00:28:51,700
subgroup ู…ู† main ู…ู† ุงู„ู€ Phi of G ู„ุฐู„ูƒ ุจุฏูŠ ุฃุฑูˆุญ
263
00:28:51,700 --> 00:28:57,080
ุฃุฎุฏู„ูŠ element ููŠ H ูˆ ุฃุฎุฏ element ู…ู† G ูˆ ุฃุดูˆู ู„ูˆูŠู†
264
00:28:57,080 --> 00:29:03,160
ุจุฏู‡ ูŠูˆุตู„ ู‡ุงู„ุฏู†ูŠุง ู‡ุฐู‡ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ู†ุง ู„ูˆ ุฃุฎุฏู†ุง
265
00:29:03,160 --> 00:29:15,050
ุงู„ู€ G ู…ูˆุฌูˆุฏ ููŠ G ูˆ ุฃุฎุฏู†ุง ุงู„ู€ H ู…ูˆุฌูˆุฏ ููŠ H then ุฅูŠุด
266
00:29:15,050 --> 00:29:18,710
ุดุฑุงูŠูƒ ููŠ ุงู„ู€ GHG inverseุŸ
267
00:29:22,660 --> 00:29:29,260
ุจูŠู†ุชู…ูŠ ู„ู…ูŠู†ุŸ ุฃูŠูˆุฉ ูŠุจู‚ู‰ ู‡ุฐุง belongs to H ุงู„ุณุจุจ
268
00:29:29,260 --> 00:29:35,860
because ุฃู† ุงู„ู€ H is a normal subgroup ู…ู† G ุทุจ ุงุญู†ุง
269
00:29:35,860 --> 00:29:40,260
ู„ู…ุง ู†ุชูƒู„ู… ุนู„ู‰ Phiุงุช ูŠุจู‚ู‰ ู†ุจุฏุฃ ู†ุงุฎุฏ ุงู„ู€ Phiุงุช ู‡ู†ุง ูŠุจู‚ู‰
270
00:29:40,260 --> 00:29:47,560
ู„ูˆ ุฑูˆุญุช ุฃุฎุฏุช ุงู„ู€ phi of GHG inverse ู‡ูŠูƒูˆู† ู…ูˆุฌูˆุฏ ููŠ
271
00:29:47,560 --> 00:29:55,310
ุงู„ู€ phi of H ุทุจ ุงู„ู€ Phi homomorphism ูŠุจู‚ู‰ ุจุฏูŠ ุฃููƒ
272
00:29:55,310 --> 00:30:04,710
ู‡ุฏูˆู„ ูŠุจู‚ุงุด ุจุตูŠุฑ ุฃู† ู‡ุง Phi of G Phi of H Phi of G
273
00:30:04,710 --> 00:30:14,450
inverse ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ู€ Phi of H ุทูŠุจุŒ ุฃู„ุณุง
274
00:30:14,450 --> 00:30:23,910
ู‡ุฐุง Phi of G Phi of H Phi of G ู„ูƒู„ Inverse ู…ูˆุฌูˆุฏ
275
00:30:23,910 --> 00:30:30,950
ููŠ Phi of H ุชุนุงู„ูˆุง ู†ุดูˆู ุชุนุงู„ูˆุง ู†ุดูˆู ู‡ุฐุง ูˆูŠู† ู…ูˆุฌูˆุฏ ูŠุง
276
00:30:30,950 --> 00:30:37,790
ุดุจุงุจุŸ ููŠ ุงู„ู€ Phi of G ูŠุจู‚ู‰ ู‡ุฐุง belongs to Phi of G
277
00:30:37,790 --> 00:30:46,670
ุทูŠุจ ู‡ุฐุง Phi of H belongs to Phi of H ู‡ุฐุง ุจู€ belongs
278
00:30:46,670 --> 00:30:54,540
to Phi of G ุตุญุŸ ุทูŠุจ ู…ู…ุชุงุฒ ุฌุฏุง ูŠุจู‚ู‰ ุงู„ุขู† ุฃู†ุง ู‡ุงูŠ
279
00:30:54,540 --> 00:30:59,000
ุงู„ู„ูŠ ุจุฏูุชู‡ุง ุงู„ู€ normality ูŠุจู‚ู‰ ุฃุฎุฏุช element ู…ู† ู‡ู†ุง
280
00:30:59,000 --> 00:31:03,220
ูˆ element ู…ู† ู‡ู†ุง ุถุฑุจุช ุงู„ู€ element ู…ู† ู‡ู†ุง ููŠ ุงู„ู€
281
00:31:03,220 --> 00:31:07,180
element ู…ู† ู‡ู†ุง ููŠ ู…ุนูƒูˆุณ ู‡ุฐุง ุงู„ู€ element ู„ุฌุชู‡ ู…ูˆุฌูˆุฏ
282
00:31:07,180 --> 00:31:12,760
ููŠ Phi H ูŠุจู‚ู‰ ุฅูŠุด ุชูุชูŠุฑูƒ ู„ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู† Phi H is
283
00:31:12,760 --> 00:31:18,830
normal ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง ุงู„ู€ Phi of H is a normal
284
00:31:18,830 --> 00:31:24,670
subgroup ู…ู† ู…ู† ุงู„ู€ Phi of G ุทุจุนุง ุฑุจ ูˆุงุญุฏ ููŠูƒู… ู‚ุงุนุฏ
285
00:31:24,670 --> 00:31:28,910
ุจูŠููƒุฑ ู‡ูŠูƒ ูˆ ู‚ุงู„ ู„ูŠ ุทุจ ุงุณุชู†ู‰ ุดูˆูŠุฉ ุฃู†ุช ุฌุจุช ู†ุต ุงู„ุจุฑู‡ุงู†
286
00:31:28,910 --> 00:31:32,890
ูˆ ุฃูŠู† ุงู„ู†ุต ุงู„ุซุงู†ูŠ ุจู‚ูˆู„ู‡ ุฅูŠุด ุงู„ู†ุต ุงู„ุซุงู†ูŠ ู‚ุงู„ ู„ูŠ ุงู„ู€
287
00:31:32,890 --> 00:31:36,070
Phi of H is a subgroup ุจู‚ูˆู„ู‡ ุงู‡ ู…ุง ู‡ูŠ ู‡ูˆ ุนู†ุฏูƒ ุฑู‚ู…
288
00:31:36,070 --> 00:31:40,110
ูˆุงุญุฏ ู‡ุฐุง ู…ุทู„ูˆุจุŒ ู‡ูŠุจู‚ู‰ ุจุงุนุชุจุงุฑู‡ ู…ุซุจุชุŒ ู‡ูŠุจู‚ู‰ ู…ุซุจุช
289
00:31:40,110 --> 00:31:45,790
ู…ุนุงูƒ ูˆุฅู† ู„ู… ูŠูƒู† ู…ุซุจุชู‹ุงุŒ ู„ุฃุซุจุชู†ุงู‡ ุฃูˆู„ู‹ุงุŒ ุซู… ุฃุซุจุชู†ุง
290
00:31:45,790 --> 00:31:50,430
ู…ูŠู†ุŸ ุงู„ู€ Normality ูŠุจู‚ู‰ ู‡ูŠ ุงู„ูƒู„ุงู… ุตุญูŠุญุŒ ู‡ุฐุง ุงู„ู†ู‚ุทุฉ
291
00:31:50,430 --> 00:31:55,370
ุฃุฑุจุนุฉ ุจุฏู†ุง ู†ุฑูˆุญ ู„ู„ู†ู‚ุทุฉ ุฑู‚ู… ุฎู…ุณุฉ ุงู„ู†ู‚ุทุฉ ุฑู‚ู… ุฎู…ุณุฉ
292
00:31:55,370 --> 00:31:58,770
ุจุชู‚ูˆู„ ู„ูŠ ู„ูˆ ูƒุงู† assume
293
00:32:23,000 --> 00:32:24,960
ุฅุฐุง ุฃุฑุฏุช ุฃู† ุฃุฑุฏุช ุฃู† ุฃุฑุฏุช ุฃู† ุฃุฑุฏุช ุฃู† ุฃุฑุฏุช ุฃู† ุฃุฑุฏุช
294
00:32:24,960 --> 00:32:25,500
ุฃู† ุฃุฑุฏุช ุฃู† ุฃุฑุฏุช ุฃู† ุฃุฑุฏุช ุฃู† ุฃุฑุฏุช ุฃู† ุฃุฑุฏุช ุฃู† ุฃุฑุฏุช ุฃู†
295
00:32:25,500 --> 00:32:25,840
ุฃุฑุฏุช ุฃู† ุฃุฑุฏุช ุฃู† ุฃุฑุฏุช ุฃู† ุฃุฑุฏุช ุฃู† ุฃุฑุฏุช ุฃู† ุฃุฑุฏุช ุฃู†
296
00:32:25,840 --> 00:32:30,720
ุฃุฑุฏุช ุฃู† ุฃุฑุฏุช ุฃู† ุงู„ู€ Kernel ู„ู€ Phi ูŠุฌุจ ุฃู† ูŠุณุงูˆูŠุŒ
297
00:32:30,720 --> 00:32:34,320
ูŠุฌุจ ุฃู† ุฃุถุน ููŠู‡ N ู…ู† ุงู„ุนู†ุงุตุฑุŒ ุฃุธู† ุฃู† ุงู„ู€ Identity
298
00:32:34,320 --> 00:32:41,520
ุชุจุน ุงู„ู€ G ู…ู†ู‡ู… ูŠุจู‚ู‰ G ู…ู†ู‡ู…ุŒ ูˆูŠุฌุจ ุฃู† ุฃู‚ูˆู„ G1 ูˆ G2
299
00:32:41,520 --> 00:32:43,280
ูˆูŠุจู‚ู‰ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ
300
00:32:43,280 --> 00:32:43,920
ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ
301
00:32:43,920 --> 00:32:48,960
ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ
302
00:32:48,960 --> 00:32:49,280
ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ
303
00:32:49,280 --> 00:32:49,320
ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ
304
00:32:49,320 --> 00:32:53,270
ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ุฉ ู…ุงุฒุงู„ูŠุจู‚ู‰ let ุงู„ูƒู„ุงู… then ู‡ุฐุง
305
00:32:53,270 --> 00:32:59,450
ุฅูŠุด ู…ุนู†ุงู‡ุŸ ู…ุนู†ุงู‡ ุฃู† ุงู„ู€ Phi of ุงู„ู€ identity element
306
00:32:59,450 --> 00:33:03,510
ุชุจุน ุงู„ู€ G ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ identity element ุชุจุน ุงู„ู€ G
307
00:33:03,510 --> 00:33:09,430
bar ูˆุงู„ู€ Phi of G1 ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ identity element
308
00:33:09,430 --> 00:33:15,110
ุชุจุน ุงู„ู€ G bar ูˆุงู„ู€ Phi of G2 ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ identity
309
00:33:15,110 --> 00:33:20,820
element ุชุจุน ุงู„ู€ G bar ูˆุงู„ู€ Phi of G N minus ุงู„ู€ one
310
00:33:20,820 --> 00:33:26,600
ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ identity ุชุจุน ุงู„ู€ G bar ูŠุจู‚ู‰ ุฃู†ุง ุตุงุฑ
311
00:33:26,600 --> 00:33:30,980
ุนู†ุฏูŠ N ู…ู† ุงู„ุนู†ุงุตุฑ ู„ู‡ู… ุตูˆุฑุฉ ูˆุงุญุฏุฉ ูŠุจู‚ู‰ ุงู„ู€ Phi is
312
00:33:30,980 --> 00:33:41,960
into one ูŠุจู‚ู‰ ู‡ุฐุง this means that ุฃู† ุงู„ู€ Phi is
313
00:33:41,960 --> 00:33:45,440
into one
314
00:33:52,040 --> 00:34:02,440
ูŠุจู‚ู‰ ู‡ุงูŠุงุช ู…ุซู„ุง ู…ู† G ู„ู€ G ู…ู† from G to G bar ูˆู„ู…
315
00:34:02,440 --> 00:34:09,970
ุฃู‚ูˆู„ unto G bar ูŠุจู‚ู‰ ุฏูŠ ู‚ุตุฉ ุงู„ู€ onto ู‡ุฐู‡ ุจุฏู‡ุง
316
00:34:09,970 --> 00:34:15,270
ุฅุซุจุงุช ูŠุจู‚ู‰ ุจุฏุฃ ุฃุฑูˆุญ ุฃุฎุฏ element ููŠ Phi of G ูˆ
317
00:34:15,270 --> 00:34:24,870
ุฃุซุจุช ุฃู†ู‡ ู„ู‡ ุฃุตู„ ูˆูŠู† ููŠ G ุทูŠุจ ูƒูˆูŠุณ ุงู‡ ู…ุด ุจุฏู†ุง ู†ุซุจุช
318
00:34:24,870 --> 00:34:30,760
ุฃู†ู‡ุง onto ู„ู€ G bar ู„ุฃ ููŠ of G ู‡ูŠ ู…ู† ุนู†ุงุตุฑ G bar
319
00:34:30,760 --> 00:34:35,380
ุฌุฒุก ู…ู†ู‡ุง ู„ูƒู† ู‡ู„ ุชุณูˆูŠู‡ุง ุฃูˆ ู„ุง ุชุณูˆูŠู‡ุง ู‚ุฏ ูŠูƒูˆู† ูˆ ู‚ุฏ
320
00:34:35,380 --> 00:34:41,120
ู„ุง ูŠูƒูˆู† ูŠุนู†ูŠ ูŠุง ุดุจุงุจ ู„ูˆ ุงุชุฎูŠู„ู†ุง ุฃู† ู‡ุฐู‡ ูƒู„ู‡ุง ู‡ูŠ G
321
00:34:41,120 --> 00:34:49,500
bar ูˆ ุฃู†ุง ุนู†ุฏูŠ Phi ู…ู† ุงู„ู€ G ู…ู† ุงู„ู€ G ุฅู„ู‰ ุงู„ู€ G bar ูŠู…ูƒู†
322
00:34:49,500 --> 00:34:57,460
ู‡ุฏูˆู„ ู‡ุฐุง ูƒู„ู‡ ูŠุทู„ุน ู‡ูˆ Phi of G ู„ูƒู† ู‡ุฐุง ู‡ู†ุง ู…ุงููŠุด ูˆู„ุง
323
00:34:57,460 --> 00:35:04,100
ุนู†ุตุฑ ุชู…ุงู… ูŠุจู‚ู‰ ุฌุฒุก ุจู‚ูˆู„ ู„ุฐู„ูƒ ุฃู†ุง ู…ุฑูƒุฒ ุนู„ู‰ Phi of G
324
00:35:04,100 --> 00:35:10,160
on to Phi of G ูŠุนู†ูŠ ูƒู„ element ููŠ ู‡ุฐู‡ ุงู„ู€ set ุจุฏูŠ
325
00:35:10,160 --> 00:35:15,580
ุฃุซุจุช ุฃู†ู‡ ู„ู‡ ุฃุตู„ ูˆูŠู† ููŠ G ูƒูˆูŠุณ ู„ุฐู„ูƒ ู…ุถุงุฌูŠ ุฃู‚ูˆู„ู‡
326
00:35:15,580 --> 00:35:25,360
ุฎุฏู„ูŠ y ุงู„ุขู† ุจุฏูŠ ุฃุซุจุช ู„ู‡ ุฃู† ูุงูŠ is onto ูŠุจู‚ู‰ ุจุฏุงุฌุฉ
327
00:35:25,360 --> 00:35:34,880
ุฃู‚ูˆู„ู‡ let ู…ุซู„ุง y belongs to ูุงูŠ of g ูุงูŠ of ูƒุงุจุชู„
328
00:35:34,880 --> 00:35:44,120
G ุชู…ุงู…ุŸ then ุงู„ู€ y ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ ูุงูŠ of g for some
329
00:35:44,120 --> 00:35:52,310
g ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ G ู…ุตุจูˆุท ู‡ูŠูƒ ูŠุจู‚ู‰ ุฃู†ุง ุฃุฎุฏุช element
330
00:35:52,310 --> 00:35:56,610
ููŠ ุงู„ุตูˆุฑุฉ ูˆ ุฑูˆุญุช ุฃุฎุฏุช element ู…ู† ู‡ู†ุง ูŠุจู‚ู‰ ุงู„ู€ five
331
00:35:56,610 --> 00:36:02,890
ุฏู‡ ุณูˆุงุก five of g for some ุฃูŠูˆุฉ ุทูŠุจ ุฃู†ุง ุจุฏูŠ ุฅูŠุด ุงู„ู€
332
00:36:02,890 --> 00:36:07,490
element ุงู„ู„ูŠ ุฃุฎุฏุชู‡ ููŠ ุงู„ู€ five of g ุจุฏูŠ ุฃุซุจุช ุฃู†ู‡ ู„ู‡
333
00:36:07,490 --> 00:36:13,810
ุฃุตู„ ููŠ g ุฃูˆ ู„ู‡ ุฃุตูˆู„ ู…ู…ูƒู† ูŠูƒูˆู† ุฃุตูˆู„ ู…ุด ุฃุตู„ ู…ู…ูƒู† ูŠูƒูˆู†
334
00:36:13,810 --> 00:36:20,230
ูƒุชุงุฑ ุฃู†ุชู… ุฃุซุจุชู†ุง ุฃู† ุฃู†ุชู… ูŠุจู‚ู‰ ุฃุตูˆู„ ูˆู„ูŠุณ ุฃุตู„ ุชู…ุงู…
335
00:36:20,230 --> 00:36:29,110
ูŠุจู‚ู‰ ุงู„ู€ Phi inverse ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ู‰ ู„ูˆ ุฃุฎุฏุช ุงู„ู€ Phi inverse
336
00:36:29,110 --> 00:36:35,230
of Y ูŠุจู‚ู‰ ุงู„ู€ Phi inverse of Y ุนุดุงู† ุจุฏู‡ ูŠุณุงูˆูŠ G ููŠ ุงู„ู€
337
00:36:35,230 --> 00:36:40,450
Kernel ู‡ุง ุฏูŠ ุฑุจุงู„ูƒ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ Phi
338
00:36:40,450 --> 00:36:46,970
inverse of Y ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ G ููŠ ุงู„ู€ Kernel ู„ู…ูŠู†ุŸ ููŠ
339
00:36:46,970 --> 00:36:52,490
ุงู„ู€ Kernel ู„ู„ู€ Phi ู…ุนู†ุงู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู†ู‡ ุทุจุนุง Phi
340
00:36:52,490 --> 00:36:57,850
inverse of Y ู…ุด ุนู†ุตุฑ ูˆุงุญุฏ ู„ูˆ ุจุฏูŠ ุฃุดุชุบู„ ุญุฑููŠ ู„ูˆ
341
00:36:57,850 --> 00:37:02,830
ุจู‚ูˆู„ ุนู†ุตุฑ ูˆุงุญุฏ ู„ูƒู† ู‡ุฐู‡ ุนู†ุงุตุฑ ูˆุจุงู„ุชุงู„ูŠ ูƒุซูŠุฑ ู…ู†
342
00:37:02,830 --> 00:37:08,390
ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Y ู‡ุฐู‡ ู‚ุฏ ูŠูƒูˆู† ู‡ูˆ ุตูˆุฑุชู‡ุง ูุจุฌูŠ
343
00:37:08,390 --> 00:37:15,650
ุจู‚ูˆู„ู‡ ูŠุจู‚ู‰ ุงู„ู€ order ู„ู„ู€ Phi inverse of Y ุจุฏู‡ ูŠุณุงูˆูŠ
344
00:37:15,650 --> 00:37:22,990
ุงู„ู€ order ู„ู„ู€ G ููŠ ุงู„ู€ kernel ู„ู„ู€ Phi. ู…ุธุจูˆุท ูˆู„ุง ู„ุงุŸ
345
00:37:22,990 --> 00:37:29,150
ุทุจ ุฅูŠุด ุงู„ุนู„ุงู‚ุฉุŸ ุงู„ุขู† ู‡ุฐุง ู„ูŠุณ left coset G ููŠ
346
00:37:29,150 --> 00:37:33,350
ุงู„ู€ Kernel ุงู„ู€ Phi ู…ุด left coset ุตุญ ูˆู„ุง ู„ุงุŸ ุทุจ ุฅุฐุง ุงู„ู€
347
00:37:33,350 --> 00:37:37,990
order ุฅูŠู‡ ุงู„ู„ูŠ ู‡ูŠุณุงูˆูŠ ุงู„ู€ order ู„ู€ ุงู„ู€ subgroup ู†ูุณู‡
348
00:37:37,990 --> 00:37:43,090
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏูŠ ูŠุณุงูˆูŠ ุงู„ู€ order ู„ู„ู€ Kernel ุงู„ู€ Phi
349
00:37:43,090 --> 00:37:49,190
ุงู„ู„ูŠ ู‡ูˆ ุฌุฏุงุด ุงู„ู€ N ูŠุนู†ูŠ ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฅู† ุงู„ู€ Y
350
00:37:49,190 --> 00:37:55,770
ุงู„ู„ูŠ ุนู†ุฏูŠ ุฃุฎุฏุช ู‡ุฐู‡ ู„ุฌุชู„ู‡ุง ุฃุตูˆู„ ุนุฏุฏู‡ู… N ุชู…ุงู… ูŠุจู‚ู‰
351
00:37:55,770 --> 00:38:04,900
on to ูŠุจู‚ู‰ this means that .. ูŠุจู‚ู‰ this means that
352
00:38:04,900 --> 00:38:08,240
ุฃู†
353
00:38:08,240 --> 00:38:16,600
ุงู„ู€ Phi maps in elements from
354
00:38:18,360 --> 00:38:26,080
G to Y ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ูˆูŠู† ููŠ G bar ุฃูˆ ู…ูˆุฌูˆุฏ ููŠ Phi
355
00:38:26,080 --> 00:38:37,560
of G ุจุงู„ุชุญุฏูŠุฏ ู…ูˆุฌูˆุฏ ููŠ Phi of G so Phi is onto ุทูŠุจุŒ
356
00:38:37,560 --> 00:38:43,320
ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุฅูŠู‡ุŸ ุงู„ู†ู‚ุทุฉ ุงู„ุฎุงู…ุณุฉ ุงู„ู„ูŠ ุฎุงุทุฑ ู…ุฏุงู… ุญู„ู†ุง
357
00:38:43,320 --> 00:38:48,680
ุฒูŠู‡ุง ูŠุจู‚ู‰ ุงู„ู†ู‚ุทุฉ ุงู„ุณุงุฏุณุฉ ู‡ุฐู‡ ุฃู‚ูˆู„ ู„ูƒู… exercise ุทุจุนุง
358
00:38:48,680 --> 00:38:52,780
ู…ุจุฑู‡ู†ุฉ ููŠ ุงู„ูƒุชุงุจุŒ ุจุณ ุจุนู…ู„ restriction ุนู„ู‰ ุงู„ู€ Phi
359
00:38:52,780 --> 00:38:56,700
ูŠุนู†ูŠ ุจูŠุฎู„ูŠู‡ุงุด ุนู„ู‰ ุฅุทู„ุงู‚ู‡ุงุŒ ุจุณ ุนู„ู‰ ุนู†ุงุตุฑ ุฅูŠุดุŒ ูŠุจู‚ู‰
360
00:38:56,700 --> 00:39:02,300
ูŠุง ุฑูŠุช ู…ู† ุงู„ูƒุชุงุจ ุชุฑูˆุญ ุชุฌุฑู‡ุง ูˆุชุฑุชุจ ุฃู…ูˆุฑู‡ุง ุงู„ุขู† ูƒูŠ
361
00:39:02,300 --> 00:39:07,660
ุจุงุฑ ุณุงุจู‚ ุฑูˆุจ ู…ู† G bar ูŠุจู‚ู‰ Phi inverse of K ุจุฏู‡
362
00:39:07,660 --> 00:39:12,780
ุฃุซุจุชู‡ุง ุณุงุจู‚ ุฑูˆุจ ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ู€ G ุทูŠุจ ู…ุดุงู† ุฃุซุจุชู‡ุง
363
00:39:12,780 --> 00:39:18,600
ุงู„ุณุงุจู‚ ุฑูˆุจ ุจุฏู‡ ุฃุซุจุชู‡ conditions ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฑูˆุญ ู„ู…ูŠู†ุŸ
364
00:39:18,600 --> 00:39:24,620
ู„ู„ู†ู‚ุทุฉ ุงู„ุณุงุจุนุฉ ู…ุดุงู† ุฃุฑูˆุญ ู„ู„ู†ู‚ุทุฉ ุงู„ุณุงุจุนุฉ ุจุฏูŠ ุฃุซุจุช
365
00:39:24,620 --> 00:39:31,160
ู‡ุฐู‡ Phi inverse subgroup ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ู€ G ู‡ุฐุง ุงู„ู„ูŠ
366
00:39:31,160 --> 00:39:35,460
ุนุงูŠุฒูŠู†ูŠ ุฃุซุจุชู‡ ู…ุดุงู† ู‡ูŠูƒ ุจุฏูŠ ุฃุซุจุช ู„ู‡ ุฃู† ู‡ุฐู‡ non-empty
367
00:39:35,460 --> 00:39:39,000
ูˆ ู„ูˆ ุฃุฎุฏุช ุนู†ุตุฑูŠู† ู…ู†ู‡ุง ุจุฏูŠ ุฃุซุจุช ุฃู† ุงู„ุฃูˆู„ ููŠ ู…ุนูƒูˆุณ ุงู„ุซุงู†ูŠ ู…ูˆุฌูˆุฏ ููŠู‡ุง ูˆุจุงู„ุชุงู„ูŠ ุจูŠุตูŠุฑ a subgroup
368
00:39:39,000 --> 00:39:43,020
ูˆุจุงู„ุชุงู„ูŠ ุจูŠุตูŠุฑ a subgroup
369
00:39:45,060 --> 00:39:52,840
ูŠุจู‚ู‰ ุจุถุงุฌูŠ ุฃู‚ูˆู„ ู„ู‡ assume ุฃูุชุฑุถ ุฃู† ุงู„ู€ K bar ู‡ูŠ
370
00:39:52,840 --> 00:40:01,600
ุนุจุงุฑุฉ ุนู† subgroup ู…ู† ุงู„ู€ G bar ูŠุจู‚ู‰
371
00:40:01,600 --> 00:40:10,020
ู‡ุฐู‡ subgroup ู…ู† ุงู„ู€ G bar then ุงู„ู€ Phi inverse of K
372
00:40:10,020 --> 00:40:14,180
bar is non-empty
373
00:40:20,320 --> 00:40:25,200
ุงู„ู€ Phi of ุงู„ู€ Identity ุชุจุน ุงู„ู€ G ุจุฏู‡ ูŠุนุทูŠู†ูŠ ู…ูŠู†
374
00:40:25,200 --> 00:40:33,300
ุงู„ู€ Identity ุชุจุน ู…ู†ุŸ ุชุจุน ุงู„ู€ G bar ูŠุนู†ูŠ ุฅูŠุดุŸ ู‡ุฐุง
375
00:40:33,300 --> 00:40:43,430
ุจุฏู‡ ูŠุนุทูŠูƒ ุฃู† ุงู„ู€ Phi Inverse of ุงู„ู€ Identity ุชุจุน
376
00:40:43,430 --> 00:40:48,190
ุงู„ู€ G Bar ุจุฏูŠ ุฃุณูˆูŠ ุงู„ู€ Identity Element ุชุจุน ุงู„ู€ G
377
00:40:48,190 --> 00:40:55,030
ู…ุธุจูˆุทุŸ ูŠุจู‚ู‰ ู…ุนู†ุง ู‡ุฐุง ุงู„ูƒู„ุงู… ุฅู† ุงู„ู€ Identity ุชุจุน
378
00:40:55,030 --> 00:41:02,830
ุงู„ู€ G ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ Phi Inverse of ุงู„ู€ K Bar ุจุนุฏ
379
00:41:02,830 --> 00:41:10,120
ู‡ูŠูƒ ุจุชุฑูˆุญ ุฃุฎุฏ two elements ุงู„ู€ X ูˆ ุงู„ู€ Y ู…ูˆุฌูˆุฏุฉ ููŠ
380
00:41:10,120 --> 00:41:18,780
ุงู„ู€ Phi inverse of ุงู„ู€ K bar ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู†
381
00:41:18,780 --> 00:41:28,520
ุงู„ู€ X ุจุฏู‡ ูŠุณุงูˆูŠ Phi inverse of K1 ู…ุซู„ุง ูˆ ุงู„ู€ Y ุจุฏู‡
382
00:41:28,520 --> 00:41:32,800
ูŠุณุงูˆูŠ Phi inverse of K2
383
00:41:36,280 --> 00:41:42,310
ูƒูˆูŠุณ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฑูˆุญ ุฃุฎุฏ ุงู„ู€ X Y inverse ุฃุดูˆู ู‡ู„
384
00:41:42,310 --> 00:41:45,930
ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ูˆู„ุง ู„ุฃ ุฅุฐุง ุทู„ุนุช ู…ูˆุฌูˆุฏุฉ ุจูŠูƒูˆู† ูƒูู‰ ุงู„ู„ู‡
385
00:41:45,930 --> 00:41:53,370
ุงู„ู…ุคู…ู†ูŠู† ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฑูˆุญ ุฃุฎุฏ ู„ู‡ ุงู„ู€ X Y inverse ูŠุจู‚ู‰
386
00:41:53,370 --> 00:41:59,190
ุฃูˆ ุงู„ู€ Phi ุฎู„ู‘ูŠ
387
00:41:59,190 --> 00:42:03,610
ุฃุดูˆู ุงู„ู€ X Y inverse ูŠุจู‚ู‰ ุงู„ู€ X ุงู„ู„ูŠ ุนุจุงุฑุฉ ุนู† Phi
388
00:42:03,610 --> 00:42:12,100
inverse of ุงู„ูƒูˆุงู†ููŠ ุงู„ู€ Phi inverse of K2 ู„ูƒู„
389
00:42:12,100 --> 00:42:25,400
inverse ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ู‡ุฐุง
390
00:42:25,400 --> 00:42:31,900
ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ Phi inverse of K1 ููŠ Phi inverse
391
00:42:31,900 --> 00:42:40,870
of K2 inverse ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ููŠ ุงู†ูุฑุณ of K1
392
00:42:40,870 --> 00:42:49,640
K2 ุงู†ูุฑุณ ู‡ุฐุง ูƒู„ู‡ ู…ูŠู†ุŸ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ X Y inverse ู‡ู„
393
00:42:49,640 --> 00:43:00,080
ู‡ุฐุง ุงู„ุขู† ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ Phi inverse of K barุŸ ู„ูŠุดุŸ
394
00:43:00,080 --> 00:43:04,740
ู„ุฃู† ู‡ุฏูˆู„ ุญุงุตู„ ุถุฑุจู‡ู… ู…ูˆุฌูˆุฏ ููŠ K bar ู„ุฃู† ุฃูˆู„ ู…ุง ุฌูŠู†ุง
395
00:43:04,740 --> 00:43:09,220
ูƒู†ุง K bar ู…ุง ู„ู‡ุง subgroup ู…ู† G ุจู‚ู‰ closed under
396
00:43:09,220 --> 00:43:13,480
multiplication ูŠุจู‚ู‰ ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€Phi inverse of
397
00:43:13,480 --> 00:43:22,060
K bar ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู€Phi inverse of K bar is a
398
00:43:22,060 --> 00:43:27,160
subgroup ู…ู† ุฌูŠู‡ุŸ ู…ู† G ูˆุงู†ุชู‡ูŠู†ุง ู…ู†ู‡ุง ุจุฏู†ุง ู†ุฑูˆุญ
399
00:43:27,160 --> 00:43:36,840
ู„ู„ู†ู‚ุทุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุง ูˆู‡ูŠ ุฎุงุตูŠุฉ ุงู„ normality ุฃูŠูˆุฉ ุนุฑู
400
00:43:36,840 --> 00:43:42,730
ู„ูˆ ู…ุงูƒู†ุชุด homomorphism ุฃู…ุฑู‡ุง ู…ุง ุจูŠุตูŠุฑ ูƒู„ุงู…ู‡ุง ุฏู‡
401
00:43:42,730 --> 00:43:51,470
ุตุญูŠุญ ูˆุญุณุจ
402
00:43:51,470 --> 00:43:55,670
ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ ุนู†ุฏูƒ ุญุณุจ ุงู„ุชุนุฑูŠู ูŠุนู†ูŠ ุนุฑูู†ุง ุงู„ู€Phi
403
00:43:55,670 --> 00:44:00,210
Inverse ูˆูŠู† ุนุฑูู†ุงู‡ ูˆุงู„ู„ู‡ ู…ุณุญู†ุง.. ู…ุณุญู†ุง.. ู„ุง
404
00:44:00,210 --> 00:44:04,230
ุฃูŠูˆุฉ ุฃูŠูˆุฉ ูƒู„ ุงู„ู€K ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุฌุจู‡ุงุช ุงู„ู€Phi of K
405
00:44:04,230 --> 00:44:07,670
ู…ูˆุฌูˆุฏุฉ ูˆูŠู†ุŸ ููŠ ุงู„ู€K bar ุฃูŠูˆุฉ
406
00:44:14,620 --> 00:44:30,300
ุชุงู†ูŠ ุชุงู†ูŠ ุณุคุงู„ูƒ ุณุทุฑ ุงู„ุชุงู†ูŠ ู‡ู†ุง ู„ููˆู‚ ุงู‡ ุงู‡
407
00:44:30,300 --> 00:44:37,200
ู‡ุฐุง ูŠุง ุงุจู†ูŠ ุฃู†ุง ุจู‚ูˆู„ ูŠุณุงูˆูŠ ุงู„ identity ุชุจุน ุงู„ ุฌูŠ
408
00:44:37,200 --> 00:44:42,220
ุจุงุฑ ุงุซุฑ ุนู„ู‰ ุงู„ุทุฑููŠู† ุจุงู„ูุงูŠ ุงู†ูุฑุณ ู„ุง ู…ุงู†ุนุซุฑู†ุง ุจูุนู„
409
00:44:42,220 --> 00:44:46,900
ู…ุด ู‡ุชุงุทู†ูŠู† ุงู„ identity ูŠุนู†ูŠ ุงู„ู„ูŠ ู‡ูˆ .. ู‡ุฐุง ู„ูˆ ูƒู†ุช
410
00:44:46,900 --> 00:44:51,000
ุฃุฑูŠุฏ ู…ูˆุฑูุฒู…ุŒ ุนู†ุตุฑ ูˆุงุญุฏ. ุฃู†ุง ุจู‡ู…ู†ูŠ ุงู„ุนู†ุตุฑุŒ ุจุฏูŠ ุฃุฌูŠุจ
411
00:44:51,000 --> 00:44:55,000
ุนู†ุตุฑุŒ ุจุฏูŠุด ุฃุฌูŠุจ ูƒุซูŠุฑุŒ ุจูƒููŠู†ูŠ ู…ู†ูƒ ุนู†ุตุฑุŒ ู‡ุฐุง ู‡ู…ุดูŠ ุฃู†
412
00:44:55,000 --> 00:45:02,260
ุฃุซุจุช ุฃู†ู‡ุง non-emptyุŒ ุชู…ุงู…ุŸ ุทูŠุจุŒ ุฃู†ุง ุฅู„ูŠ ูˆุฌู‡ุฉ ู†ุธุฑ
413
00:45:02,260 --> 00:45:07,980
ุฃุฎุฑู‰ุŒ ุฅู„ูŠ ูˆุฌู‡ุฉ ู†ุธุฑ ุฃุฎุฑู‰ ููŠ ู‡ุฐุง ุงู„ูƒู„ุงู…ุŒ ูŠุนู†ูŠ ู„ูˆ
414
00:45:07,980 --> 00:45:12,820
ุจุฏู†ุง ู†ุดูƒ ููŠ ู‡ุฐุง ู‡ู„ ู‡ูˆ homomorphism ูˆู„ุง ู„ุงุŒ ุจู†ู‚ุฏุฑ
415
00:45:12,820 --> 00:45:18,450
ู†ู‚ูˆู„ ุงู„ุฎุทูˆุฉ ู‡ุฐู‡ ุงุณุชู†ูŠ ุดูˆูŠุฉุŒ ุงู„ุญูŠู† ู„ูˆ ุฌูŠุช ู‡ู†ุง ูุงูŠ of
416
00:45:18,450 --> 00:45:26,950
ุงู„ X Y inverse ุฃู„ูŠุณุช ู‡ูŠ ูุงูŠ ู„ูุงูŠ inverse of K1 K2
417
00:45:26,950 --> 00:45:35,530
inverse ุตุญ ูˆู„ุง ู„ุง ุฃุซุฑ ู‡ู†ุง ุจูุงูŠ ูˆ ุฃุซุฑ ู‡ู†ุง ุจูุงูŠ ูŠุจู‚ู‰
418
00:45:35,530 --> 00:45:40,250
ุงู„ู†ุชูŠุฌุฉ
419
00:45:40,250 --> 00:45:47,640
K1 K2 Inverse ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€K bar ุตุญ ูˆู„ุง ู„ุง
420
00:45:47,640 --> 00:45:55,440
ูŠุจู‚ู‰ ุตุงุฑ ุนู†ุฏูƒ ุงู„ู„ูŠ ู‡ูˆ ุงู„ X Y inverse ู…ูˆุฌูˆุฏุฉ ุงู„ X Y
421
00:45:55,440 --> 00:46:05,560
inverse ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ู„ูŠ ุจุฏู‡ุง ุชุณุงูˆูŠ ุฃูˆ ู‡ุฐู‡ ู…ูˆ ..
422
00:46:05,560 --> 00:46:11,190
ุงุณุชู†ูŠ ุดูˆูŠุฉ ุจุฏูŠ ุฃู„ุบูŠ ู‡ุฐู‡ ุฃู„ุบูŠุชู‡ุง ุจู…ูŠู† ุฃุซุฑุช ุนู„ูŠู‡ุง ูู‡ูŠ
423
00:46:11,190 --> 00:46:16,070
ุฃุตุจุญุช X Y inverse ุจุฏูŠ ุฃุฌูŠุจู‡ุง ู‡ู†ุง ูŠุจู‚ู‰ ุจุฏู‡ุง ุชุณุงูˆูŠ
424
00:46:16,070 --> 00:46:24,030
ุงู„ู€ Phi of ุงู„ู€ K ูˆุงุญุฏ K ุงุชู†ูŠู† inverse ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡
425
00:46:24,030 --> 00:46:32,490
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู…ูŠู† ููŠ ุงู„ Phi of Phi of K ูˆPhi of K
426
00:46:32,490 --> 00:46:43,590
Phi of K ู„ุฃ ุงุญู†ุง ุงุญู†ุง ุฎู„ูŠูƒ ู…ุนุงูŠุง ุงุญู†ุง ุฎู„ูŠูƒ .. ู‡ุงูŠ
427
00:46:43,590 --> 00:46:49,270
ุงู„ู„ูŠ ูˆุตู„ู†ุง X Y inverse ุจุฏู‡ ูŠุณุงูˆูŠ ููŠ ุงู†ูุฑุณุช ู„ K1 K2
428
00:46:49,270 --> 00:46:53,830
ุจุฏู‡ ุงุซุฑ ู‡ู†ุง ุจููŠ ูˆ ุงุซุฑ ู‡ู†ุง ุจููŠ ู‡ุงูŠ ุงุซุฑู†ุง ุจููŠ ูˆ
429
00:46:53,830 --> 00:46:59,390
ุงุซุฑู†ุง ู‡ู†ุง ุจููŠ ู‡ุฐู‡ ู‡ุชู„ุบูŠ ุงู„ุชุงู†ูŠุฉ ุจุตูŠุฑ ุงู„ู„ูŠ ู‡ูˆ X Y
430
00:46:59,390 --> 00:47:06,100
inverse ุจุฏู‡ ูŠุณุงูˆูŠ ููŠ of K1 K2 inverse ุชู…ุงู…ุŸ ูŠุจู‚ู‰
431
00:47:06,100 --> 00:47:20,100
ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ููŠ Phi of K ูˆ Phi of K ู„ุญุธุฉ
432
00:47:20,100 --> 00:47:25,880
ุดูˆูŠุฉ ุนู†ุฏูƒ ุงุนุชุฑุงุถ ุนู„ู‰ ู‡ุฐู‡ ุงู„ุนุจุงุฑุฉุŸ ุงู„ุฎุทูˆุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุง
433
00:47:25,880 --> 00:47:31,680
ุชู…ุงู… ุฃู†ุง ุฌูŠุช ุงุซุฑู‡ ุจูุงูŠ ุนู„ู‰ XY inverse ุทุจ ู‡ุฏู‰ ุชุณุงูˆูŠ
434
00:47:31,680 --> 00:47:35,460
ู‡ุฏู‰ ู…ุดูŠู†ุง ู„ุบุงูŠุฉ ู‡ู†ุง ู„ูˆ ู‚ู„ู†ุง ู…ุด ุนุงุฑููŠู† ู‡ูŠ
435
00:47:35,460 --> 00:47:40,240
homomorphism ูˆู„ุง ู„ุฃ ูŠุจู‚ู‰ ูƒุงู† ุตุงุฑ ูƒู„ ุงู„ุดุบู„ ู‡ุฏู‰ ู…ุด
436
00:47:40,240 --> 00:47:45,350
ุตุญูŠุญ ุฅุฐุง ู‡ูŠ homomorphism ุบุตุจ ุนู„ู‰ ู…ุง ูŠุฑุถู‰ ูˆุฅู„ุง ูƒุงู†
437
00:47:45,350 --> 00:47:48,530
ู‡ุฐุง ุงู„ูƒู„ุงู… .. ู„ู‚ุฏ ู‚ู„ุช ุงู„ inverse ุตุญ ู„ูƒู† ู…ุตูŠุฑ ู‡ุฐุง
438
00:47:48,530 --> 00:47:52,910
ุงู„ูƒู„ุงู… ุตุญูŠุญ ู„ูŠุณ ุตุญูŠุญุง ุฅู„ุง ุฅุฐุง ูƒุงู†ุช homomorphism
439
00:47:52,910 --> 00:48:00,130
ุชู…ุงู…ุŸ ุนู„ู‰ .. ุฃูŠูˆุฉ ุงู„ homomorphism ู…ุด ุถุฑูˆุฑูŠ ูŠูƒูˆู†
440
00:48:00,130 --> 00:48:04,010
ู…ุฏุจู† ุตุญูŠุญ ู„ู…ุง ุชุฌูŠุจ ููŠ ุงู†ูุต ุจุทู„ ุงูุชุฑุงู† ุฃุตู„ุง ู…ุตูŠุฑ
441
00:48:04,010 --> 00:48:08,490
ุงู„ูˆุงุญุฏ ุงู„ู„ูŠ ุนู†ุฏ ุงู„ุตูˆุฑ ู…ุธุจูˆุท ู…ุด ู…ุชุจุทู„ ุงุฎุชุฑุงุน ุฃุตู„ุง ู…ุด
442
00:48:08,490 --> 00:48:12,350
ู…ุชุจุทู„ homomorphism ู…ุชุจุทู„ ุงุฎุชุฑุงุน ู…ุนุฑู ุฃุตู„ุง ุชุตูŠุฑ
443
00:48:12,350 --> 00:48:15,470
ุงู„ุตูˆุฑุฉ ุงู„ุนู†ุตุฑ ุงู„ู„ูŠ ู‡ูˆ ุฃูƒุซุฑ ู…ู† ุงู„ุตูˆุฑุฉ ููƒูŠู ุฃู†ุช
444
00:48:15,470 --> 00:48:18,130
ุจุชุงุฎุฏ ุงู„ู„ูŠ ู‡ูˆ ุฃูƒุซุฑ ู…ู† ุงู„ุตูˆุฑุฉ ุงู„ุนู†ุตุฑ ุงู„ู„ูŠ ู‡ูˆ ุฃูƒุซุฑ
445
00:48:18,130 --> 00:48:21,210
ู…ู† ุงู„ุตูˆุฑุฉ ุงุญู†ุง ุจู†ุญูƒูŠ homomorphism ูˆู„ูŠุณ function
446
00:48:21,210 --> 00:48:27,050
ุฅุฐุง ู‚ู„ู†ุง function ู…ุงู‡ูˆ isomorphism function ูŠุนู†ูŠ
447
00:48:27,050 --> 00:48:30,230
ู…ูŠุฉ ุงู„ู…ูŠุฉ ุจุณ ุงู„ homomorphism ู‚ุฏ ูŠูƒูˆู† ูˆ ู‚ุฏ ู„ุง ูŠูƒูˆู†
448
00:48:31,440 --> 00:48:36,400
ุฃู‡ ู‚ุฏ ูŠูƒูˆู† ูˆ ู‚ุฏ ู„ุง ูŠูƒูˆู† ุชู…ุงู… ุทูŠุจ ุงุญู†ุง ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ
449
00:48:36,400 --> 00:48:42,740
ุฑู‚ู… ู‚ุฏุงุด ู‡ูŠ ุณุจุนุฉ ุงู„ู†ู‚ุทุฉ ู‡ุฐู‡ ุฑู‚ู… ุณุจุนุฉ ุฑู‚ู… ุณุจุนุฉ
450
00:48:42,740 --> 00:48:50,600
ู…ุงุดูŠูŠู† ูƒู„ู‡ ุตุญ ูˆู‡ุฐู‡ ุชู…ุงู… ูˆุงุฎุฏู†ุง x y inverse ูˆ ุฃุซุฑู†ุง
451
00:48:50,600 --> 00:48:55,180
ุนู„ูŠู‡ุง ุจูุงูŠุฉ ูˆ ุทู„ุน ูƒ ูˆุงุญุฏ ูƒุชู†ูŠู† ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ูƒ
452
00:48:55,180 --> 00:49:01,270
ู…ุธุจูˆุท ูŠุจู‚ู‰ ู…ู† ู‡ุฐุง ุงู„ูƒู„ุงู… ุจู†ู‚ุฏุฑ ู†ู‚ูˆู„ X Y inverse
453
00:49:01,270 --> 00:49:08,490
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ Phi ููŠ ุงู„ Phi of K ุตุญูŠุญ ูŠุจู‚ู‰ ุจู†ู‚ูˆู„
454
00:49:08,490 --> 00:49:16,550
ู‡ู†ุง ุงู„ู†ู‚ุทุฉ ุงู„ุฃุฎูŠุฑุฉ ุฃู† ุงู„ X Y inverse ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ููŠ
455
00:49:16,550 --> 00:49:25,650
ุงู„ Phi inverse ููŠ ุงู„ Phi inverse ููŠ ุงู„ Phi inverse
456
00:49:25,650 --> 00:49:31,360
of K ุจุงุฑ ุงู„ู„ูŠ ููˆู‚ ุจุงู„ุธุจุท ุชู…ุงู…ุง ุฎู„ุงุต ูŠุจู‚ู‰ ู„ูŠุด ูŠุนูŠุฏู‡ุง
457
00:49:31,360 --> 00:49:36,220
ู‡ุฐูŠ ูƒู„ู‡ุง ู…ุงู„ุงุด ู†ุฒูˆู„ ู‡ูŠ ุงู„ X Y ุงู†ูุฑุณุช ู…ูˆุฌูˆุฏุฉ ููŠ
458
00:49:36,220 --> 00:49:40,840
ุงู„ูุงูŠ ุงู†ูุฑุณุช ู‡ุฐุง ูƒู„ู‡ ุฒูŠุงุฏุฉ ุตูˆุชู†ุง ู‡ุฐู‡ ุงู„ุฎุทูˆุฉ ุฒูŠุงุฏุฉ
459
00:49:40,840 --> 00:49:45,660
ุชู…ุงู… ูŠุจู‚ู‰ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ Phi inverse of K bar ูŠุจู‚ู‰
460
00:49:45,660 --> 00:49:50,920
ุจู†ุงุก ุงู„ู„ูŠ ุนู„ูŠู‡ Phi inverse of K bar is a subgroup
461
00:49:50,920 --> 00:49:59,100
ูŠุจู‚ู‰ ู‡ู†ุง Phi inverse of K bar is a subgroup ู…ู†
462
00:49:59,100 --> 00:50:05,840
ู…ูŠู†ุŸ ู…ู† ุงู„ G ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู„ู†ู‚ุทุฉ ุงู„ุซุงู…ู†ุฉ ุฎู„ูŠ ุจุงู„ูƒ
463
00:50:05,840 --> 00:50:10,900
ู…ุนุงูŠุง ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู…ู†ุฉ ุงู„ู„ูŠ ุฌุจู†ุงู‡ุง ู‡ุฐู‡ ุงู„ู€ subgroup
464
00:50:10,900 --> 00:50:16,160
ู…ู† G ุจู†ุง ู†ุซุจุช ุฃู†ู‡ุง normal ุจุณ ุจุดุฑุท ุฃู† ุงู„ K bar
465
00:50:16,160 --> 00:50:23,320
normal ู…ู† G ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ assume ุงูุชุฑุถ ุฃู† ุงู„ K
466
00:50:23,320 --> 00:50:30,840
bar is a normal subgroup ู…ู† G bar ุจุงู„ุฏุงู„ูŠ ุงุซุจุช ุฃู†
467
00:50:30,840 --> 00:50:38,520
ุงู„ูุงูŠ
468
00:50:38,520 --> 00:50:49,580
ุงู†ูุฑุณ of K bar is a normal subgroup ู…ู† ู…ู† ู…ู† ุงู„ G
469
00:50:50,950 --> 00:51:00,270
ูƒูˆูŠุณ ู„ุฐู„ูƒ ุจุฏุฑูˆุน ุฃุฎุฏ let ุงู„ุฌูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุฌูŠ and ุงู„ X
470
00:51:00,270 --> 00:51:11,210
ู…ูˆุฌูˆุฏ ููŠ ุงู„ูุงูŠ ุงู†ูุฑุณ of ุงู„ูƒุจุงุฑ then ุงู„ุฌูŠ ู…ูˆุฌูˆุฏุฉ ููŠ
471
00:51:11,210 --> 00:51:20,950
ุงู„ุฌูŠ ูˆ ุงู„ู€ X ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ ููŠ ุงู†ูุฑุณ ููŠ ุงู†ูุฑุณ of K
472
00:51:20,950 --> 00:51:29,760
ุนู„ู‰ ุณุจูŠู„ ุงู„ู…ุซุงู„ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุฌูŠ ู…ูˆุฌูˆุฏ ููŠ ุฌูŠ
473
00:51:29,760 --> 00:51:37,360
and ูุงูŠ of ุงูƒุณ ูุงูŠ of ุงูƒุณ ุจุฏู‡ ูŠุณุงูˆูŠ ูƒู…ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ
474
00:51:37,360 --> 00:51:44,700
ูƒู… ุทุจ ู„ูˆ ุฃุฎุฏุช ุงู„ุฌูŠ ุงูƒุณ ุฌูŠ ุงู†ูุฑุณ ู…ุดุงู† ุงุซุจุงุช ุงู„
475
00:51:44,700 --> 00:51:51,000
normality ูˆุงุฎุฏ ุชุฃุซูŠุฑ ุงู„ู€ Phi ุนู„ูŠู‡ุง ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
476
00:51:51,000 --> 00:51:59,700
ุจุฏู„ ูŠุณุงูˆูŠ Phi of G Phi of X Phi of G inverse ูŠุจู‚ู‰
477
00:51:59,700 --> 00:52:06,420
ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู„ ูŠุณุงูˆูŠ Phi of G Phi of X ุงู„ู„ูŠ ู‡ูŠ
478
00:52:06,420 --> 00:52:12,400
main ุงู„ู„ูŠ ู‡ูŠ ุงุจ K Phi of X ุงู„ู„ูŠ ู‡ูŠ ูˆ ุงู„ K normal
479
00:52:12,400 --> 00:52:21,200
ุงู„ู„ูŠ ู‡ูˆ K ูˆ ุงู„ู€ Phi ู‡ุฐู‡ of G ู„ูƒู„ inverse ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
480
00:52:21,200 --> 00:52:28,620
ุนู†ุฏู†ุง ู‡ู†ุง ุชู…ุงู…ุŸ ุงู„ุญูŠู† ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ููŠ G ูˆู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ
481
00:52:28,620 --> 00:52:36,240
ููŠ ุงู„ู€Phi inverse of K ูˆู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ููŠ G ุฃุฎุฏู†ุง
482
00:52:36,240 --> 00:52:41,720
ุชุฃุซูŠุฑ ุงู„ู€Phi ุนู„ูŠู‡ู… ูˆุทู„ุน ุนู†ุฏู†ุง ู‡ุฐุง ุงู„ู€Element ูˆู‡ุฐุง
483
00:52:41,720 --> 00:52:49,100
ูˆู‡ุฐุง ุงู„ู€K bar ุฃู†ุง ุฌุงู„ ุนู„ูŠู‡ุง normal ูŠุจู‚ู‰ ู„ูˆ ุฃุฎุฏุช
484
00:52:49,100 --> 00:52:56,580
element ู…ู† G bar ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ G bar ูˆู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ
485
00:52:56,580 --> 00:53:04,000
ุฌูŠ ุจุงุฑ ูˆู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ ุงู„ูุงูŠ ุงู†ูุฑุณ ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ
486
00:53:04,000 --> 00:53:10,460
ุงู„ูุงูŠ ุงู†ูุฑุณ of K ุฅุฐุง ู‡ุฐุง ูƒู„ู‡ ู…ูˆุฌูˆุฏ ููŠ ุงู„ูุงูŠ ุงู†ูุฑุณ
487
00:53:10,460 --> 00:53:17,680
of K ุจุงุฑ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง K ุจุงุฑ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡
488
00:53:17,680 --> 00:53:21,500
ุงู„ูุงูŠ
489
00:53:21,890 --> 00:53:30,270
ุฅู†ูุฑุณุช ู…ู† K ุจุงุฑ ู‡ูˆ ุนุถูˆ ุนุงู… ู…ู† ุฌูŠู‡