abdullah's picture
Add files using upload-large-folder tool
4b6d5de verified
1
00:00:04,940 --> 00:00:07,280
ุจุณู… ุงู„ู„ู‡ ูˆุงู„ุญู…ุฏ ู„ู„ู‡ ูˆุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุนู„ู‰ ุฑุณูˆู„ ุงู„ู„ู‡
2
00:00:07,280 --> 00:00:12,260
ุฃู‡ู„ุง ูˆุณู‡ู„ุง ููŠูƒู… ููŠ ู…ุญุงุถุฑุชู†ุง ุงู„ู…ุณุชู…ุฑ .. ููŠ
3
00:00:12,260 --> 00:00:15,740
ู…ุญุงุถุฑุงุชู†ุง ุงู„ู…ุณุชู…ุฑุฉ ููŠ ู…ุณุงู‚ ุงู„ data mining ูˆู…ุง ุฒู„ู†ุง
4
00:00:15,740 --> 00:00:20,980
ุจู†ุชูƒู„ู… ููŠ ุจุงุจ ุงู„ classification ูˆ ุจุงู„ุชุญุฏูŠุฏ ู‡ู†ุชูƒู„ู…
5
00:00:20,980 --> 00:00:24,660
ุงู„ูŠูˆู… ุนู„ู‰ decision tree induction ูƒู†ุง ููŠ ุงู„ู…ุญุงุถุฑุงุช
6
00:00:24,660 --> 00:00:27,540
ุงู„ุณุงุจู‚ุฉ ุฃูˆ ุงู„ู…ุญุงุถุฑุฉ ุงู„ุฃุฎูŠุฑุฉ ุฃุถูู†ุง ุดุบู„ุฉ ุฌุฏูŠุฏุฉ ูƒู†ุง
7
00:00:27,540 --> 00:00:31,040
ุจู†ุชูƒู„ู… ุนู„ู‰ ุงู„ู†ุงูŠู ุจูŠุงุณูˆุงู„ู€ Naive bias ูƒุงู†ุช ูุนู„ูŠู‹ุง
8
00:00:31,040 --> 00:00:34,320
ู‡ูŠ ูˆุงุญุฏุฉ ู…ู† ุงู„ู€ Probabilistic approach ุงู„ู…ุณุชุฎุฏู…ุฉ
9
00:00:34,320 --> 00:00:36,800
ููŠ ุงู„ machine learning ู…ู† ุฃุฌู„ ุงู„ classification
10
00:00:36,800 --> 00:00:41,680
ูˆู‚ู„ู†ุง ุงุญู†ุง ุจูŠู„ุฒู…ู†ูŠ ุงู† ุงุนู…ู„ ุญุณุจุฉ ู„ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„
11
00:00:41,680 --> 00:00:44,300
probabilities ุงู†ุง ููŠ ุนู†ุฏ ุงู„ instance ุงู„ู„ูŠ ุจุฏูŠ ..
12
00:00:44,300 --> 00:00:46,600
ุงู„ู„ูŠ ู‡ูŠ ุงู„ unseen instance ุงู„ู„ูŠ ุงู†ุง ุจุฏูŠ ุงุนู…ู„ู‡ุง
13
00:00:46,600 --> 00:00:50,440
classification ุจู†ุงุก ุนู„ู‰ ุงู„ .. ูˆุจุงู„ุชุงู„ูŠ ุงู„ class
14
00:00:50,440 --> 00:00:54,380
ุทุจุนุฉ ุงู„ instance ู‡ุงูŠ ุงู„ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰ ุชุณุงูˆูŠ ุงู„
15
00:00:54,380 --> 00:00:58,370
maximum probabilityู„ู„ probabilities of the class
16
00:00:58,370 --> 00:01:05,470
ููŠ ุงุญุชู…ุงู„ูŠุฉ ุงู† ุชูƒูˆู† ุงู„ instance ู‡ุฐู‡ ู…ุน ุงู„ class
17
00:01:05,470 --> 00:01:10,110
ุงู„ู…ุนูŠู† ูˆ ู„ู…ุง ู‡ุฑูˆุญู†ุง ุจุงู„ุชูุตูŠู„ ู‚ู„ุช ุงู†ุง ูุนู„ูŠุง ุจุญุงุฌุฉ
18
00:01:10,110 --> 00:01:14,070
ุงู†ู‡ ู‡ูŠ data set ุงุฑูˆุญ ุงู†ุดุฆ ุงู„ุฌุฏูˆู„ ู‡ุฐุง ุจุญูŠุซ ุงู†ู‡ ุงู†ุง
19
00:01:14,070 --> 00:01:18,550
ูุงู„ุฃุฑูˆุญ ุญุณุจุช ุงู„ probability ู„ูƒู„ element ุฃูˆ ู„ูƒู„
20
00:01:18,550 --> 00:01:21,770
classes ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰ ูˆู…ู† ุซู… ุงู†ุชู‚ู„ู†ุง ููŠ ุงู„ุฎุทูˆุฉ
21
00:01:21,770 --> 00:01:24,910
ุงู„ู„ูŠ ุจุนุฏู‡ุง ุฌุณู…ุช ุฃุฎุฏุช ุงู„ attributes ุงู„ู„ูŠ ุงู„ู…ูุฑูˆุถ
22
00:01:24,910 --> 00:01:27,370
ุงู„ู„ูŠ ุงู„ู…ูุฑูˆุถ ุนู†ุฏู‡ุง nominal attributes ุฃุฎุฏุช
23
00:01:27,370 --> 00:01:30,950
distinct values ูˆุนู…ู„ุช ุญุณุงุจ ู„ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู… ูˆุงู†ุชุจู‡
24
00:01:30,950 --> 00:01:35,520
ุฏุงุฆู…ุง ูˆุงู†ุชุจู‡ ุฏุงุฆู…ุง ุงู† ุงู†ุง ูุนู„ูŠุง ู‡ุงู† ู‚ุงุนุฏ ุจุงุดุชุบู„ุนู„ู‰
25
00:01:35,520 --> 00:01:38,840
ุงู† ุงู„ probability ู†ูุณู‡ุง ูŠุนู†ูŠ ุงู„ุขู† ุนุฏุฏ ุงู„ yes ููŠ ุงู„
26
00:01:38,840 --> 00:01:42,880
data 6 ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ู†ุง 4 ุนู„ู‰ 10 ูˆู…ู† ุซู… ู…ุน ูƒู„ route
27
00:01:42,880 --> 00:01:48,400
ุงูˆ ูƒู„ attribute ุชุญุช ุงู„ yes ู‡ูŠูƒูˆู† 4 ูˆูƒู„ ู…ุฌู…ูˆุน
28
00:01:48,400 --> 00:01:51,920
ุงู„ุนู†ุงุตุฑ ุชุญุช ูƒู„ no ู‡ูŠูƒูˆู† 6 ูˆ ู‡ูƒุฐุง ูˆ ู‡ุฐุง ู…ูุชุงุญ
29
00:01:51,920 --> 00:01:56,510
ุงู„ู†ุฌุงุญ ู„ู„ุนู†ุงุตุฑ ุงู„ู…ูˆุฌูˆุฏุฉ ูˆ ู„ู…ุง ุงุฌูŠู†ุง ุจุฏู†ุง ู†ุตู†ูุงู„ู€
30
00:01:56,510 --> 00:01:59,230
sunny ูˆ ุงู„ mild ูˆ ุงู„ height ู‚ู„ู†ุง ุญุณุจุช ุงู„
31
00:01:59,230 --> 00:02:01,670
probability ู„ู„ yes ุงู„ู„ูŠ ูƒุงู†ุช 4 ุนู„ู‰ 10 ููŠ ุงู„
32
00:02:01,670 --> 00:02:04,690
probability ู„ู„ sunny ุนู„ู‰ ุงู„ yes ูˆ ู‚ู„ู†ุง ู‡ุฐุง ุงู„ุฌุฏูˆู„
33
00:02:04,690 --> 00:02:07,810
ุงู„ุฃุณุงุณ ููŠ ุงู„ู…ูˆุถูˆุน ู‡ูŠ sunny ูˆ yes ู‡ูŠู‡ุง 4 ุนู„ู‰ 10
34
00:02:07,810 --> 00:02:12,530
ู…ุถุฑูˆุจุฉ ููŠู‡ ุงู„ุนู†ุตุฑ ุงู„ุชุงู†ูŠ ูƒุงู†ุช mild ุงู„ probability
35
00:02:12,530 --> 00:02:17,190
ุชุจุนุช ุงู„ mild ูŠุนู†ูŠ ุจูŠู† ุฌุณูŠู† ู‡ูŠ ุงู„ yes ู‡ุง ุฏูŠ ู…ุถุฑูˆุจุฉ
36
00:02:17,190 --> 00:02:22,410
ููŠ ู‡ูŠููŠ ุงู„ู€ mild ููŠ ุงู„ู€ high ูˆู‡ุฐู‡ ุงู„ุนู†ุงุตุฑ ูƒุงู†ุช
37
00:02:22,410 --> 00:02:25,050
ุจุชู…ุซู„ ุงู„ probability ูุงู†ุง ุญุณุจุช ุงู„ probability ู„ู„
38
00:02:25,050 --> 00:02:27,850
different classes ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰ ูˆุงุฎุฏุช ุงู„
39
00:02:27,850 --> 00:02:31,810
maximum probability ุนู„ู‰ ุงู† ู‡ุฐู‡ ู‡ูŠ ุงู„ุงูƒุชุฑ ุงุญุชู…ุงู„ุง
40
00:02:31,810 --> 00:02:36,090
ููŠ ู…ูˆุถูˆุน ุงู† ู‡ุฐุง ุงู„ุนู†ุตุฑ ุงูˆ ู‡ุฐู‡ ุงู„ instance ุชู†ุชู…ูŠ ู„ู„
41
00:02:36,090 --> 00:02:40,850
class ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู‡ุง ุงู„ุงู† ุงู„ูŠูˆู… ุงู† ุดุงุก ุงู„ู„ู‡
42
00:02:40,850 --> 00:02:45,620
ุชุนุงู„ู‰ ู‡ู†ู†ุชู‚ู„ุงู„ู…ูˆุถูˆุน ุงู„ุฌุฏูŠุฏ ุงู„ู„ูŠ ู‡ูˆ ู…ูˆุถูˆุน ุงู„
43
00:02:45,620 --> 00:02:49,500
decision tree ููŠ ุงู„ุชุนุงู…ู„ ุงูˆ ูƒ different classifier
44
00:02:49,500 --> 00:02:53,300
ุงู„ decision tree ู‡ูŠ ูˆุงุญุฏุฉ ู…ู† ุงู„ classifiers ุงู„ู…ู‡ู…ุฉ
45
00:02:53,300 --> 00:02:57,200
ุฌุฏุง ุงู„ู…ุณุชุฎุฏู…ุฉ ููŠ ู…ูˆุถูˆุน ุงู„ classification ูˆู‡ู…ูŠุชู‡ุง
46
00:02:57,200 --> 00:03:00,840
ู†ุจุชูƒู…ู† ุงู† ู…ู…ูƒู† ุงู†ุง ุงุฑุณู… ุงู„ุดุฌุฑุฉ ูˆุจุงู„ุชุงู„ูŠ ุจุตูŠุฑ ุชูุณูŠุฑ
47
00:03:00,840 --> 00:03:04,000
ุงู„ model ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู‰ ุงูˆ ูู‡ู… ุงู„ model ุงู„ู„ูŠ ุนู†ุฏู‰
48
00:03:04,000 --> 00:03:07,210
ุงูƒุซุฑ ู…ู†ุบูŠุฑู‡ ุนู„ู‰ ุณุจูŠู„ ุงู„ู…ุซุงู„ ุงุญู†ุง ู‚ูˆู„ู†ุง ููŠ ุงู„
49
00:03:07,210 --> 00:03:10,610
classifier ุงู„ู…ุงุถูŠ ุงู„ู„ูŠ ู‡ูˆ naive bias ุงู† ุงู†ุง ูุนู„ูŠุง
50
00:03:10,610 --> 00:03:13,970
ุนู†ุฏ ุงู„ classifier ู‡ุฐุง ู…ู‡ู… ุงูˆ ุฌูŠุฏ ู„ุฃู†ู‡ ุงู†ุง ุจู‚ุฏุฑ
51
00:03:13,970 --> 00:03:17,090
ุงูุณุฑ ู„ูŠุด ุงู„ู†ุชูŠุฌุฉ ุทู„ุนุช ู…ุนุงูŠุง ู‡ูŠูƒ ุจู†ุงุก ุงู†ุง ุนู„ู‰
52
00:03:17,090 --> 00:03:21,310
ุงู„ุงุญุชู…ุงู„ุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ decision tree ูƒุฐู„ูƒููŠ
53
00:03:21,310 --> 00:03:24,590
decision tree ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู†ู‡ ุงู†ุง ูุนู„ูŠุง ุญุจู†ูŠ
54
00:03:24,590 --> 00:03:26,930
decision tree ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ ู„ู…ุง ุงู†ุง ุจุชูƒู„ู… ุนู„ู‰
55
00:03:26,930 --> 00:03:31,210
decision tree ุงุชุฐูƒุฑูˆุง ุฎู„ูŠู†ุง ู†ุชุฐูƒุฑ ุจุดูƒู„ ุณุฑูŠุน ุงู„
56
00:03:31,210 --> 00:03:34,930
binary search tree ู…ุงุจุฏูŠุด ุงูƒุชุฑ ู…ู† ู‡ูŠูƒ ุงู„ binary
57
00:03:34,930 --> 00:03:38,490
search tree ูƒุงู†ุช ุงู„ุนู†ุงุตุฑ ุชุจุนุชู‡ุง ุงู†ู‡ ูƒู„ node ุนู„ู‰
58
00:03:38,490 --> 00:03:43,580
ุงู„ุงูƒุซุฑ ุนู†ุฏู‡ุง two childู…ุธุจูˆุท ู‡ุฐู‡ ู‡ูŠ ุงู„ binary tree
59
00:03:43,580 --> 00:03:47,140
ูˆูƒุงู† ููŠู‡ rule ุจูŠุญูƒู…ู‡ุง ุงู„ rule ุงู†ู‡ ุงู†ุง ููŠ ุงู„ binary
60
00:03:47,140 --> 00:03:51,200
search tree ุงู† ูƒู„ ุงู„ู‚ูŠู… ุงู„ู„ูŠ ุนู„ู‰ ุงู„ูŠู…ูŠู† ู‡ุงู† ู‡ุชูƒูˆู†
61
00:03:51,200 --> 00:03:55,570
ุงูƒุจุฑู…ู† ุงู„ element ูˆูƒู„ ุงู„ู‚ูŠู… ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู‡ุง ู‡ู†
62
00:03:55,570 --> 00:03:59,330
ู‡ุชูƒูˆู† ุฃุตุบุฑ ุทุจ ุงู„ู‚ูŠู… ุงู„ู…ุชุณุงูˆูŠุฉ ู…ุงู„ู‡ุงุด ูˆุฌูˆุฏ ุงู„ู…ูƒุฑุฑุฉ
63
00:03:59,330 --> 00:04:02,830
ู…ุงู„ู‡ุงุด ูˆุฌูˆุฏ ูˆุจุงู„ุชุงู„ูŠ ุงู„ element ู…ุน ูƒู„ node ุงู„ node
64
00:04:02,830 --> 00:04:05,690
ุงู„ู„ูŠ ุนู†ุฏู‡ ุงู„ู‚ูŠู… ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู‡ู† ู‡ุชูƒูˆู† ุฃุตุบุฑ ู…ู† ุงู„ู‚ูŠู…
65
00:04:05,690 --> 00:04:08,810
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู‡ู† ูˆู‡ุฐู‡ ุทุจูŠุนุชู‡ุง ู‡ุชูƒูˆู† ุฃุตุบุฑ ู…ู† ุงู„ู‚ูŠู…
66
00:04:08,810 --> 00:04:12,330
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ุจู…ุนู†ู‰ ุฃุฎุฑ ุฃู† ุงู„ structure ุชุจุน ุงู„
67
00:04:12,330 --> 00:04:15,250
decision tree ุฃู†ุง already ุจุนุฑูู‡ุง ู‡ูŠ ุนุจุงุฑุฉ ุนู†
68
00:04:15,250 --> 00:04:18,270
ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ nodes ูˆ ุงู„ connection ุฃูˆ ุงู„ connected
69
00:04:18,270 --> 00:04:22,790
ุฃูˆ ุงู„graph with no circuit ุฒูŠ ู…ุง ูƒู†ุง ู†ุณู…ูŠู‡ุง ููŠ ุงู„ู€
70
00:04:22,790 --> 00:04:25,670
discrete mathematics ุฃุดุจู‡ ุจุงู„ู€ flow chart ุฒูŠ ู…ุง
71
00:04:25,670 --> 00:04:28,750
ู‚ู„ู†ุง ุณุงุจู‚ุง ููŠ ุนู†ุฏ ุงู„ู€ internal node ูˆ ุงู„ู„ูŠ ุฃู†ุง
72
00:04:28,750 --> 00:04:32,150
ูุนู„ูŠุง ู‡ูŠ ุงู„ value ุชุจุนุช .. ู‡ุชู…ุซู„ ุงู„ value ุชุจุนุช ุงู„
73
00:04:32,150 --> 00:04:35,490
attribute ุงู„ู„ูŠ ู‡ุญู…ู„ ุนู„ูŠู‡ุง ุงู„ูุญุต ู‡ุณุฃู„ ู‚ุฏุงุด ุงู„ GPA
74
00:04:35,490 --> 00:04:40,550
ุฃูƒุจุฑ ุฃูˆ ุชุณุงูˆูŠ ูƒุฐุง ุจุฑูˆุญ ูŠู…ูŠู† ุฃู‚ู„ ุฃูˆ false ุจุฑูˆุญ ูŠุณุงุฑ
75
00:04:40,550 --> 00:04:45,090
ูˆ ู‡ูƒุฐุง ูู‡ุฐู‡ ุงู„ internal node ุงู„ู„ูŠ ู‡ูŠ ุนุงุฏุฉ non-leaf
76
00:04:45,950 --> 00:04:49,790
ุจุชุญุฏุฏ ุงู„ test ุชุจุน ุงู„ attribute ุงู„ branch ุจูŠู…ุซู„ ุงู„
77
00:04:49,790 --> 00:04:53,210
outcome ูˆุตูˆู„ุง ู„ู„ leaf ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰ ูˆ ุงู„ leaf
78
00:04:53,210 --> 00:04:58,070
node ุจุชู…ุซู„ ุงู„ class ูˆ ุทุจุนุง ู„ุงุฒู… ูƒู„ ุดุฌุฑุฉ ูŠูƒูˆู† ู„ู‡ุง
79
00:04:58,070 --> 00:05:03,690
root node ุชุนุงู„ู‰ ู†ุดูˆู ุงู„ data set ุงู„ุจุณูŠุทุฉ ุงู„ู„ู‰
80
00:05:03,690 --> 00:05:08,870
ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ุงู„ data set ู‡ุงูŠ ู…ูƒูˆู†ุฉ ู…ู† 14 rowุงู„ู€
81
00:05:08,870 --> 00:05:12,490
Age ูˆ ุงู„ income ูˆ ุงู„ student ูˆ ุงู„ credit rating ูˆ
82
00:05:12,490 --> 00:05:15,710
ุงู„ class ุชุจุนุชูŠ ูˆ ุทุจุนุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ ู„ู…ุง ุงุญู†ุง ุจู†ุฑูˆุญ
83
00:05:15,710 --> 00:05:20,610
ุจุงุชุฌุงู‡ ุงู„ binary class ูŠุนู†ูŠ two classes ุงู„ุฃู…ุฑ ุงู„ู„ูŠ
84
00:05:20,610 --> 00:05:23,690
ุฃุณู‡ู„ ุนุดุงู† ุงุณุชูˆุนุจ ุฅูŠุด ุงู„ู„ูŠ ุจูŠุตูŠุฑ ู„ุฅู†ู‡ ู„ู…ุง ุชุตูŠุฑ ููŠ
85
00:05:23,690 --> 00:05:26,430
ุนู†ุฏูŠ ุชู„ุงุชุฉ ู‡ุชุชุดุนุจ ุงู„ุฃู…ูˆุฑ ุดูˆูŠุฉ ููŠ ุงู„ุญุณุจุฉ ู„ูƒู† ู‡ูŠ
86
00:05:26,430 --> 00:05:32,030
ุนุจุงุฑุฉ ุนู† ุชูƒุฑุงุฑ ู„ู…ุง ุณุจู‚ ุงู„ุขู† ุฃู†ุง ู‡ุฐุง .. ุนู†ุฏูŠ ู…ุฌู…ูˆุนุฉ
87
00:05:32,030 --> 00:05:35,530
ู…ู† ุงู„ุทู„ุงุจ ุฃูˆ ุจูŠุงู†ุงุช ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ู†ุงุณ ุงู„ู„ูŠ ุงุดุชุฑุช
88
00:05:35,530 --> 00:05:39,190
ุญุงุณุจุงุช ูˆ ุงู„ data set ูƒุงู†ุช ู‚ุฏูŠู…ุฉ ููŠ ุงู„ 2000ููƒุงู†
89
00:05:39,190 --> 00:05:42,630
ุจูŠุณุฃู„ ู‡ู„ ู‡ุฐุง ุงู„ุดุฎุต ู…ุคู‡ู„ ุฃูˆ ู…ู…ูƒู† ู…ุน ุงุญุชู…ุงู„ ุงู† ูŠุดุชุฑูŠ
90
00:05:42,630 --> 00:05:47,430
ุฌู‡ุงุฒ ูˆู„ุง ู„ุฃ ุจู†ุงุก ุนู„ู‰ ุญุงู„ุชู‡ ุงู„ age ู„ุงุญุธ ุงู„ age ุฃู†ุง
91
00:05:47,430 --> 00:05:52,190
ุจุชูƒู„ู… ุนู„ู‰ discrete ุงูˆ categorial data ุงู„ income
92
00:05:52,190 --> 00:05:56,210
high ูˆ low ูˆ medium ุทุงู„ุจ ูˆู„ุง ุบูŠุฑ ุทุงู„ุจ yes or no ูˆ
93
00:05:56,210 --> 00:06:00,750
ุงู„ credit ratingุนุงุฏูŠ ุงูˆ ู…ุนุชุฏ ุงู„ูˆู„ุง excellent
94
00:06:00,750 --> 00:06:03,830
ุจุงู„ู†ุณุจุฉ ู„ู„ู…ุชูˆุณุท ุงู„ุฑุงุชุจ ุชุจุนุชู‡ ูˆููŠ ุงู„ุขุฎุฑ ุงู„ class
95
00:06:03,830 --> 00:06:07,330
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู‡ู… ุงู„ุงู† ู„ู…ุง ุงู†ุง ุจุฏูŠ ุงุจู†ูŠ tree ุงู„
96
00:06:07,330 --> 00:06:11,730
tree ู‡ุชุงุฎุฏ ุจุงู„ุดูƒู„ ู‡ุฐุง ุฎู„ูŠู†ุง ุจุณ ุนุดุงู† ู†ุงุฎุฏ ุนู„ู‰
97
00:06:11,730 --> 00:06:16,110
ุงู„ุณุฑูŠุน ู†ุงุฎุฏ ุงู„ role ุฃูˆู„ ุนุดุงู† ู†ุชุฐูƒุฑ ูˆ ู†ุดูˆู ูƒูŠู ุจุฏูŠ
98
00:06:16,110 --> 00:06:19,350
ุงุชุนุงู…ู„ ู…ุน ุงู„ tree ุงูˆ ูƒูŠู ุชุดุบู„ ูƒ calisphere yes ูŠุซ
99
00:06:19,350 --> 00:06:24,090
ูˆ high ูˆ no fair
100
00:06:26,540 --> 00:06:32,680
ุงู„ู€ target ุชุจุนุชูŠุŸ ู„ุง ู‡ุฐุง ุฃูˆู„ ุฑูˆุญ ุจุณ ุฃู†ุง ุนุดุงู† ุฃุบูŠุฑ
101
00:06:32,680 --> 00:06:36,700
ุจุฏูŠ ุฃุญู‚ ู‡ู†ุง yes ุนุดุงู† ุชุตูŠุฑ ู‡ุฐุง ุงู„ data ุฃุดุจู‡ ุจุงู„
102
00:06:36,700 --> 00:06:41,660
unseen ูˆ ุฃุดูˆู ุจุงู„ classification ุชุจุนุชู‡ุง ูƒูŠู ุจุฏู‡ุง
103
00:06:41,660 --> 00:06:47,620
ุชูƒูˆู† ุงู„ุขู† ุฒูŠ ู…ุง ู‚ู„ู†ุง ุงู„ู„ูŠ ูŠูู‡ุฏ ุงู„ age ุงู„ income
104
00:06:47,620 --> 00:06:50,860
student
105
00:06:50,860 --> 00:06:54,920
ูˆ ููŠ ุงู„ุขุฎุฑ ุงู„ู„ูŠ ู‡ูŠ ุงู„ credit
106
00:07:02,220 --> 00:07:06,100
rate ุญุงุฌุฉ ุนู„ู‰ decision tree ุงู„ decision tree ุงูˆ ุงู„
107
00:07:06,100 --> 00:07:09,400
model ู„ู…ุง ุชู… ุจู†ุงุกู‡ ุฌุงู„ุจู‡ ุจูŠู‚ูˆู„ ุงู‡ู… element ููŠ
108
00:07:09,400 --> 00:07:13,660
ุงู„ู‚ุฑุงุฑ ุนู†ุฏูŠ ุงู„ edge ูˆ ู‡ู†ุชุนุฑู ูƒู…ุงู† ู„ุญุธุงุช ุงู† ุดุงุก
109
00:07:13,660 --> 00:07:17,240
ุงู„ู„ู‡ ุชุนุงู„ู‰ ูƒูŠู ุงุญู†ุง ุงุฎุชุงุฑู†ุง ุงู„ edge ู„ูŠุด ู…ุงูƒู†ุชุด ู„
110
00:07:17,240 --> 00:07:20,060
student ุงูˆ ู„ credit rating ุงู„ู„ูŠ ู‡ูŠ ุงู„ attributes
111
00:07:20,060 --> 00:07:23,260
ุงู„ุชุงู†ูŠุฉ ูˆ ู„ุงุญุธุฉ ุงู† ููŠ ุนู†ุฏูŠ ุจุงู„ูƒุงู…ู„ ููŠ ุนู†ุฏูŠ
112
00:07:23,260 --> 00:07:27,950
attribute ุบุงูŠุจ ุงู„ู„ูŠ ู‡ูŠ ู…ูˆุถูˆุนุงู„ู€ income ููŠ ุงู„ู€
113
00:07:27,950 --> 00:07:30,530
decision tree ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏูŠ ูŠุนู†ูŠ ู‡ูˆ ูƒุฃู†ู‡ ุจูŠู‚ูˆู„
114
00:07:30,530 --> 00:07:35,270
ุงู„ income ู‡ุงู† ู…ุด ุตุงุญุจ ุชุฃุซูŠุฑ ูƒุชูŠุฑ ุนู„ู‰ ุงู„ decision
115
00:07:35,270 --> 00:07:39,010
ุฃูˆ ุนู„ู‰ ุงู„ู‚ุฑุงุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏูŠ ุทุจ ูƒูŠู ู‡ุฐุง ุงู„ูƒู„ุงู…
116
00:07:39,010 --> 00:07:44,590
ุตุงุฑุŸ ู‡ู†ุดูˆูู‡ ูƒู…ุงู† ุดูˆูŠุฉ ู„ูŠุดุŸ ููŠ ุฏู„ุงู„ุฉ ุชุงู†ูŠุฉ ู‡ุงู† ุจูŠุฌูŠ
117
00:07:44,590 --> 00:07:47,350
ุจูŠู‚ูˆู„ ุฅู†ู‡ ุงู„ high ุงู„ุฃู‚ู„ ุชุฃุซูŠุฑุง ุฃูˆ ู…ุงู„ุด ุชุฃุซูŠุฑ ูŠุนู†ูŠ
118
00:07:47,350 --> 00:07:50,130
ุจู‚ุฏุฑ ุฃู†ุง ุฃุดูŠู„ู‡ ุฃูˆ ุฃุณุชุบู†ูŠ ุนู†ู‡ ุจุฌู…ุน ุงู„ุจูŠุงู†ุงุช ุงู„ุชุงู†ูŠุฉ
119
00:07:50,130 --> 00:07:55,510
ุจุชูƒูˆู† ุฃุณู‡ู„ ุงู„ุขู† ุงู„ ageYouth, middle age ูˆ senior
120
00:07:55,510 --> 00:07:59,210
ูู‰ ุนู†ุฏู‰ ุชูุฑุนุงุช ุบูŠุฑ ู‡ูŠูƒ ู„ุฃ ู‡ุฏูˆู„ุฉ ุงู„ three discrete
121
00:07:59,210 --> 00:08:02,850
values ุงู„ู„ู‰ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰ ุจุงู„ age ุชู…ุงู… ุญุณุจ ุงู„ role
122
00:08:02,850 --> 00:08:09,970
ุนู†ุฏู‡ุงู† ูŠู ู‡ูŠ ุงู„ ูŠู ุฅุฐุง ุฃู†ุง ุณุฃู„ุชู‡ ูŠู ูŠุนู†ูŠ ุฎู„ุงุต ูƒู„
123
00:08:09,970 --> 00:08:14,010
branch ุงู„ุณุงุจู‚ ู‡ุงูŠ ู…ุงู„ูŠุด ุฏุฎู„ ููŠู‡ุง ุฅุฐุง ูƒุงู† ู‡ูˆ
124
00:08:14,010 --> 00:08:19,770
student ุบุงู„ุจุง ู‡ูŠุดุชุฑูŠ ูˆู…ุด ู‡ุฏูˆุฑ ุนู„ู‰ ุงู„ููŠุฑู… ู…ุด
125
00:08:19,770 --> 00:08:22,210
ู‡ุชู„ุฒู…ู†ูŠ ุชุนุงู„ ุทู„ุน ู…ุนุงูŠุง ุนู†ุฏู‡ุงู†
126
00:08:26,000 --> 00:08:28,800
ูˆ ู‡ุฐุง ุงู„ุทุงู„ุจ ุจูŠูƒูˆู† ู‡ูŠุดุชุฑูŠ ูƒู…ุจูŠูˆุชุฑ ู„ุฅูŠุดุŸ ู„ุฃู† ุฅุฐุง
127
00:08:28,800 --> 00:08:31,800
ูƒุงู† ู‡ูˆ ููŠ ุงู„ middle ุงูŠู‡ุŸ ุฃูˆ ููŠ ุงู„ูŠุซ ุตุบูŠุฑ ุฃูˆ ุดุงุจ
128
00:08:31,800 --> 00:08:35,300
ูŠุงูุน ูˆ ุทุงู„ุจ ููŠ ู†ูุณ ุงู„ูˆู‚ุช ูŠุนู†ูŠ ุทุงู„ุจ ุฌุงู…ุนุฉ ูุบุงู„ุจุง
129
00:08:35,300 --> 00:08:38,820
ู‡ุฐุง ู‡ูŠุญุชุงุฌ ูƒู…ุจูŠูˆุชุฑ ูˆ ู…ู† ุซู… ู‡ูŠุฑูˆุญ ูŠุดุชุฑูŠู‡ ู„ูˆ ุฃู†ุง ุจุฏูŠ
130
00:08:38,820 --> 00:08:42,000
ุฃุฑุฌุน ู„ู„ data set ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู‡ุงู† ูˆุงู† ุงู„ูŠุซ ูˆ
131
00:08:42,000 --> 00:08:49,200
student ูˆ fair yes ูŠุซ student ูˆ fair
132
00:08:51,960 --> 00:08:54,880
ุนุดุงู† ุชู„ุงุญุธ ุงู† ู‡ุฏูˆู„ุฉ ุงู„ุชู†ุชูŠู† ู‡ู…ุง ุงู„ู„ูŠ ูƒุงู†ูˆุง ุงูƒุชุฑ
133
00:08:54,880 --> 00:09:00,340
ุชุฃุซูŠุฑุง ููŠ ุญุงู„ุฉ ุงู„ elements ุงู„ู„ูŠ ู…ูˆู„ูˆุฏุฉ ูˆู‡ูƒุฐุง ู„ูˆ
134
00:09:00,340 --> 00:09:05,040
ูƒุงู† still age ููŠ ุงู„ middle age ู…ุจุงุดุฑุฉ ู‡ูŠูƒูˆู† ู‡ูŠุดุชุฑูŠ
135
00:09:05,040 --> 00:09:08,040
ุงู„ attribute ู„ูˆ ูƒุงู† senior
136
00:09:10,850 --> 00:09:14,250
ูˆุงู„ income rate ุงู„ู„ูŠ ุนู†ุฏู‡ fair ุบุงู„ุจุง ู…ุด ู‡ูŠุดุชุฑูŠู‡
137
00:09:14,250 --> 00:09:17,210
ูˆู‡ุฐู‡ ู‡ูŠูƒ ุจุชุตูŠุฑ ู…ูˆุถูˆุน ุงู„ decision ุงูˆ ู…ูˆุถูˆุน ุงู„
138
00:09:17,210 --> 00:09:19,950
classification ูŠุนู†ูŠ ุงู„ leaves ุงู„ู„ูŠ ุนู†ุฏูŠ ููŠ ุงู„ node
139
00:09:19,950 --> 00:09:23,850
ุงูˆ ุนููˆุง ููŠ ุงู„ .. ููŠ ุงู„ trees ุงู„ leaf nodes ุจุชู…ุซู„
140
00:09:23,850 --> 00:09:27,930
ุงู„ classes ุงู„ู„ูŠ ุงู†ุง ุจู‚ู‰ ุงุฏูˆุฑ ุนู„ูŠู‡ุง ูˆุทุจุนุง ุนู…ู‚
141
00:09:27,930 --> 00:09:33,210
ุงู„ุดุฌุฑุฉ ูˆุญุฌู…ู‡ุง ู…ุฑุชุจุท ุจุนุฏุฏ ุงู„ attributes ูˆุญุฌู… ุงู„
142
00:09:33,210 --> 00:09:35,970
data set ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰
143
00:09:38,250 --> 00:09:42,710
ุงู„ุฃู† ุงู„ algorithm ุงู„ู…ุณุชุฎุฏู… ู…ุน ุงู„ decision tree
144
00:09:42,710 --> 00:09:50,490
ุงู„ู„ูŠ ู‡ูˆ ุงู„ basic algorithm ุจู†ุณู…ูŠู‡ C4.5 ูˆู‡ุฐุง ุจูŠุดุชุบู„
145
00:09:50,490 --> 00:09:54,150
ููŠ ู…ุจุฏุฃ ุงู„ top-down recursive divide and conquer
146
00:09:54,150 --> 00:09:58,730
ุงู„ุงู† ุงู„ู†ุงุณ ุงู„ู„ูŠ ุฃุฎุฏุช ุฎูˆุงุฑุฒู…ูŠุงุช ุญุชู…ุง ู…ุฑ ุนู„ูŠู‡ุง ู…ุตุทู„ุญ
147
00:09:58,730 --> 00:10:03,170
divide and conquer ุงู„ููƒุฑุฉ ููŠ ุงู„ algorithm ู‡ุฐุง ุงู†
148
00:10:03,170 --> 00:10:07,810
ุงู„ู…ุดูƒู„ุฉ ุงู„ูƒุจูŠุฑุฉ ุฌุฒุฆู‡ุง ุจุชู‚ุฏุฑ ุชุณูŠุทุฑ ุนู„ูŠู‡ุงูŠุนู†ูŠ
149
00:10:07,810 --> 00:10:11,630
ุจู†ุฌูˆุณูŠู† ุญู„ ุฌุฒุก ุฌุฒุก ู…ู† ุงู„ data set ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูƒ
150
00:10:11,630 --> 00:10:14,890
ู‡ู†ุง ูˆ ู‡ู†ุดูˆู ูƒู…ุงู† ุดูˆูŠุฉ ูˆ ู‡ุฐุง ุงู„ู…ุจุฏุฃ ู‡ูˆ ู…ุจุฏุฃ ุงู„
151
00:10:14,890 --> 00:10:17,870
greedy ุทุจุนุง ูˆ ู…ู† ุซู… ุงู„ algorithm ู‡ุฐุง ุฃุฎุฏ ุงู„ greedy
152
00:10:17,870 --> 00:10:21,450
algorithm ุดูˆ ูŠุนู†ูŠ greedy ูŠุนู†ูŠ ุงู„ุทู…ุงุน ููƒุฑุชู‡ ุจูƒู„
153
00:10:21,450 --> 00:10:24,710
ุจุณุงุทุฉ ุฃู†ู‡ ุฃู†ุง ุจู†ุธุฑ ู„ู„ best solution ููŠ ุงู„ current
154
00:10:24,710 --> 00:10:29,210
stage ู…ุงู„ูŠุด ุนู„ู‰ ุงู„ู…ุฏู‰ ุงู„ุจุนูŠุฏ ุฅูŠุด ุงู„ู„ูŠ ุจูŠุตูŠุฑ ุนู†ุฏูŠุŸ
155
00:10:30,520 --> 00:10:33,720
ู‡ุจุฏุฃ ู…ุน ูƒู„ examples ู‡ุงุฎุฏ ู…ุน ุงู„ data ุงู„ attributes
156
00:10:33,720 --> 00:10:38,280
ู„ูƒู„ ุงู„ data set ูˆ ุงุฑูˆุญ ุนุดุงู† ุงูˆุฌุฏู‡ุง ุงูˆ ุงูˆุฌุฏ ู…ู†
157
00:10:38,280 --> 00:10:45,240
ุฎู„ุงู„ู‡ุง ุงู„ route ุงู„ุงู† ูƒู„ ุงู„ data set ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ู†ุง
158
00:10:45,240 --> 00:10:52,780
must be categorical ุงู„ุงู† ููŠ ุงู„ C4.5 ูƒู„ ุงู„
159
00:10:52,780 --> 00:10:56,500
attribute ู„ุงุฒู… ุชูƒูˆู† categorical ุทุจ ุงู†ุง ู…ุงุนู†ุฏูŠุด ุงู†ุง
160
00:10:56,500 --> 00:11:01,750
ุนู†ุฏูŠ continuous value ุงุนู…ู„ู‡ุง discretizationูˆ ูƒู„ ุจู†
161
00:11:01,750 --> 00:11:06,030
ุงุฏูŠู‡ุง label ูˆ ุงุนุชู…ุฏ ุงุดุชุบู„ ุนู„ู‰ ุงู„ label ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ
162
00:11:06,030 --> 00:11:09,810
ุนู†ุฏูƒ ู‡ุงู† ูŠุนู†ูŠ ู„ู…ุง ุชูŠุฌูŠ ู…ุซู„ุง ุงู„ age ู†ู‚ูˆู„ ูˆุงู„ู„ู‡
163
00:11:09,810 --> 00:11:19,390
ุงู„ูŠุงุซ ู…ู† 16 ู…ุซู„ุง ู„ 22 ู‡ูŠุซ ุงู„
164
00:11:19,390 --> 00:11:24,870
age ุงู‚ูˆู„ ู…ุซู„ุง ู…ู† 23 ุงู„ู‰ 35 senior
165
00:11:26,900 --> 00:11:30,060
ูˆุจุงู„ุชุงู„ูŠ ุงู†ุง ุจู‚ุฏุฑ ุงุดุชุบู„ .. ุจู…ุง ุงู† ุงู„ algorithm ุจุฏูˆ
166
00:11:30,060 --> 00:11:33,260
ู…ู†ูŠ discrete ุงูˆ nominal data ูุจู‚ุฏุฑ ุงุนู…ู„
167
00:11:33,260 --> 00:11:37,140
discretization ุจุนู…ู„ binning ูˆ ุจุนุฏ ู‡ูŠูƒ ุจุฑูˆุญ ุจุญุท
168
00:11:37,140 --> 00:11:43,280
label ู„ูƒู„ bin ุงูˆ ู„ูƒู„ interval ููŠ ุงู„ continuous
169
00:11:43,280 --> 00:11:47,000
attribute ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ู… ุนู„ู‰ ุงู„ุฑุบู… ู…ู† ู‡ูŠูƒ ู‡ุชูƒู„ู…
170
00:11:47,000 --> 00:11:51,160
ูƒู…ุงู† ุดูˆูŠุฉ ุจุดูƒู„ ุจุณูŠุท ููŠ ู…ูˆุถูˆุน ูุนู„ูŠุง ูƒูŠู ู…ู…ูƒู† ุงู†ุง
171
00:11:51,160 --> 00:11:54,620
ุงูุญุต ู„ูˆ ูƒุงู† ุนู†ุฏูŠ continuous ููŠ algorithm ู…ุฎุชู„ูุฉ
172
00:11:54,620 --> 00:11:55,680
ุทูŠุจ
173
00:11:58,590 --> 00:12:03,350
ู…ู…ุชุงุฒ ู…ุนู†ุงุชู‡ ุงู†ุง ูุนู„ูŠุง ู‡ุงุฎุฏ ุงู„ data set ูˆ ุงุจุฏุฃ ุงู…ุฑ
174
00:12:03,350 --> 00:12:08,530
ุนู„ู‰ ูƒู„ attribute ูˆ ุนู„ู‰ ูƒู„ ุงู„ rows ูˆ ุงุฌุณู… ุงู„ุนู†ุงุตุฑ
175
00:12:08,530 --> 00:12:12,510
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุงู„ test attribute ุงู„ู„ูŠ ู‡ูŠู…ุซู„ ุงู„ node
176
00:12:12,510 --> 00:12:16,170
ุงู„ู„ูŠ ู‡ุงุฎุฏ ุนู„ูŠู‡ุง decision ุงู„ู„ูŠ ุณู…ูŠู†ู‡ุง ุจูŠู† ุฌุซูŠู† ุงู„
177
00:12:16,170 --> 00:12:19,930
internal nodes ุณูˆุงุก ูƒุงู†ุช ู‡ุงูŠ ุงูˆ ู‡ุงูŠ ุงูˆ ู‡ุงูŠ ู…ุงู„ูŠุด
178
00:12:19,930 --> 00:12:24,510
beliefs ู„ุฃู† ุงู„ leaves ุจุชู…ุซู„ ุงู„ classes ุงู„ุขู† ู‡ุฐู‡ ุงู„
179
00:12:24,510 --> 00:12:29,850
test nodesุฃูˆ test attributes ู‡ุฎุชุงุฑู‡ุง ุชุจุนู‹ุง
180
00:12:29,850 --> 00:12:34,690
ู„ู‡ูŠูˆุฑูŠุณุชูŠูƒ ุฃูˆ statistical measurement ุจู†ุงุกู‹ ุนู„ู‰
181
00:12:34,690 --> 00:12:38,510
ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ rules ุงู„ู…ูƒุชุณุจุฉ ุณุงุจู‚ู‹ุง ุฃูˆ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„
182
00:12:38,510 --> 00:12:43,130
statistics ู‡ุนุชู…ุฏู‡ุง ู…ุซู„ ุงู„information gain ุฃูˆ
183
00:12:43,130 --> 00:12:47,920
ุงู„genie indexุงู„ู„ูŠ ู‡ู†ุดูˆู ุทุจุนุง ุงุญู†ุง ู‡ู†ูƒุชููŠ ููŠ ุงู„
184
00:12:47,920 --> 00:12:51,460
course ู‡ุฐุง ุนู„ู‰ ุญุณุจุฉ ุงู„ information gain ูˆู…ู…ูƒู†
185
00:12:51,460 --> 00:12:55,480
ุงุฒูˆุฏูƒูˆุง ู„ุงุญู‚ุง ุจ description ุงูˆ ุจุดุฑุญ ู„ูˆุงุญุฏุฉ ู…ู† ุงู„
186
00:12:55,480 --> 00:13:00,440
algorithm ุงู„ุชุงู†ูŠุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุจุชุงุนู†ุง ู…ุชู‰ ุจุฏูŠ ุงูˆู‚ู
187
00:13:00,440 --> 00:13:05,800
ุจูˆู‚ู ู„ู…ุง ุจุชูƒูˆู† ูƒู„ ูŠุนู†ูŠ ููŠ ูƒู„ ู…ุฑุฉ ุงุญู†ุง ู‚ูˆู„ู†ุง divide
188
00:13:05,800 --> 00:13:11,020
and conquer ููŠ ุงู„ data set ุจุฑูˆุญ ุจุงุฎุฏ ุงู„ data set ูˆ
189
00:13:11,020 --> 00:13:13,480
ุจุจุฏุฃ ุจุดุชุบู„ ุนู„ู‰ ุงู„ attribute ุงู„ุฃูˆู„ ุงู„ attribute ู‡ุฐุง
190
00:13:13,480 --> 00:13:21,080
ุฌุณู… ุงู„ data set ู„2 ุฃูˆ 3 data sets ู…ุน ูƒู„ data set
191
00:13:21,080 --> 00:13:24,700
ุจุฃุฎุฏู‡ุง ุฅุฐุง ุงู„ data set ู‡ุฐู‡ ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ููŠู‡ุง
192
00:13:24,700 --> 00:13:28,480
ุจุชู†ุชู…ูŠ ู„ู†ูุณ ุงู„ class ูŠุนู†ูŠ ุฎู„ุงุต ู…ุงููŠุด ุดุบู„ ุนู„ู‰ ุงู„
193
00:13:28,480 --> 00:13:32,680
data set ู‡ุงูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ุฃู†ุง ุฃุฌูŠุช ู„ู„ middle age ู‡ู†ุง
194
00:13:32,680 --> 00:13:37,500
ู„ู…ุง ุฑูˆุญุช ู‚ู„ุช ุทุจุนุง ุงุญู†ุง ุญุณุจู†ุง ู‚ู„ู†ุง ุงุฎุชุฑู†ุง ุงู† ุงู„
195
00:13:37,500 --> 00:13:40,760
index ู‡ูˆ ุงู„ major ุงูˆ ุงู„ root ุชุจุนุชูŠ ุงู„ุฃูˆู„ test
196
00:13:40,760 --> 00:13:44,420
attribute ูˆุฌูŠุช ุฏูˆุฑุช ููŠ ุงู„ middle age
197
00:13:47,510 --> 00:13:58,370
Middle Age Middle Age ุชู„ุงุชุงุดุฉ
198
00:13:58,370 --> 00:14:02,890
ูˆุงุฑุจุนุชุงุด ุจูƒู„ ุงู„ middle age ู‡ุฏูˆู„ุฉ ูŠุดู…ู„ู‡ู… ู‡ุฏูˆู„ุฉ
199
00:14:02,890 --> 00:14:07,250
ุจูŠู†ุชู…ูŠูˆุง ู„ู†ูุณ ุงู„ class ูƒู„ู‡ู… yes ูˆุจุงู„ุชุงู„ูŠ ุนู†ุฏ ุงู„
200
00:14:07,250 --> 00:14:09,810
middle age ู…ุงููŠุด ุนู†ุฏูŠ continuous ุฎู„ุงุต ุฃู†ุง ูˆุตู„ุช
201
00:14:09,810 --> 00:14:13,590
ู„ู„ู†ู‡ุงูŠุฉู„ุฃุŒ ุทูŠุจุŒ ู…ู…ุชุงุฒุŒ ู…ุนู†ุงุชู‡ ุฃูˆู„ condition ู„ู„ู€
202
00:14:13,590 --> 00:14:18,070
stopping ุฃู† ูƒู„ ุงู„ samples ู„ู„ node ุงู„ู…ุนุถุงู‡ุง ุจุชู†ุชู…ูŠ
203
00:14:18,070 --> 00:14:21,530
ู„ู†ูุณ ุงู„ class ุฒูŠ ู…ุง ุดูˆูู†ุง ู…ุน ุงู„ middle edge ุงู„ุญุงู„ุฉ
204
00:14:21,530 --> 00:14:24,970
ุงู„ุชุงู†ูŠุฉุŒ ุฃู†ู‡ ุฃู†ุง ูุนู„ูŠุง ุจุถู„ู†ูŠ ุจุฃุฌุณู… ุฃูˆ ุจุนู…ู„
205
00:14:24,970 --> 00:14:32,250
partitioning ู„ุญุฏ ู…ุง ุฃุตู„ ุฃู†ู‡ no remaining sample ู„ู„
206
00:14:32,250 --> 00:14:37,540
attributes ุงู„ู…ูˆุฌูˆุฏุฉุŒ ุจุฏูŠ ุฃุฑุฌุน ู…ุนุงูƒ ูƒู…ุงู† ู…ุฑุฉ ุนููˆุงno
207
00:14:37,540 --> 00:14:40,260
remaining attributes ุงูˆ ุฎู„ุตุช ูƒู„ ุงู„ attributes ุงู„ู„ูŠ
208
00:14:40,260 --> 00:14:45,120
ุนู†ุฏูŠ ุงูˆ ูุนู„ูŠุง ู…ุงุถู„ุด ุนู†ุฏูŠ samples ู…ูˆุฌูˆุฏุฉ ุจุฏูŠ ุงุฑุฌุน
209
00:14:45,120 --> 00:14:48,840
ู…ุนุงูƒ ูƒู…ุงู† ู…ุฑู‡ุงู† ุงู†ุง ุงู„ุงู† ู‡ุงุชูู‚ู†ุง ุงู† ุงู„ age ู‡ูˆ ุงูˆู„
210
00:14:48,840 --> 00:14:55,700
ูˆุงุญุฏ ุฎู„ุตุช ู…ู† ุงู„ middle age ุงู†ุง ุงูŠุด
211
00:14:55,700 --> 00:15:04,270
ุจู‚ูŠ ุนู†ุฏูŠ ุจู‚ูŠ ุนู†ุฏูŠ ุงู„ young ุงู„ youthูˆ ุงู„ senior ุงู„
212
00:15:04,270 --> 00:15:08,610
data set ุชุจุนุชูŠ ู‡ุชู†ุฌุณู… ู„ two data sets ูŠุซ ูˆ senior
213
00:15:08,610 --> 00:15:15,110
ูŠุซ ูˆ senior ู…ุนู†ุงุชู‡ ุงู†ุง ู‡ุญุตู„ ุนู„ู‰ ู‡ุงูŠ
214
00:15:15,110 --> 00:15:19,990
ุงู„ data set ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู‡ุง ู‡ูŠ ุงู„ูŠุซ ูู‡ุฑูˆุญ ุงู†ุง
215
00:15:19,990 --> 00:15:26,650
ุงุฎุฏ ู‡ุชุนุงู…ู„ ู…ุน ุงู„ data set ุจุนุฏ ู‡ูŠูƒ ู‡ุงูŠุนู„ู‰ ุฅู†ู‡ุง data
216
00:15:26,650 --> 00:15:30,390
set ู…ุณุชู‚ู„ุฉ ูˆ ุฃุนู…ู„ ูˆ ุฃุจุฏุฃ ุจุงู„ุญุณุจุฉ ู…ุฑุฉ ุชุงู†ูŠุฉ ูŠุนู†ูŠ
217
00:15:30,390 --> 00:15:36,370
ุจูŠู† ุฌูˆุณูŠู† ุฃุตุจุญุช ุงู„ูŠู ุงู„ุขู† ู‡ูŠ ุงู„ branch ุงู„ุขู† ู…ูŠู†
218
00:15:36,370 --> 00:15:40,830
ุถุงู„ ุนู†ุฏูŠ income ูˆ student ูˆ ุงู„ credit ู‡ุฑูˆุญ ุฃุฏูˆุฑ
219
00:15:40,830 --> 00:15:45,850
ุจูŠู† ู‡ุฏูˆู„ ู…ูŠู† ุงู„ู„ูŠ ู‡ุชูƒูˆู† ุนู†ุฏ ุงู„ test node ู‡ุงู†ูˆ ู‡ุนู…ู„
220
00:15:45,850 --> 00:15:50,210
split ู„ู„ data ู‡ุฐู‡ ุงู„ data set ุงู†ุณูŠ ุงู„ุจุงู‚ูŠ ูƒู„ู‡ ู‡ุนู…ู„
221
00:15:50,210 --> 00:15:54,570
split ู„ู„ data set ู‡ุฐู‡ ุจู†ุงุก ุนู„ู‰ selected attribute
222
00:15:54,570 --> 00:15:57,930
ุจูŠู† ุฌุซูŠู† ุงุญู†ุง ุดูู†ุง ุจุงู„ example ู…ุณุจู‚ุง ุงู†ู‡ ุงู„
223
00:15:57,930 --> 00:16:01,530
student ููƒุงู†ุช ู‡ูŠ ุงู„ student ุงู„ student ู‡ุฏููŠ yes ูˆ
224
00:16:01,530 --> 00:16:06,370
no ุจู†ุงุก ุนู„ูŠู‡ุงู„ู€ data set ุจุชู†ุฌูŠ ุณูŠู…ู„ุฉ two data sets
225
00:16:06,370 --> 00:16:10,450
ูƒู…ุงู† ู…ุฑุฉ ูˆุงุญุฏุฉ ู…ุน ุงู„ yes ูˆ ูˆุงุญุฏุฉ ู…ุน ุงู„ no ูˆ ุจู†ู‚ู„
226
00:16:10,450 --> 00:16:14,510
ุทุจุนุง ุจู…ุง ุงู†ู‡ ุงู†ุง student yes ูˆ no ุจุฑูˆุญ ุจุฏูˆุฑ ุตุงุฑุช
227
00:16:14,510 --> 00:16:17,450
ู‡ุฏูˆู„ุฉ ุจูŠู†ุชู… ุฏูˆู„ุฉ class ูˆ ู‡ุฏูˆู„ุฉ ูƒู„ partition ุจูŠู†ุชู…
228
00:16:17,450 --> 00:16:22,100
ุงู„ class ู…ุนู†ุงุชู‡ ุงู†ุง ูˆุฌูุชุทูŠุจ ูุญุตุช ุงู„ .. ุนููˆุง ูุญุตุช
229
00:16:22,100 --> 00:16:26,320
ุงู„ age ูˆ ูุญุตุช ุงู„ student ูˆ ูุญุตุช ุงู„ income ูˆ ููŠ
230
00:16:26,320 --> 00:16:28,940
ุงู„ุขุฎุฑ ู„ุงุฌูŠุช ุงู† ุงู†ุง ูุนู„ูŠุง ู…ุงููŠุด ุนู†ุฏูŠ attributes
231
00:16:28,940 --> 00:16:32,200
ูุฎู„ุตู†ุง ูู‡ุฐู‡ ุงู„ condition ุงูˆ stopping conditions
232
00:16:32,200 --> 00:16:35,900
ุงู„ู„ูŠ ุงู†ุง ู…ู…ูƒู† ุงูˆู‚ู ุนู„ูŠู‡ุง ุทุงู„ู…ุง ุงู„ data ุณุชุฉ ุจู‚ุนุช
233
00:16:35,900 --> 00:16:40,840
ูƒุจูŠุฑุฉ ูˆ ููŠู‡ุง ุดุบู„ ุงู„ decision tree ุจูŠุงุฎุฏ ู…ู†ูŠ ูˆุฌุฏ ููŠ
234
00:16:40,840 --> 00:16:44,820
ู…ูˆุถูˆุน ุงู„ู‚ุฑุงุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ู‡ู†ุง ูƒู…ุงู† ู…ุฑุฉ ุจู„ุฎุต ุจุดูƒู„
235
00:16:44,820 --> 00:16:50,430
ุณุฑูŠุนู…ุชู‰ ุงู†ุง ู…ู…ูƒู† ุงูˆู‚ู ุงุธู„ ุงุจุญุซ ู…ูŠู† ุงู„ู„ูŠ ุจูŠุญุฏุฏ ุงู„
236
00:16:50,430 --> 00:16:53,630
depth ุชุจุนุช letter E ุงู„ depth ุชุจุนุช letter E ุชุญุฏุฏ
237
00:16:53,630 --> 00:16:56,810
ุชุจุน ุงู„ dimensionality ุชุจุน ุงู„ data set ุนุฏุฏ ุงู„
238
00:16:56,810 --> 00:17:01,550
attributes ูˆ ุนุฏุฏ ุงู„ rows ุงู„ุงู† ู…ุชู‰ ุจุฏูŠ ุงูˆู‚ู ู„ู…ุง
239
00:17:01,550 --> 00:17:04,890
ุชูƒูˆู† ูƒู„ ุงู„ sample ููŠ ุงู„ given node ุชู†ุชู…ูŠ ู„ู†ูุณ ุงู„
240
00:17:04,890 --> 00:17:07,950
class ูŠุนู†ูŠ ู„ู…ุง ุงู†ุง ุงุฎุชุฑุช ุงู„ attribute ูˆ ุฑูˆุญุช ุงุนู…ู„
241
00:17:07,950 --> 00:17:11,970
splitู„ุงุฌูŠุช ูˆุงุญุฏุฉ ู…ู† ุงู„ู€ partitions ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ
242
00:17:11,970 --> 00:17:13,970
ุจุชู†ุชู…ูŠ ู„ู†ูุณ ุงู„ class ุฎู„ุงุต ู‡ุงุฏ ุงุจู†ุง ู…ุงููŠุด ููŠู‡ุง ุดุบู„
243
00:17:13,970 --> 00:17:16,870
ู„ุฅู† ู‡ุงุฏ ุงู„ decision ุชุจุนุชู‡ุง ู…ุจุงุดุฑุฉ ู„ุฅู†ู‡ุง ุจุชู†ุชู…ูŠ
244
00:17:16,870 --> 00:17:20,850
ู„ู†ูุณ ุงู„ class ู…ุนู†ุงุชู‡ ุฎู„ุงุต ุงูˆุตู„ุช ุงู„ leave node ุงู„
245
00:17:20,850 --> 00:17:29,750
leave node ุชุจุนุชูŠ ุงู„ leave node ุงู„ leave ู„ู…ุงุงู„ุฎูŠุงุฑ
246
00:17:29,750 --> 00:17:32,690
ุงู„ุชุงู†ูŠ ุฃู†ู‡ ู„ู…ุง ุจูƒูˆู† ูุนู„ูŠู‹ุง ุฃู†ุง ุนู…ู„ุช splitting ู„ู„
247
00:17:32,690 --> 00:17:35,250
data set ุนู„ู‰ ูƒู„ ุงู„ attributes ูˆุฎู„ุตุช ุงู„ attributes
248
00:17:35,250 --> 00:17:40,030
ุชุจุนุชูŠ ุจุฑุถู‡ ู…ุงุนู†ุฏูŠุด ุดุบู„ ูˆ there is no sample left
249
00:17:40,030 --> 00:17:43,610
ู…ุงุจุบูŠุด ุนู†ุฏูŠ ูˆู„ุง ุญุงุฌุฉ ููŠ ุงู„ data set ุนุดุงู† ุฃุฌุณู…ู‡ุง
250
00:17:43,610 --> 00:17:47,510
ุนู„ู‰ ู…ุณุชูˆู‰ ุงู„ุฑุฃุณ ุชุนุงู„ูˆุง ู†ุฑูˆุญ ู…ุน ุจุนุถ ู…ู† ุฎู„ุงู„ ู†ุดูˆู ุงู„
251
00:17:47,510 --> 00:17:52,910
information gain ูˆ ู‡ูŠ ุงู„ุฃูƒุซุฑ ูˆ ุงู„ุฃุดู‡ุฑ ุงุณุชุฎุฏุงู…ู‡ุง ูˆ
252
00:17:52,910 --> 00:17:55,830
ุงู„ Gain Index ู‡ู†ุชูƒู„ู… ุนู„ู‰ ุงู„ information gain ุจูƒู„
253
00:17:55,830 --> 00:17:59,970
ุจุณุงุทุฉุงู„ู€ information gain ุจุชุนุชู…ุฏ ุนู„ู‰ ุงู„
254
00:17:59,970 --> 00:18:02,830
probability ู…ุด ุงุญู†ุง ู‚ู„ู†ุง ู‚ุจู„ ุดูˆูŠุฉ ู…ูˆุถูˆุน ุงู„
255
00:18:02,830 --> 00:18:06,970
splitting ุงูˆ ุงู„ูุตู„ ููŠ ุงู„ attributes ุจูŠุนุชู…ุฏ ุงุนุชู…ุงุฏ
256
00:18:06,970 --> 00:18:12,250
ูƒู„ู‡ ุนู„ู‰ ูุนู„ูŠุง ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู„ู‰ ุงุญุชู…ุงู„
257
00:18:12,250 --> 00:18:15,930
ูŠู‚ูˆู„ู†ุง ุงู…ุง heuristic rules ุงูˆ statistical
258
00:18:15,930 --> 00:18:19,650
measurement ู„ู…ุง ุจุชูƒู„ู… ุนู„ู‰ probability ู…ุนู†ุงุชู‡ ุงู†ุง
259
00:18:19,650 --> 00:18:22,950
ุฌุงูŠ ุจุชุชูƒู„ู… ุนู„ู‰ ุงุญุชู…ุงู„ุงุช ุงู„ statistics ุงู„ู‰ ุงุฎุฑูŠู†
260
00:18:23,780 --> 00:18:27,160
ุจู‚ูˆู„ ุงูุชุฑุถ ุงู† ุงู„ู€ P I ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ probability
261
00:18:27,160 --> 00:18:34,780
of an arbitrary tuple ููŠ ุงู„ data ุงู„ 6 ุชุจุนุชูŠ ุชุจุนุชูŠ
262
00:18:34,780 --> 00:18:36,740
ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ
263
00:18:36,740 --> 00:18:36,820
ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ
264
00:18:36,820 --> 00:18:37,520
ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ
265
00:18:37,520 --> 00:18:40,280
ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ
266
00:18:40,280 --> 00:18:49,560
ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุนุชูŠ ุชุจุน
267
00:18:51,740 --> 00:18:55,960
ุงู„ู€ Probability ู„ู„ู€ CD ุงู„ู€ CI ุนู„ู‰ ุงู„ D ุนู„ู‰ ูƒู„
268
00:18:55,960 --> 00:18:59,300
Probability ุชุจุน ุงู„ data set ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุจูƒู„ ุจุณุงุทุฉ
269
00:18:59,300 --> 00:19:04,400
ุฃู†ุง ููŠ ุนู†ุฏูŠ ุชู„ุช ุนู…ู„ูŠุงุช ุญุณุงุจูŠุฉ ู‡ุนู…ู„ู‡ุง ุนุดุงู† ุฃุฎุฏ ุงู„
270
00:19:04,400 --> 00:19:07,560
decision ูˆ ุฃุญุฏุฏ ู…ู† ุงู„ test node ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏูŠ
271
00:19:07,560 --> 00:19:11,540
ุงู„ุฃูˆู„ู‰ ู‡ุณู…ูŠู‡ุง ุงู„ expected information ุฃูˆ ุงู„
272
00:19:11,540 --> 00:19:19,260
entropy ูˆู‡ูŠ ู„ูƒู„ ุงู„ data set ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู‡ู†ุง
273
00:19:19,260 --> 00:19:27,600
ุดูˆ ูŠุนู†ูŠุŸุงู„ุงู† ู…ุทู„ูˆุจ ู…ู†ูŠ ุงู† ุงุญุณุจ ุงู„ information ุงูˆ
274
00:19:27,600 --> 00:19:31,140
ุงู„ entropy ู„ู„ classes ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ data set
275
00:19:31,140 --> 00:19:34,700
ู„ูƒู„ ุงู„ data set ูˆู‡ู†ุง ุจู†ุฌูˆ ุณูŠู† ูˆูƒุฃู†ูŠ ุจุฏู‡ ูŠู‚ูˆู„ู„ูŠ
276
00:19:34,700 --> 00:19:40,940
ุงุญุณุจ ุงุญุชู…ุงู„ูŠุฉ ุงูˆ ุงุญุณุจ ุงู„ probability ู„ูƒู„ class ููŠ
277
00:19:40,940 --> 00:19:43,880
ุงู„ data set ุนุฏุฏ ู…ุฑุงุช ุธู‡ูˆุฑ ู„ class ููŠ ุงู„ data set
278
00:19:43,880 --> 00:19:46,840
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู‡ู†ุง ูˆุจุนุฏ ู‡ูŠูƒ ุจุฑูˆุญ ุทุจู‚ ุนู„ูŠู‡ู…
279
00:19:46,840 --> 00:19:51,840
ุงู„ุนู…ู„ูŠุฉ ูŠุนู†ูŠ ุงู†ุง ู„ูˆ ูƒู†ุช ุนู„ู‰ ุณุจูŠู„ ุงู„ู…ุซุงู„ุงู„ data 6
280
00:19:51,840 --> 00:19:57,580
ุชุจุนุชูŠ ููŠู‡ุง ุนุดุฑ element ุฃุฑุจุนุฉ ู…ู†ู‡ู… yes ูˆุณุชุฉ ู…ู†ู‡ู… no
281
00:19:57,580 --> 00:20:01,040
ุฃู†ุง
282
00:20:01,040 --> 00:20:04,100
ููŠ ุนูŠู†ูŠ ุจุชูƒู„ู… ุนู„ู‰ binary classification yes or no
283
00:20:04,100 --> 00:20:10,200
ุฃุฑุจุนุฉ yes ูˆุณุชุฉ no ุงู„ information gained ู„ู„ data 6
284
00:20:10,200 --> 00:20:16,720
ุชุจุนุชูŠ ูƒู„ู‡ุง ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ุฌู…ูˆุน ู†ุงู‚ุต
285
00:20:16,720 --> 00:20:20,600
ู…ุถุฑูˆุจุฉ ููŠู‡ ุงู„ probability ุชุจุนุช ุงู„ data ุงู„ุฃูˆู„ู‰
286
00:20:22,150 --> 00:20:28,310
ุงุญุชู…ุงู„ ุงู„ class ุงู„ุฃูˆู„ 4 ุนู„ู‰ 10 ู…ุถุฑูˆุจุฉ ููŠ log ุงู„ 4
287
00:20:28,310 --> 00:20:33,210
ุนู„ู‰ 10 ู„ู„ุฃุณุงุณ 2 ุฒุงุฆุฏ
288
00:20:34,590 --> 00:20:40,310
6 ุนู„ู‰ 10 ู…ุถุฑูˆุจุฉ ููŠ ุงู„ logarithm 6 ุนู„ู‰ 10 ุงู„
289
00:20:40,310 --> 00:20:44,350
logarithm ุงู„ binary logarithm ูˆ ู‡ูƒุฐุง ู„ูŠุด ุงู„ู‚ูŠู…ุฉ
290
00:20:44,350 --> 00:20:48,030
ู‡ุชุฏุงู†ูŠ ุฅุดุงุฑุฉ ุณุงู„ุจุฉ ู„ุฃู† ุงู„ logarithm ุชุจุนุช ุงู„ binary
291
00:20:48,030 --> 00:20:52,690
ุจุชุงุนุฉ ุงู„ูƒุณู„ ู‡ุชุทู„ุน ุนู†ุฏู‰ ุณุงู„ุจ ูˆ ุฅุฐุง ุจุชุฐูƒุฑูˆุง ููŠ ุนู†ุฏู‰
292
00:20:52,690 --> 00:21:01,740
log ุงู„ X ุนู„ู‰ ุงู„ YุชุณุงูˆูŠ log X ู†ุงู‚ุต log Y ูˆุจู…ุง ุงู† ุงู„
293
00:21:01,740 --> 00:21:05,200
Y ุนู†ุฏูŠ ุงูƒุจุฑ ู…ู† ุงู„ X ูุณุชูƒูˆู† ุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ุนู†ุฏูŠ ุณุงู„ุจุฉ
294
00:21:05,200 --> 00:21:07,880
ุนุดุงู† ุงู†ุง ุงุฎู„ุต ู…ู†ู‡ุง ุงุฎู„ุต ู…ู†ู‡ุง ููƒุงู†ุช ุงู„ู‚ูŠุงู… ุงู„ู„ูŠ
295
00:21:07,880 --> 00:21:12,360
ุนู†ุฏูŠ ู‡ุงู† ู‡ุชุทู„ุน ู‚ูŠู… ู…ูˆุฌุจุฉ ูˆุงุถุญ ุงู„ุฃู…ูˆุฑ ุงู† ุดุงุก ุงู„ู„ู‡
296
00:21:12,360 --> 00:21:18,090
ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑุงู„ุงู† ูŠุนู†ูŠ ุงูˆู„ ุดุบู„ุฉ ูุนู„ูŠุง ุงู†ุง ู‡ุณูˆูŠู‡ุง
297
00:21:18,090 --> 00:21:21,350
ู‡ุฑูˆุญ ุงุญุณุจ ุงู„ probability ู„ูƒู„ class ุงูˆ ุจูŠู† ุฌุซูŠู†
298
00:21:21,350 --> 00:21:27,670
ู‡ุญุณุจ ุงู„ entropy ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุญุงุตู„ .. ุนุจุงุฑุฉ ุนู† ู…ุฌู…ูˆุน
299
00:21:27,670 --> 00:21:33,310
ุญุงุตู„ ุถุฑุจ ุงู„ probability ู„ูƒู„ class ููŠ ุงู„ logarithm
300
00:21:33,310 --> 00:21:38,830
ุงูˆ ุงู„ binary log ู„ ุงู„ probability ู„ ุงู„ class ุงู„ู„ูŠ
301
00:21:38,830 --> 00:21:41,930
ู…ูˆุฌูˆุฏ ุนู†ุฏู‰ ูˆ ุฒูŠ ู…ุง ุจู‚ูˆู„ู‡ ุจุงู„ .. ุจุงู„ .. ุจุงู„ ..
302
00:21:42,360 --> 00:21:45,340
ุจุงู„ู…ุซุงู„ ูŠุชุถุญ ุงู„ู…ู‚ุงุฑ ูƒู…ุงู† ุดูˆูŠุฉ ู‡ู†ุชู‚ู„ ู„ู„ู…ุซุงู„
303
00:21:45,340 --> 00:21:50,740
ุจุงู„ุชูุตูŠู„ ุงู† ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰ ุงู„ุฎุทูˆุฉ ุงู„ู„ูŠ ุจุนุฏ ู‡ูŠูƒ ุจุฏูŠ
304
00:21:50,740 --> 00:21:58,260
ุงุฑูˆุญ ู„ูƒู„ attribute A ุงุญุงูˆู„ ูุนู„ูŠุง ู‡ูŠุฌุณู… ุงู„ data set
305
00:21:58,260 --> 00:22:02,040
ู„ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ partitions ุฌุฏุงุด ุนุฏุฏ ุงู„ V ู‡ุฐู‡ ุงูˆ ุฌุฏุงุด
306
00:22:02,040 --> 00:22:07,420
ุนุฏุฏ ุงู„ partitions ุจุนุฏุฏ ุงู„ distinct values ุงู„ู„ูŠ
307
00:22:07,420 --> 00:22:12,630
ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰ ููŠู‡ ุงู„ attributeูŠุนู†ูŠ ุงู„ age ูƒุงู† ููŠ
308
00:22:12,630 --> 00:22:19,910
ุนู†ุฏูŠ ุชู„ุงุชุฉ three three values ูŠุซ ูˆ middle age ูˆ
309
00:22:19,910 --> 00:22:23,570
senior ููุนู„ูŠุง ุงู„ attribute ุงู„ age ู‡ูŠ
310
00:22:26,960 --> 00:22:30,380
ุงู„ู€ Attribute ุงู„ู€ Age ูŠุซ ูˆ Middle Age ูˆุงู„ุณูŠู†ูŠูˆุฑ
311
00:22:30,380 --> 00:22:33,860
ู‡ูŠู„ูŠ ุงู„ู€ three distinct values ููุนู„ูŠุง ุจู†ุงุก ุนู„ู‰ ุงู„
312
00:22:33,860 --> 00:22:38,600
attribute ู‡ุฐุง ู‡ุฌุณู… ุงู„ data ุณุชุฉ ุจุงุนุชูŠ ูƒู„ู‡ุง ู„ three
313
00:22:38,600 --> 00:22:43,860
.. ู„ three subsets ู„ three partitions ู…ุน ูƒู„ ูˆุงุญุฏุฉ
314
00:22:43,860 --> 00:22:46,600
ู…ู† ุงู„ values ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู‡ู†ุง ุนุดุงู† ุงู†ุง ูุนู„ูŠุง
315
00:22:46,600 --> 00:22:52,190
ุงุฑูˆุญุฃุญุณุจ ุงู„ information ู„ู„ attribute ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ
316
00:22:52,190 --> 00:22:56,050
ุนู†ุฏู‡ุง ุงูŠุด ุงู„ information ู„ู„ attribute ุงู„
317
00:22:56,050 --> 00:23:01,870
information ู„ู„ attribute ูŠุณุงูˆูŠ ุงู„ summationุงุญุชู…ุงู„
318
00:23:01,870 --> 00:23:04,870
ุงู„ element ุงู„ู„ูŠ ุนู†ุฏูŠ ุงูˆ ุงู„ class ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ
319
00:23:04,870 --> 00:23:08,310
ู‡ู†ุง ู„ู„ attribute ููŠู‡ ุงู„ information ุชุจุนุช ุงู„ subset
320
00:23:08,310 --> 00:23:12,390
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ูŠุนู†ูŠ ุจูŠู† ุฌุณูŠู… ุงู„ subset ุงู„ุฌุฏูŠุฏุฉ ุงู†ุง
321
00:23:12,390 --> 00:23:16,770
ู‡ุดุชุบู„ ุนู„ูŠู‡ุง ูˆ ุงุญุณุจู‡ุง ุงู„ intro b ุงู„ุณุงุจู‚ุฉ ุจุนุฏ ู…ุง
322
00:23:16,770 --> 00:23:23,570
ุงุญุณุจ ุงู„ information ู„ู„ attribute ุงู„ gain ุงู„ุงู†ุญูŠุงุฒ
323
00:23:25,400 --> 00:23:28,740
ู„ุฃ ุงู„ element ุงู„ู„ู‰ ู…ูˆุฌูˆุฏ ุนู†ุฏู‰ ู‡ุงู† ุฃูˆ ุงู„ุชุญุตูŠู„ ุงู„ู„ู‰
324
00:23:28,740 --> 00:23:33,400
ู…ู…ูƒู† ู†ุณู…ูŠู‡ุง ุงู„ุชุญุตูŠู„ ุงู„ a ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„
325
00:23:33,400 --> 00:23:38,760
information ู„ู„ D ุงู„ุฃูˆู„ู‰ ู†ุงู‚ุต ุงู„ information ุฃูˆ ุงู„
326
00:23:38,760 --> 00:23:41,640
entropy ุชุจุนุช ุงู„ attribute ุงู„ู„ู‰ ุนู†ุฏู‰ ุงู„ entropy
327
00:23:41,640 --> 00:23:47,180
ุชุจุนุช ุงู„ attribute ุงู„ู„ู‰ ุนู†ุฏู‰ ูŠุนู†ูŠ ุฃู†ุง ูุนู„ูŠุง ู‡ุงุฎุฏ
328
00:23:47,180 --> 00:23:53,540
ู‡ุงูŠ ูˆ ู‡ุงูŠู‡ุชุฑุงุญู‡ู… ู…ู† ุจุนุถ ุจุณ ู…ุง ุชู†ุณูˆุด ุงู†ู‡ ูุนู„ูŠุง ู‡ุฐู‡
329
00:23:53,540 --> 00:23:59,580
ู‡ูŠ ู†ูุณู‡ุง ุงู„ู„ูŠ ููˆู‚ ุจุณ ุนู„ู‰ different subset ุงูˆ ุนู„ู‰
330
00:23:59,580 --> 00:24:03,680
different data set ุงูˆ ุจูŠู† ุฌุณูŠู† ุนู„ู‰ subset set ุชุจุนุง
331
00:24:03,680 --> 00:24:07,320
ู„ู„ values ุงู„ู„ูŠ ุฌุณู…ู‡ุง ู„ู„ partition ุงู„ู„ูŠ ุฌุณู…ุช ู„ูŠู‡ุง
332
00:24:07,320 --> 00:24:11,480
ุงู„ attribute ุงู„ู„ูŠ ุนู†ุฏู†ุง ุชุนุงู„ูˆุง ู†ุฑูˆุญ ู‡ู† ูˆ ู†ุดูˆู
333
00:24:11,480 --> 00:24:17,140
ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู†ุง ู‚ู„ู†ุง ููŠ ุงู„ุฎุทูˆุฉ ุฑู‚ู… ูˆุงุญุฏููŠ
334
00:24:17,140 --> 00:24:21,600
ุงู„ุฎุทูˆุฉ ุฑู‚ู… ูˆุงุญุฏ ู‚ู„ู†ุง ุงู†ุง ุงุชูู‚ู†ุง ุงู† ุงู†ุง ูุนู„ูŠุง ู‡ุฑูˆุญ
335
00:24:21,600 --> 00:24:24,800
ุงุญุณุจ ุงู„ information gain ุงูˆ ุงู„ entropy ู„ูƒู„ ุงู„ data
336
00:24:24,800 --> 00:24:29,260
set ู…ู…ุชุงุฒ ุนุดุงู† ุงุญุณุจ ุงู„ entropy ู„ูƒู„ ุงู„ data set
337
00:24:29,260 --> 00:24:33,540
ุจู†ุฐูƒุฑ ู‚ู„ู†ุง ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ summation ุณุงู„ุจ ูˆุงุญุฏ ููŠ
338
00:24:33,540 --> 00:24:40,160
ุงู„ summation ููŠ probability ู„ู„ I ููŠ log ู„ ุงู„ P I
339
00:24:40,160 --> 00:24:43,960
ุงู„ probability ู„ู„ I ูˆ ุงูŠุด ู‚ู„ู†ุง ู‡ุงูŠ ุงู„ classูˆุงู„ู€ I
340
00:24:43,960 --> 00:24:46,920
ุจูŠุชุณุงูˆู‰ ู…ู† ูˆุงุญุฏ ู„ุฃู† ุจุนุฏุฏ ุงู„ classes ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ
341
00:24:46,920 --> 00:24:51,360
ุญุณุจ ุงู„ data set ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ุญุณุจ ุงู„ data set
342
00:24:51,360 --> 00:24:53,900
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ุงู†ุง ููŠ ุนู†ุฏู‰ two different
343
00:24:53,900 --> 00:24:58,680
classes only two different classes only ุงู„ู„ูŠ ู‡ู…
344
00:24:58,680 --> 00:25:05,940
yes ูˆ no ุญุฌู… ุงู„ data set ูƒู„ ู‡ุฌุฏุด ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ 14
345
00:25:05,940 --> 00:25:11,280
ุนุฏุฏ ุงู„ yes 9 ู…ุนู†ุงุชู‡ ุงู„ probability ุชุจุนุชู‡ุง 9 ุนู„ู‰ 14
346
00:25:13,570 --> 00:25:18,130
ุงู„ู€ Probability ู„ู„ู€ Yes 9 ุนู„ู‰ 14 ุทุจ ุนุฏุฏ ุงู„ู€ No
347
00:25:18,130 --> 00:25:24,810
ุจุฌูŠุชู‡ุง 5 5 ุนู„ู‰ 14 ู‡ูŠ ุงู„ุงุญุชู…ุงู„ูŠุฉ ุชุจุนุชู‡ุง 5 ุนู„ู‰ 14
348
00:25:24,810 --> 00:25:31,190
ูˆุจู‡ูŠูƒ ุฃู†ุง ุญุตู„ุช ุนู„ู‰ ุฃูˆู„ ุฎุทูˆุฉุงู„ู„ูŠ ู‡ูŠ ุนุฑูุช ุงู„
349
00:25:31,190 --> 00:25:34,790
probability ุชุจุนุช ู„ู€ classes ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ุงู„ู„ูŠ
350
00:25:34,790 --> 00:25:37,570
ู‡ูŠ ุงู„ probability ู„ู„ yes ูˆ ุงู„ probability ู„ู„ no
351
00:25:37,570 --> 00:25:40,030
ุงู„ุฎุทูˆุฉ ุงู„ุชุงู„ูŠุฉ ุงู„ู„ูŠ ุงู„ู…ูุฑูˆุถ ุงู† ุงู†ุง ุงุดุชุบู„ ุนู„ูŠู‡ุง
352
00:25:40,030 --> 00:25:43,410
ุงู„ุงู† ุงู† ุงู†ุง ุจุฏุฑูˆุญ ุงุญุณุจ ุงู„ information ุงูˆ ุงู„
353
00:25:43,410 --> 00:25:48,210
entropy ุชุจุนุชูŠ ุจุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชุงู„ูŠุฉ ุงู„ information
354
00:25:48,210 --> 00:25:57,610
ู‡ู†ุฑู…ุฒู„ู‡ุง ู„ู„ I ู„ู„ data set ุชุจุนุชูŠ ุชุณุงูˆูŠ ุชุณุงูˆูŠ
355
00:25:59,800 --> 00:26:04,940
I ุชุณุนุฉ ูƒู…ุง ุฎู…ุณุฉ ุชุณุนุฉ ูˆ ุฎู…ุณุฉ ู‡ุฏูˆู„ ู‡ู… ุงู„ุงุฑุจุนุชุงุด
356
00:26:04,940 --> 00:26:07,660
ุชุจุนูˆุชูŠ ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ ุงู„ุงู† ู‡ูŠ ุงู„ู‚ุงู†ูˆู† ุชุจุน ุงู„
357
00:26:07,660 --> 00:26:12,580
information ู‡ูŠู‡ ุจูŠู„ุฒู…ู†ูŠ ููŠู‡ุง ุงู† ุงุนุฑู ุงู„
358
00:26:12,580 --> 00:26:16,020
probability ู„ู„ yes ูˆ ุงู„ probability ู„ู„ no ูˆู‡ุฐุง
359
00:26:16,020 --> 00:26:24,260
ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ู…ุงู‚ุต ู…ุถุฑูˆุจุฉ ููŠู‡ ูƒุงู… class and two
360
00:26:24,260 --> 00:26:27,790
class ู‡ูŠู‡ู… ู‡ุฏูˆู„ู„ูˆ ูƒุงู†ูˆุง ุชู„ุงุชุฉ ู‡ูŠูƒูˆู†ูˆุง ุชู„ุงุชุฉ ู„ูˆ
361
00:26:27,790 --> 00:26:32,130
ุฃุฑุจุนุฉ ู‡ูŠูƒูˆู†ูˆุง ุฃุฑุจุนุฉ ุฅู„ู‰ ุขุฎุฑู‡ ู…ุน ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู… ุงู„ุงู†
362
00:26:32,130 --> 00:26:36,270
ุชุณุนุฉ ุนู„ู‰ ุฃุฑุจุนุฉ ุงุชู†ุงุด ู‡ูŠ ุชุจุนุช ุงู„ class ุงู„ุฃูˆู„ ุงู„ู„ูŠ
363
00:26:36,270 --> 00:26:42,030
ุจูŠู† ุฌุซูŠู† ุงุญู†ุง ู‚ู„ู†ุง ุงู„ yes ู…ุถุฑูˆุจุฉ ููŠ ุงู„ binary
364
00:26:42,030 --> 00:26:48,970
logarithm ู„ู„ุชุณุนุฉ ุนู„ู‰ ุฃุฑุจุนุฉ ุงุชู†ุงุดู…ุฌู…ูˆุนุฉ ู„ู‡ู… ู…ุฌู…ูˆุนุฉ
365
00:26:48,970 --> 00:26:54,010
ุงู„ุฎู…ุณุฉ ุชุจุนุชู‡ุง ุงู„ุฎู…ุณุฉ ุชุจุนุช ุงู„ู†ูˆ ุฎู…ุณุฉ ุนู„ู‰ ุฃุฑุจุนุฉ ุนุงุด
366
00:26:54,010 --> 00:27:01,670
ู…ุถุฑูˆุจุฉ ููŠ ุงู„ logarithm ุงู„ binary logarithm ุงู„ุฎู…ุณุฉ
367
00:27:01,670 --> 00:27:07,950
ุนู„ู‰ ุฃุฑุจุนุฉ ุนุงุด ู‡ุฐุง ุงู„ gain ุชุจุนุช ูƒู„ ุงู„ data set
368
00:27:07,950 --> 00:27:11,230
ุชูˆุฒูŠุนุช ุงู„ data set ุนู†ุฏูŠ ุนู„ู‰ two classes ุชุฐูƒุฑ ูƒู…ุงู†
369
00:27:11,230 --> 00:27:17,750
ู…ุฑุฉูˆุงุญุฏุฉ ุงุชูŠู† ุชู„ุงุชุฉ ุงุฑุจุนุฉ ุฎู…ุณุฉ no ุฎู…ุณุฉ ู…ู† ุงุฑุจุนุฉ
370
00:27:17,750 --> 00:27:21,290
ุงุชุงุดุฑ ู…ุนู†ุงุชู‡ ุนู†ุฏู‰ ุชุณุนุฉ yes ูˆุงู„ุงู† ู‚ูˆู„ู†ุง ู‡ูŠ ู‚ุงู†ูˆู†ู‡ู…
371
00:27:21,290 --> 00:27:25,670
ู‚ุงู†ูˆู† ุงู„ information ุงูˆ ุงู„ gain ุนููˆุง ุงู„ entropy ู„ู„
372
00:27:25,670 --> 00:27:30,730
data set ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุณุงู„ุจ ูˆุงุญุฏ ู…ุถุฑูˆุจุฉ ููŠ ู…ุฌู…ูŠุน ู„
373
00:27:30,730 --> 00:27:35,410
probability ู„ูƒู„ class ู…ุถุฑูˆุจุฉ ููŠ ุงู„ log ู„ log ู„
374
00:27:35,410 --> 00:27:38,650
probability ู„ูƒู„ class ูุงู†ุง ู‡ูŠู†ูŠ ุญุณุจุช ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ู‰
375
00:27:38,650 --> 00:27:40,670
ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰ ู‡ุชุธู‡ุฑ ู…ู† ุฎู„ุงู„
376
00:27:43,770 --> 00:27:51,650
ุณู„ุงูŠุฏ ู‡ูŠู‡ ูˆู‡ุฐู‡
377
00:27:51,650 --> 00:27:59,370
ู‚ูŠู…ุชู‡ุง point ุชุณุนุฉ ุฃุฑุจุนุฉ ุฃูˆ ุฃุฑุจุนุฉ ูˆุชุณุนูŠู† ู…ู† ู…ูŠุฉ ู‡ุฐู‡
378
00:27:59,370 --> 00:28:03,130
ุซุงุจุชุฉ ู‡ุชูƒูˆู† ู„ูƒู„ ุงู„ data set ู„ูƒู„ training set ุงู„ู„ูŠ
379
00:28:03,130 --> 00:28:06,830
ุฃู†ุง ุจุจู†ูŠ ุนู„ูŠู‡ุง ุงู„ model ู…ู…ุชุงุฒ ุงู†ุง ู…ุดูŠุช ุงูˆู„ ุฎุทูˆุฉ ููŠ
380
00:28:06,830 --> 00:28:12,030
ุงู„ุญู„ ุงู„ุฎุทูˆุฉ ุงู„ุชุงู„ูŠุฉ ุงู† ุงู†ุง ูุนู„ูŠุง ุจุฏูŠ ุงุฑูˆุญ ุงูŠ ุงุชู†ูŠู†
381
00:28:16,020 --> 00:28:22,480
ุจุฏุฃ ุฃุญุณุจ ุงู„ information ู„ูƒู„ attribute ู…ูˆุฌูˆุฏ ููŠ ุงู„
382
00:28:22,480 --> 00:28:28,200
data set ู„ูƒู„ attributeุŸ ุตุญูŠุญ ูู‡ุฃุฎุฏ ุงุญุณุจ ุงู„ intro
383
00:28:28,200 --> 00:28:33,140
ุจุงู„ุงู† ุงูˆ ุงู„ information gain ู„ู„ age ูˆ ุงุญุณุจ ุงู„
384
00:28:33,140 --> 00:28:39,490
informationGain ู„ู„ู€ income ู„ู„ student ู„ู„ credit
385
00:28:39,490 --> 00:28:45,670
rating ูˆ ู‡ูƒุฐุง ุฎู„ูŠู†ูŠ ุงู†ุง ุงุจุฏุฃ ู…ุนุงูƒูˆุง ูˆ ุงุฐูƒุฑูƒู… ุงู†
386
00:28:45,670 --> 00:28:48,670
ุงู†ุง ูุนู„ูŠุง ุจุญุณุจ ุงู„ information gain ู„ู„ attribute
387
00:28:52,790 --> 00:28:56,270
ุชุจู‚ู‰ ุนู„ู‰ ุงู„ data set ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ู„ุฃู† ุงู„
388
00:28:56,270 --> 00:28:59,750
summation ุนู„ู‰ ุนุฏุฏ ุงู„ partitions ุงู„ summation ุงู„ V
389
00:28:59,750 --> 00:29:02,830
ุฒูŠ ู…ุง ู‚ู„ู†ุง ู‚ุจู„ ุดูˆูŠุฉ ู‡ูŠู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุนุฏุฏ ุงู„ partitions
390
00:29:02,830 --> 00:29:08,650
ุงู„ู„ูŠ ุนู†ุฏู‡ุง number of partitions ุญุฌู…
391
00:29:08,650 --> 00:29:12,850
ุงู„ partition ู„ู„ data set ุนุฏุฏ ุนู†ุงุตุฑ ุงู„ partition
392
00:29:12,850 --> 00:29:16,290
ู„ุนุฏุฏ ุนู†ุงุตุฑ ุงู„ data set ratio ุงุญุชู…ุงู„ ูˆู„ุง ู„ุฃ
393
00:29:16,290 --> 00:29:21,880
probability ุถุฑุจ ุงู„ informationู„ู„ data set ุฃูˆ ู„ู„
394
00:29:21,880 --> 00:29:25,700
partition ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ูŠุนู†ูŠ ู…ุน ูƒู„ partition
395
00:29:25,700 --> 00:29:30,060
ุงู†ุง ุจุฌุณู…ู‡ ู‡ุฑูˆุญ ุงุญุณุจ ุงู„ information ู„ู„ data set
396
00:29:30,060 --> 00:29:33,120
ู„ุฌุฏูŠุฏุฉ ูˆ ู‡ุฐู‡ ู…ุจุฏุฃ ุงู„ divide and conquer ุฒูŠ ู…ุง ู‚ู„ู†ุง
397
00:29:33,120 --> 00:29:36,300
ุณุงุจู‚ุง ููŠ ุงู„ุงู„ุฌูˆ ููŠ ุงู„ุฎุตุงุฆุต ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ุฎู„ูŠู†ุง
398
00:29:36,300 --> 00:29:41,780
ู†ุงุฎุฏ ุงู„ age ุงู„ age ุจุฌุณู… ุงู„ data set ุงู„ู„ูŠ ุนู†ุฏูŠ ู„
399
00:29:41,780 --> 00:29:45,280
three partitions ุจู†ุงุก ุนู„ู‰ ู…ูŠู†ุŸ ุจู†ุงุก ุนู„ู‰ ุงู† ุนู†ุฏูŠ
400
00:29:45,280 --> 00:29:51,120
youthูˆ middle age ูˆ senior ูุด ุนู†ูŠ ุบูŠุฑู‡ู… ู‡ุงูŠู‡ู… ุงู„
401
00:29:51,120 --> 00:29:56,100
different elements ุงู„ู„ูŠ ู…ูˆุฌูˆุฏูŠู† ุนู†ุฏู‰ ุงู„ุขู† ุฅูŠุด ู‡ุฑูˆุญ
402
00:29:56,100 --> 00:30:08,600
ุฃุณุงูˆูŠ ุจู‡ู…ุด ู‡ุฑูˆุญ ุฃุดุชุบู„ ุงู„ุชุงู„ูŠ ู‡ุนู…ู„ ุฌุฏูˆู„ ุจุณูŠุท
403
00:30:08,600 --> 00:30:11,680
ุฅูŠุด
404
00:30:11,680 --> 00:30:15,570
ุงู„ values ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰ ู‡ู†ุงุทุจ ุงู†ุง ุจุชูƒู„ู… ุนู„ู‰ ุงู„
405
00:30:15,570 --> 00:30:26,170
age ุงู„ุงู† ูƒ attribute ุงู„ value ุชุจุนุชูŠ ุฌุฏุด
406
00:30:26,170 --> 00:30:32,330
ู…ู†ู‡ู… yes ุฌุฏุด ู…ู†ู‡ู… no ูˆ ุจุฏู‰ ุงุฑูˆุญ ุงุญุณุจ ุงู„ intro ุจูŠู‡
407
00:30:32,330 --> 00:30:35,610
ุชุจุนุช ุงู„ yes ูˆ ุงู„ no
408
00:30:41,850 --> 00:30:47,750
ู…ุชูู‚ูŠู† ุงู„ุขู† ุงุญู†ุง ููŠ ุนูŠู†ู†ุง ู‚ูˆู„ู†ุง three elements ุงูˆ
409
00:30:47,750 --> 00:30:59,670
three different values ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰ ุงู„ุฃูˆู„ู‰ ูŠุซ ู‡ู‰
410
00:30:59,670 --> 00:31:07,030
ูˆุงุญุฏุฉ ูŠุซ ุชู†ุชูŠู† ุชู„ุงุชุฉ ุงุฑุจุนุฉ ุฎู…ุณุฉ
411
00:31:10,000 --> 00:31:17,900
no ุจุชุนุฏ ุงู„ yes ุงู„ุงู† ูˆุงุญุฏุฉ ุชู†ุชูŠู† ุชู„ุงุชุฉ ุชู„ุงุชุฉ yes
412
00:31:17,900 --> 00:31:21,380
ูˆุชู†ุชูŠู†
413
00:31:21,380 --> 00:31:27,740
no ุงู„ุงู† ุงู„ู…ุทู„ูˆุจ ู…ู†ูŠ ู‡ูˆ ูุนู„ูŠุง ุงู†ุง ุนู†ุฏ ุฎู…ุณุฉ yes
414
00:31:27,740 --> 00:31:32,760
ุงู„ุนุฏุฏ ู‡ู… ู‡ุชูˆุฒุน ุชู„ุงุชุฉ ูˆ ุงุชู†ูŠู† ู…ู‚ู„ูˆุจ ู…ู†ูŠ ุงุญุณุจ I
415
00:31:32,760 --> 00:31:38,540
ุชู„ุงุชุฉ ูˆ ุงุชู†ูŠู†ุงู„ู€ Entropy ู„ู„ู€ Yes ูˆุงู„ู€ No ุชุจุน ู„ู„
416
00:31:38,540 --> 00:31:41,540
class ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู‡ู… ุชุนุงู„ู‰ ู†ุดูˆู ุงู„ุจุนุฏ ู‡ูŠูƒ ุงู„
417
00:31:41,540 --> 00:31:47,300
middle age ู‡ูŠ ูˆุงุญุฏุฉ ูˆุงุญุฏุฉ middle age ุงุชู†ูŠู† ุชู„ุงุชุฉ
418
00:31:47,300 --> 00:31:58,720
ุงุฑุจุนุฉ ุงุฑุจุนุฉ middle age ุชูˆุฒุนุชู‡ู…
419
00:31:58,720 --> 00:32:09,170
ูˆุงุญุฏุฉ yes ุชู†ุชูŠู† yes ุชู„ุงุชุฉ yesุฃุฑุจุนุฉ yes ุฃุฑุจุนุฉ yes
420
00:32:09,170 --> 00:32:12,830
ู‡ู… ูƒู„ู‡ ุนุฏุฏู‡ู… ุฃุฑุจุนุฉ ููƒู… ู…ู†ู‡ู… ุฃุฑุจุนุฉ yes ู…ุนู†ุงุชู‡ ุตูุฑ
421
00:32:12,830 --> 00:32:18,930
ู…ู†ู‡ู… no ุตุญูŠุญ ุงู„ูƒู„ุงู… ู‡ูŠูƒ ูˆ ู‡ูŠูƒ ุตุงุฑ ููŠ ุนู†ุฏูŠ ุฃุฑุจุนุฉ ูˆ
422
00:32:18,930 --> 00:32:26,250
zero ุจุงู„ู†ุณุจุฉ ู„ู„ senior ุงู„ุขู†
423
00:32:26,250 --> 00:32:30,290
ุตุงุฑ ููŠ ุนู†ุฏูŠ ุชู„ุงุชุฉ ุนููˆุง ุงุญู†ุง ู‚ูˆู„ู†ุง ู‡ู†ุง ุฎู…ุณุฉ ูˆู‡ู†ุง
424
00:32:30,290 --> 00:32:34,970
ุฃุฑุจุนุฉ ู…ุฌู…ูˆุญู‡ู… ุชุณุนุฉ ุฌุฏุด ุจุงู‚ูŠ ุนู†ุฏูŠ ุฌุฏุด ุจุงู‚ูŠ ุนู†ุฏูŠ
425
00:32:39,130 --> 00:32:43,930
ุฎู…ุณุฉ ู„ูŠุดุŸ ู„ุฃู† ุงู„ data set ุญุฌู…ู‡ุง 14 element ูุตุงุฑ ููŠ
426
00:32:43,930 --> 00:32:47,070
ุนู†ุฏูŠ ุชุณุนุฉ rows ู…ูˆุฌูˆุฏูŠู† ู…ุน ุงู„ value ุงู„ุฃูˆู„ู‰ ูˆ
427
00:32:47,070 --> 00:32:50,070
ุงู„ุชุงู†ูŠุฉ ู„ุฃู†ู‡ ู…ุงุชู†ุณุงุด ูˆ ู…ุงุชู†ุณูŠุด ุฃู†ู‡ ุฃู†ุง ู‚ู„ุช ุจุฏูŠ
428
00:32:50,070 --> 00:32:55,270
ุฃุฌุณู… ุงู„ data set ู„ N ู…ู† ุงู„ partition ุงู„ H ุจุชุฌุณู… ุงู„
429
00:32:55,270 --> 00:32:59,710
data set ุงู„ู„ูŠ ู‡ูŠ ุงู„ 14 row ู„ 3 partitions ุฃู†ุง ุญุตู„ุช
430
00:32:59,710 --> 00:33:04,610
ุฎู…ุณุฉ ู…ุน ุงู„ูŠุงุซ ู…ุน ุงู„ูŠุงุซูˆ 4 rows ู…ุน ุงู„ middle ูˆ ุฎู…ุณุฉ
431
00:33:04,610 --> 00:33:08,430
ู‡ู… ุงู„ุจุงู‚ูŠู† ู‡ูŠูƒูˆู†ูˆุง ู…ุน ู…ูŠู† ู…ุน ุงู„ senior ุชุนุงู„ู‰ ู†ุนุฏ
432
00:33:08,430 --> 00:33:14,270
ู…ุน ุงู„ senior senior
433
00:33:14,270 --> 00:33:21,250
yes senior yes no
434
00:33:22,980 --> 00:33:28,620
senior yes ูˆู‡ูŠ ู‚ูŠู…ุฉ ุงู„ุฃุฎูŠุฑุฉ yes ู…ุนู†ุงุชู‡ ุงู†ุง ุนู†ุฏูŠ ู…ุน
435
00:33:28,620 --> 00:33:35,160
ุงู„ senior ุชู†ุชูŠู† yes ูˆ ุชู„ุงุชุฉ no ุงุชู†ูŠู† ูˆ ุชู„ุงุชุฉ
436
00:33:35,160 --> 00:33:41,780
ูˆุจุงู„ุชุงู„ูŠ ุงู†ุง ู„ุงุฒู… ุงุญุณุจ ุงู„ entropy ู„ุชู†ูŠู† ูˆ ุชู„ุงุชุฉ ุงู„
437
00:33:41,780 --> 00:33:46,340
entropy ู‡ุงูŠ ุงูˆ ุงู„ information gain ูƒูŠู ุญุณุจู†ุงู‡ุง
438
00:33:46,340 --> 00:33:51,320
ู‚ุงู†ูˆู†ู‡ุง ู…ุนุฑูˆู ุณุงุจู‚ุง ู…ุงุชู†ุณูˆุด ุงูˆ ู…ุงุชู†ุณูˆุด ู…ุทู„ู‚ุง ุนุจุงุฑุฉ
439
00:33:51,320 --> 00:33:58,630
ุนู† ู†ุงู‚ุตููŠ ู…ุฌู…ูˆุน ุงู„ probabilities ู„ู„ุจูŠ ููŠ log ุงู„
440
00:33:58,630 --> 00:34:04,270
binary log ู„ู„ุจูŠ ุงู„ probability ูˆุงู„ I ุชุณูˆู‰ ู…ู† ูˆุงุญุฏ
441
00:34:04,270 --> 00:34:13,010
ู„ุนุฏุฏ ุงู„ classes ุณุงู…ูŠู‡ C ุงู„ุขู†
442
00:34:14,700 --> 00:34:17,760
ุงู„ data set ู‡ุงูŠ ู…ุด ุงุญู†ุง ู‚ูˆู„ู†ุง divide and conquer
443
00:34:17,760 --> 00:34:21,940
ุฌุณู…ู†ุง ุงู„ data set ูˆุงู„ุงู† ุจุฏูŠ ุงุนูŠุฏ ู†ูุณ ุงู„ุดุบู„ ุนู„ูŠู‡ุง
444
00:34:21,940 --> 00:34:25,000
ู†ูุณ ุงู„ุญุณุจุฉ ูุจุฑุญุช ุงู†ุง ุจุฏูŠ ุงุญุณุจ ุงู„ information gain
445
00:34:25,000 --> 00:34:30,520
ู„ู‡ุงูŠ ูˆู‡ุฏ ุงู„ู„ูŠ ุงู„ู…ูุฑูˆุถ ุชุณุงูˆูŠ ู†ุงู‚ุต ู…ุถุฑูˆุจุฉ ููŠู‡ ุชู„ุงุชุฉ
446
00:34:30,520 --> 00:34:37,040
ุนู„ู‰ ุฎู…ุณุฉ ููŠ log ุฃูŠูˆุฉ ุฌุฏุงุด ููŠ ุงู„ binary log ุตุญูŠุญ
447
00:34:37,040 --> 00:34:43,800
ุชู„ุงุชุฉ ุนู„ู‰ ุฎู…ุณุฉ ุฒุงุฆุฏ ุงุชู†ูŠู† ุนู„ู‰ ุฎู…ุณุฉ ููŠ logุงุซู†ูŠู† ุนู„ู‰
448
00:34:43,800 --> 00:34:49,600
ุฎู…ุณุฉ ู‡ุฐู‡ ุงู„ intro ุจุงู„ุฃูˆู„ู‰ ู‡ุฐู‡ ุฌู…ุนุฉ ุงู„ุฎูŠุฑ ุตูุฑ ู„ูŠุด
449
00:34:49,600 --> 00:34:59,080
ู†ุงู‚ุต ุงุฑุจุนุฉ ุนู„ู‰ ุฎู…ุณุฉ ุงุฑุจุนุฉ ุนู„ู‰ ุฎู…ุณุฉ ุงุฑุจุนุฉ ุนู„ู‰ ุฎู…ุณุฉ
450
00:34:59,080 --> 00:35:07,160
ุงุฑุจุนุฉ ุนู„ู‰ ุงุฑุจุนุฉ sorry ุงุฑุจุนุฉ ุนู„ู‰ ุงุฑุจุนุฉ ููŠ log ุงู„
451
00:35:07,160 --> 00:35:13,210
binary ู„ู„ุงุฑุจุนุฉ ุนู„ู‰ ุงุฑุจุนุฉ ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ุตูุฑุฒุงุฆุฏ ุตูุฑ
452
00:35:13,210 --> 00:35:21,090
ุนู„ู‰ ุฃุฑุจุนุฉ ููŠ log ุตูุฑ ุนู„ู‰ ุฃุฑุจุนุฉ ูˆู…ู† ุซู… ุงู„ู‚ูŠู…ุฉ ู‡ุฐู‡
453
00:35:21,090 --> 00:35:24,430
ู‡ุชุฑูˆุญ ุนู†ุฏูŠ ูˆู‡ุฐู‡ ู‡ูŠ ู†ูุณ ุงู„ู„ูŠ ููˆู‚ ุจุณ ู…ุน ุชุบูŠูŠุฑ ุงู„
454
00:35:24,430 --> 00:35:30,110
terms ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ุจู†ูุณ ุงู„ุญุณุจุฉ ูˆุจุงู„ุชุงู„ูŠ ุฃู†ุง
455
00:35:30,110 --> 00:35:33,450
ุญุณุจุชู‡ุง ููŠ ุงู„ุฌุฏูˆู„ ูุทู„ุนุช ู…ุนุงูŠุง ู‡ูŠู‡ุง
456
00:35:39,160 --> 00:35:43,280
ุฎู„ุตุชุŸ ู„ุฃ ู„ุณู‡ ู…ุฎู„ุตุด ุจู‚ุงู„ ุนู„ูŠ ุฎุทูˆุฉ ูˆุงุญุฏุฉ ุนุดุงู† ุงุนุฑู
457
00:35:43,280 --> 00:35:51,340
ุงู† ุงู„ gain ุชุจุนุช ุงู„ age ุฌุฏูŠุด ุจุฏูŠ ุงุฑูˆุญ ุงู‚ูˆู„ู‡ ุงู„ gain
458
00:35:51,340 --> 00:35:56,140
ุชุจุนุช ุงู„ data set ุงู„ู„ูŠ ูƒู„ู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุฌู…ุน ุงู„ุงูŠ ู„ู„ุชุณุนุฉ
459
00:35:56,140 --> 00:36:02,380
ูˆุฎู…ุณุฉ ุญุณุจู†ุงู‡ุง point ุชุณุนุฉ ุงุฑุจุนุฉ ุตูุฑ ููŠ ุงู„ slide
460
00:36:02,380 --> 00:36:03,020
ุงู„ุณุงุฏู‚ ู‡ูŠ
461
00:36:06,330 --> 00:36:10,670
ู„ู…ุง ุญุณุจู†ุงู‡ุง ู‡ุงู† ู„ูƒู„ ุงู„ data set ุงู„ gain ุงูˆ ุงู„
462
00:36:10,670 --> 00:36:13,470
intro ู„ูƒู„ ุงู„ data set ุญุณุจุช ุงู„ุงู† ุงู„ intro ู„ ุงู„ age
463
00:36:13,470 --> 00:36:19,210
ู‡ูŠู‡ุง ุงู„ุงู† ุงู„ุฎุทูˆุฉ ุงู„ู„ูŠ ู‡ุดุชุบู„ ุนู„ูŠู‡ุง ุงู†ู‡ ุจุฏูŠ ุงุฌูŠุจ ุงู„
464
00:36:19,210 --> 00:36:23,510
information gain ู„ูƒู„ ูˆุงุญุฏ ููŠู‡ู… ุทุจุนุง ุงู„ู…ูุฑูˆุถ ุงู†ุง
465
00:36:23,510 --> 00:36:27,350
ู…ู…ูƒู† ุงุดุชุบู„ ุงู„ุฎุทูˆุฉ ู‡ุงูŠ ุชุจุงุนุง ุงุฌุฑุญ ุงู‚ูˆู„ู‡ ู…ุจุงุดุฑุฉ ุงู„ุงู†
466
00:36:27,350 --> 00:36:35,550
ุงู„ information gain ู„ู„ age ุชุณุงูˆูŠ
467
00:36:36,360 --> 00:36:40,700
ุฃูˆ ุงู„ู€ Gain ู„ู„ู€ Age ุชุณุงูˆูŠ ุงู„ Entropy ู„ูƒู„ ุงู„ data
468
00:36:40,700 --> 00:36:46,120
set ู†ู‚ุต ุงู„ Entropy ุชุจุน ุงู„ Age ุงู„
469
00:36:46,120 --> 00:36:53,940
Gain ู„ู„ Age ุชุณุงูˆูŠ ุงู„ Entropy ู„ู„ data set 0.94 ู†ุงู‚ุต
470
00:36:53,940 --> 00:37:02,900
ุงู„ Entropy ู„ ุงู„ Age ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู‰ 6.94ุชุณุงูˆูŠ ุทุจุนุง
471
00:37:02,900 --> 00:37:06,620
ู…ู…ูƒู† ุชุดุชุบู„ ุงู„ุฎุทูˆุฉ ุงู„ุชุงู„ูŠุฉ ุชุดุชุบู„ ู…ุน ุงู„ income ุจู†ูุณ
472
00:37:06,620 --> 00:37:09,200
ุงู„ concept ุงู„ income ููŠ ุนู†ุฏูŠ ุจุฑุถู‡ .. ุจุฑุถู‡ ู‡ุงู† ููŠ
473
00:37:09,200 --> 00:37:12,420
ุนู†ุฏูŠ three different values ุงู„ income ููŠ ุนู†ุฏูŠ
474
00:37:12,420 --> 00:37:16,340
three different values high ูˆ medium ูˆ low
475
00:37:16,340 --> 00:37:19,840
ุชูˆุฒูŠุนุชู‡ู… ุจู†ูุณ ุงู„ูƒูŠููŠุฉ ูˆ ุจุญุณุจ ุงู„ entropy ู„ ุงู„ yes ูˆ
476
00:37:19,840 --> 00:37:28,780
ุงู„ no ูˆ ู‡ูƒุฐุง ู‡ู‰ ุญุณุจุช ุงู„ entropy ู„ ุงู„ ..Informat ..
477
00:37:28,780 --> 00:37:32,880
ู„ู„ income ุงู„ intro ุจูŠ ู„ ุงู„ student ุงู„ intro ุจูŠ ู„
478
00:37:32,880 --> 00:37:39,660
ู…ูŠู† ู„ ุงู„ credit rating ุงู„ุขู† ุฎุทูˆุฉ ุชุงู„ูŠุฉ ู‡ุฑูˆุญ ุฑุญุณุจ
479
00:37:39,660 --> 00:37:45,500
ุงู„ information gain ุงูˆ ุงู„ gain ุชุจุนุช ุงู„ age ูˆ ุงู„
480
00:37:45,500 --> 00:37:50,660
gain ุชุจุนุช ู‡ู†ุง ููŠ slides ู…ูู‚ูˆุฏุฉ ุงู„ู…ูุฑูˆุถ ุงู†ุง ุดูƒู„ูŠ
481
00:37:50,660 --> 00:37:54,420
ู†ุณูŠู‡ุง ุงูˆ ู…ุง ุดุงุจู‡ ู„ุฃ ู‡ูŠ ู†ูุณ ุงู„ .. okay ุจุณ ู…ุด ู…ูุตู„ุฉ
482
00:37:54,420 --> 00:38:01,550
ูุญุณุจุช ุงู„ gain ู„ู„ ageุงู„ู€ gain ู„ู„ู€ age ู‡ูŠ
483
00:38:01,550 --> 00:38:08,250
ุนุจุงุฑุฉ ุนู† ุงู„ู€ entropy ู„ูƒู„ ุงู„ data 6.94% ู†ุงู‚ุต ุงู„
484
00:38:08,250 --> 00:38:13,450
entropy ุชุจุนุช ุงู„ age ุงู„ู„ูŠ ู‡ูŠ 694 ู…ู† ุงู„ู ูˆ ู‡ูŠูƒูˆู†
485
00:38:13,450 --> 00:38:19,370
ุงู„ูุฑู‚ ุจูŠู†ู‡ู… 246 ู…ู† ุงู„ู ูˆ ุฑูˆุญุช ุญุณุจุช ุงู„ incomeุฃูˆ ุงู„
486
00:38:19,370 --> 00:38:25,090
gain ู„ู„ income ุงู„ gain ู„ู„ student ูˆ ุงู„ gain ู„ู„
487
00:38:25,090 --> 00:38:29,630
credit rating ู„ุงุญุธ ุงู„ credit rating ุงู‚ู„ ู…ุง ูŠู…ูƒู†
488
00:38:29,630 --> 00:38:36,270
ุงู‚ู„ ุงุตุบุฑ ูˆุงุญุฏุฉ ู…ู† ุงู„ุนู†ุงุตุฑ ุงู„ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰ ุงู‚ู„
489
00:38:36,270 --> 00:38:40,830
ูˆุงุญุฏุฉ ู…ุน ุงู„ income ู…ุงู„ู‡ุงุด ูƒุงู† ุงู„ู‡ุงุด ุงู‚ู„ ุชุฃุซูŠุฑุง
490
00:38:42,420 --> 00:38:47,460
ุงู„ููƒุฑุฉ ุงู† ุงู†ุง ุจุฏูŠ ุงุฑูˆุญ ุงุฎุฏ ุงูˆ ุจุฏูŠ ุงุนู…ู„ split ุนู„ู‰
491
00:38:47,460 --> 00:38:56,160
ุงู„ maximum gain ู„ู„ attributes ู…ูŠู†
492
00:38:56,160 --> 00:39:05,760
ุงู„ maximumุŸ ู‡ูŠ ู„ุงู† 244 ู…ู† 1000 ุงูƒุจุฑ ู…ู† ุงูƒุจุฑ ู‚ูŠู…ุฉ
493
00:39:05,760 --> 00:39:09,680
ู…ูˆุฌูˆุฏุฉ ููŠู‡ู… ุงู„ู„ูŠ ู‡ูŠ ู‡ู†ุง ู…ุน ุงู„ studentูˆู‡ุฐุง ุจุชุฏูŠู†ูŠ
494
00:39:09,680 --> 00:39:12,040
ุฅุดุงุฑุฉ ุฅู† ู…ู…ูƒู† ุงู„ student ุชูƒูˆู† ู‡ูŠ ุงู„ next element
495
00:39:12,040 --> 00:39:14,920
ุงู„ู„ูŠ ุฃู†ุญู…ู„ ุนู„ูŠู‡ splitting ู„ูƒู† ู…ุด ู‚ุถูŠุชูŠ ููŠ ุงู„ุขุฎุฑ
496
00:39:14,920 --> 00:39:26,420
ุฃู†ุง ู‡ุงูŠ ุงู„ุขู† ุงู„ุขู† ุงู„ data set ู‡ุฑุฌุนู„ู‡ุง ุงู„
497
00:39:26,420 --> 00:39:30,660
data set ุงู„ุขู† ู‡ู†ุนู…ู„ู‡ุง partitioning ู‡ูŠ ุงู„ data set
498
00:39:30,660 --> 00:39:37,180
ูƒูŠู ุงู„ partition ุชุจุนุชูŠุŸ ุจูŠุจู‚ู‰ ุฅู†ู‡ ู‚ุงู„ ู„ูŠ ุฅู† ุงู„ age
499
00:39:37,180 --> 00:39:43,030
ู‡ูŠ ู‡ุชูƒูˆู† ุงู„ุฃุณุงุณูƒู„ ุงู„ุฑูˆุฒ ุงู„ู…ุญูˆุทุฉ ุจุงู„ู„ูˆู† ุงู„ุฃุญู…ุฑ ู‡ุฐู‡
500
00:39:43,030 --> 00:39:49,510
ุฃูˆ ุจูŠู† ุฌุซูŠู† ุงู„ุชุจุนุช ุงู„ูŠู ู‡ุชู…ุซู„
501
00:39:49,510 --> 00:39:56,030
one data set ุฎู…ุณุฉ
502
00:39:56,030 --> 00:40:00,950
ุฑูˆุฒ ุชู…ุงู…ุŸ
503
00:40:00,950 --> 00:40:05,930
ุจุนุฏ ู‡ูŠูƒ ุงู„ middle age ู„ุญุงู„ู‡ู… ุงู„ู„ูŠ ุจุงู„ู„ูˆู† ุงู„ุฃุฒุฑู‚
504
00:40:05,930 --> 00:40:07,010
ุนู…ุงู„ูŠ ุจุญูˆุท ุนู„ูŠู‡ู…
505
00:40:15,180 --> 00:40:19,840
ู‡ุฏูˆู„ุฉ ุฃุฑุจุนุฉ .. ุฃุฑุจุนุฉ ูˆุถู„ูˆุง ุงู„ senior ุงู„ุนู†ุงุตุฑ
506
00:40:19,840 --> 00:40:23,460
ุงู„ุจุงู‚ูŠุฉ ูŠุนู†ูŠ ุจูŠู† ู‚ูˆุณูŠู† ุฅู† ุงู„ data ุณุชุฉ ุจู‚ู‰ ู‡ุชู†ุฌุณู…
507
00:40:23,460 --> 00:40:28,020
ุงู„ุขู† ุจุนุฏ ู…ุง ุฃุฎุฏุช ุงู„ route ุฃู†ุง ู‡ูŠู‡ุง ุจู‚ูˆู„ ุงู„ age ู‡ูŠ
508
00:40:28,020 --> 00:40:32,220
ุงู„ุฃุณุงุณ ู„ุฅู† ู‡ูŠ ุตุงุญุจุฉ ุงู„ุฃูƒุจุฑ gain ู‡ูŠู‡ุง ูุจุฏูŠ ุฃุฌุณู… ุงู„
509
00:40:32,220 --> 00:40:35,000
data ุณุชุฉ ุจู‚ู‰ ู„ู„ three values ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ูŠุนู†ูŠ
510
00:40:35,000 --> 00:40:38,940
ุงู„ youth ูˆ ุงู„ middle age ูˆ ุงู„ senior ู…ู…ุชุงุฒ
511
00:40:44,580 --> 00:40:48,980
ุฌุณู…ู†ุงู‡ู… ู‡ุฐู‡ ุงู„ data set ุงู„ู„ู‰ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰ ุงู„ุขู† ุนู„ู‰
512
00:40:48,980 --> 00:40:54,480
ุงู„ุณุฑูŠุน ุดูˆ ู‡ุฑูˆุญ ุฃุณุงูˆูŠ ู‡ุงุฎุฏ ูƒู„ data set ู„ุงู† ู„ุงุญุธ ุงู†
513
00:40:54,480 --> 00:40:56,040
ุนู…ูˆุฏ ุงู„ student ุงุฎุชูุช
514
00:40:58,670 --> 00:41:03,170
ุนู…ูˆุฏ ุงู„ age ุงุฎุชูุช ..ุนู…ูˆุฏ ุงู„ age ุงุฎุชูุช ..ุงู„ุงู† ูƒู„
515
00:41:03,170 --> 00:41:08,270
ูˆุงุญุฏุฉ ู…ู† ุงู„ data set ู‡ุดุชุบู„ ุนู„ูŠู‡ุง ุจุดูƒู„ ู…ุณุชู‚ู„ ู„ุญุฏ ู…ุง
516
00:41:08,270 --> 00:41:13,150
ุงุญู‚ู‚ ูˆุงุญุฏ ู…ู† ุงู„ุดุฑูˆุท ุงู„ุชู„ุงุชุฉ ุงู…ุง ูุนู„ูŠุง ูƒู„ ุงู„
517
00:41:13,150 --> 00:41:17,690
attributes ุงูˆ ูƒู„ ุงู„ symbols ุชู…ุชู… ู„ู†ูุณ ุงู„ classุฃูˆ
518
00:41:17,690 --> 00:41:21,290
ู…ุงุถู„ุด ููŠู‡ ุนู†ุฏูŠ more attributes ุฃู†ุง ุฌุณู…ู‡ุง ุฃูˆ ู…ุงุถู„ุด
519
00:41:21,290 --> 00:41:24,450
ููŠู‡ ุนู†ุฏู‡ rows ุจุนุฏ ู‡ูŠูƒ ูŠุนู†ูŠ ุจูŠู† ุฌุซูŠู† ุญุงุฌุฉ ู„ู‡ุงู† ุงู„ุขู†
520
00:41:24,450 --> 00:41:28,890
ูˆ ู‡ุดุชุบู„ ุนู„ูŠู‡ุง ุจุดูƒู„ ู…ุณุชู‚ู„ ู‡ุฐู‡ ุงู„ุขู† new data set
521
00:41:28,890 --> 00:41:34,490
ู‡ุญุณุจู„ู‡ุง information ู„ู…ูŠู†ุŸ ู‡ุฐู‡ ูƒู„ู‡ุง ุฎู…ุณ ุนู†ุงุตุฑ ุงุชู†ูŠู†
522
00:41:34,490 --> 00:41:39,330
ูˆ ุชู„ุงุชุฉ ู‡ุฐู‡ ุงู„ information ุงู„ู„ูŠ ุงุฏูŠู‡ ูƒู„ู‡ุง ุงู„ ID
523
00:41:39,330 --> 00:41:42,630
ุชุจุนุชูŠ I
524
00:41:43,610 --> 00:41:49,410
ุชู„ุง .. ุงุชู†ูŠู† ู„ู„ูŠุณ ูˆ ุชู„ุงุชุฉ ู„ู„ no ูˆู‡ุฐุง ุชุณุงูˆูŠ ุณุงู„ุจ ููŠ
525
00:41:49,410 --> 00:41:55,770
ู…ุฌู…ูˆุน .. ููŠ ู…ุฌู…ูˆุน ุงูˆ ุจู„ุงุด ู†ุญุท ุงู„ู…ุฌู…ูˆุน ู‡ูŠู‡ุง ุงุชู†ูŠู†
526
00:41:55,770 --> 00:42:02,790
ุนู„ู‰ ุฎู…ุณุฉ ููŠ log ุงุชู†ูŠู† ุนู„ู‰ ุฎู…ุณุฉ ุฒุงุฆุฏ ุชู„ุงุชุฉ ุนู„ู‰ ุฎู…ุณุฉ
527
00:42:02,790 --> 00:42:09,060
ููŠ log ุชู„ุงุชุฉ ุนู„ู‰ ุฎู…ุณุฉู‡ุฐู‡ ุงู„ู…ุนู„ูˆู…ุงุช ู„ูƒู„ ุงู„ data set
528
00:42:09,060 --> 00:42:12,940
ู‡ุฐู‡ as all ู…ู…ุชุงุฒ ุงู„ุขู† ูƒู… attribute ู…ูˆุฌูˆุฏ ุนู†ุฏูŠุŸ
529
00:42:12,940 --> 00:42:16,060
ุนู†ุฏูŠ three different attributes ุนู†ุฏูŠ ุงู„ income ูˆ
530
00:42:16,060 --> 00:42:19,500
ุนู†ุฏูŠ ุงู„ age ูŠุนููˆ ุงู„ student ูˆ ุงู„ credit rating
531
00:42:19,500 --> 00:42:23,640
ู‡ุฑูˆุญ ุฃุญุณุจ ุงู„ information ู„ู…ูŠู†ุŸ ู‡ุฑูˆุญ ุฃุจุฏุฃ ุฃุจู†ูŠ
532
00:42:23,640 --> 00:42:27,500
ุงู„ุฌุฏูˆู„ ุงู„ุขู† ู„ู„ attribute ุงู„ุฃูˆู„ ู…ุด ุงุชูู‚ู†ุง ู‡ูŠูƒ ู‡ุดุชุบู„
533
00:42:27,500 --> 00:42:31,360
ู…ุน ูƒู„ ุฌุฏูˆู„ ุนู„ู‰ ุงู„ุณุฑูŠุน ุฃู†ุง ู‡ุดุชุบู„ ุจุณ ู…ุน ู‡ุฐู‡ ูˆ ุงู„ุฎุทูˆุฉ
534
00:42:31,360 --> 00:42:34,900
ุงู„ุชุงู†ูŠุฉ ุญุงุทุฑ ู„ู„ุจุงู‚ูŠุฉ ุญุงุทุฑ ูƒูˆุงู‚ู„ูƒ ุงู„ุขู†
535
00:42:37,170 --> 00:42:42,950
ู…ุน ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุงู„ income ู‚ู„ุช
536
00:42:42,950 --> 00:42:49,250
ุงู„ value ุชุจุนุช ุงู„ income ุจุนุฏ ู‡ูŠูƒ ููŠ ุนู†ุฏูŠ ุงู„ yes
537
00:42:49,250 --> 00:42:55,150
ูˆุนู†ุฏูŠ ุงู„ no ูˆุนู†ุฏูŠ ุงู„ intro ุจู„ุง ุงู„ yes ูˆ ุงู„ no ุจู†ุงุก
538
00:42:55,150 --> 00:42:59,090
ุนู„ู‰ ุงู„ุนุฏุฏ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏูŠ ูˆุจุงู„ุชุงู„ูŠ ูƒุงู… value ู…ูˆุฌูˆุฏ
539
00:42:59,090 --> 00:43:05,010
ุนู†ุฏูŠ ุงู†ุง ู‡ุงู† ุนู†ุฏูŠ low ูˆ medium ูˆ high ู‡ูŠ
540
00:43:05,010 --> 00:43:05,290
low
541
00:43:08,440 --> 00:43:16,120
medium ูˆ high ุนุฏ ุงู„ุนู†ุงุตุฑ ุงู„ู…ูˆุฌูˆุฏุฉ ู…ุน ุจุนุถู†ุง ุงู„ุงู† ู…ุน
542
00:43:16,120 --> 00:43:24,500
ุงู„ law ุนู†ุฏูŠ ู‚ูŠู…ุฉ ูˆุงุญุฏุฉ ูู‚ุท ู„ู…ูŠู† ุจุชู†ุชู…ูŠ ู„ู„ yes ูˆุงุญุฏ
543
00:43:24,500 --> 00:43:33,560
yes ูˆ ู‡ู†ุง ุตูุฑ ู…ุนู†ุงุชู‡ ุงู„ entropy ู„ูˆุงุญุฏ ูˆ ุตูุฑ ุงุฌูŠ
544
00:43:33,560 --> 00:43:35,780
ู„ ุงู„ medium medium ุนู†ุฏูŠ ุชู†ุชูŠู†
545
00:43:43,250 --> 00:43:50,310
ูˆุงุญุฏ yes ูˆูˆุงุญุฏ no ู…ุนู†ุงุชู‡ ุงู†ุชุฑูˆ ุจูŠ ู„ูˆุงุญุฏ ูˆูˆุงุญุฏ ูˆุถู„
546
00:43:50,310 --> 00:43:53,950
ููŠ ุนู†ุฏูŠ height ุงู†ุชูŠู† ูˆุจูŠู†ุชู…ูŠูˆุง ู„ู†ูุณ ุงู„ class
547
00:43:53,950 --> 00:43:59,710
ู…ุนู†ุงุชู‡ ุตูุฑ ูˆุงุซู†ูŠู† ุงู†ุชุฑูˆ ุจูŠ ู„ุตูุฑ ูˆุงุซู†ูŠู† ูˆุฐุง ุจุฐูƒุฑ ุงู†
548
00:43:59,710 --> 00:44:03,650
ู‡ุงูŠ ุงู„ู‚ุงู†ูˆู† ุงู„ุณุงุจู‚ ุงู„ู„ูŠ ุงุนุชู†ุฏ ุนู„ูŠู‡ ุญุตู„ ุจุญุณุจ ุงู„
549
00:44:03,650 --> 00:44:08,810
gain ุงู„ุขู† ุงูˆ ุจุญุณุจ ุงู„ information ู„ู„ attribute ุงู„ู„ูŠ
550
00:44:08,810 --> 00:44:15,860
ู…ูˆุฌูˆุฏ ุนู†ุฏูŠ ู…ู† ุฎู„ุงู„ุงู„ู€ summation ูƒู…ุงู† ู…ุฑุฉ ุนุฏุฏ ุงู„
551
00:44:15,860 --> 00:44:21,840
data set ุฒูŠ ู…ุง ู‚ู„ู†ุง ุฌุฏูŠุด ุฌุงู…ุนุฉ ุงู„ุฎูŠุฑ ุฎู…ุณุฉ ุงู„ุงู†
552
00:44:21,840 --> 00:44:31,420
ูˆุงุญุฏ ุนู„ู‰ ุฎู…ุณุฉ ููŠ I ูˆุงุญุฏ ูˆ ุตูุฑ ุฒุงุฆุฏ ู‡ุฐู‡ ุงู„
553
00:44:31,420 --> 00:44:40,050
information ุงุชู†ูŠู† ุนู„ู‰ ุฎู…ุณุฉ ููŠ Iูˆุงุญุฏ ูˆ ูˆุงุญุฏ ุฒุงุฆุฏ
554
00:44:40,050 --> 00:44:49,530
ุงุชู†ูŠู† ุนู„ู‰ ุฎู…ุณุฉ ุงุชู†ูŠู† ุนู„ู‰ ุฎู…ุณุฉ ุตุญูŠุญ ุงุชู†ูŠู† ุนู„ู‰ ุฎู…ุณุฉ
555
00:44:49,530 --> 00:44:58,530
ููŠ ุงู„ I ุตูุฑ
556
00:44:58,530 --> 00:45:04,690
ูˆ ุงุชู†ูŠู† ุจุญุตู„ ุนู„ู‰ ุงู„ information gain ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ
557
00:45:04,690 --> 00:45:12,160
ุนู†ุฏูŠ ู‡ุงู† ุจุนุฏ ู‡ูŠูƒ ุจู‚ูˆู„ู‡ ุงู„ gainุชุจุนุช ุงู„ income ู‡ุชู…ุซู„
558
00:45:12,160 --> 00:45:21,900
ุงู„ ID ุงู„ู„ูŠ ุนู†ุฏูŠ ููˆู‚ ู†ุงู‚ุต ุงู„ I ู„ู„ income ุงู„ู„ูŠ
559
00:45:21,900 --> 00:45:28,380
ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ู‡ุญุณุจู‡ุง ูˆ ูุชุงู„ูŠ ุจุญุณุจ ู„ู‡ุฐู‡ ูˆ ุจุญุณุจ ู„ู„
560
00:45:28,380 --> 00:45:31,780
ุงู„ุนู†ุงุตุฑ
561
00:45:31,780 --> 00:45:37,640
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰ ุชู…ุงู…ู„ู„ student ุจุนูŠุฏ ุงู„ูƒุฑุฉ ูˆ ู„ู„
562
00:45:37,640 --> 00:45:41,780
credit rating ูˆ ุตุงุญุจ ุงู„ attribute ุตุงุญุจ ุฃูƒุจุฑ gain
563
00:45:41,780 --> 00:45:46,480
ู‡ูˆ ุงู„ู„ูŠ ุญูƒูˆู† ูุนู„ูŠุง ุงู†ุง ู‡ุนุชู…ุฏ ูˆูŠู† ููŠ ุงู„ .. ููŠ
564
00:45:46,480 --> 00:45:49,740
ุงู„ุฑุณู…ุฉ ุงูˆ ููŠ decision node ุงู„ุชุงู„ูŠุฉ ุญุณุจ ุงู„ุญุณุจุฉ
565
00:45:49,740 --> 00:45:54,200
ุชุจุนุชูŠ ุญุณุจู†ุงู‡ุง ุณุงุจู‚ุง ู„ุงุฒู… ุงู†ุชูˆุง ุชูƒู…ู„ูˆู‡ุง ู„ู„ุงุฎุฑ ุญุณุจ
566
00:45:54,200 --> 00:45:57,740
ุงู„ุญุณุจุฉ ุชุจุนุชูŠ ุงู„ student ุญุตู„ุช ุงุนู„ู‰ game ุงู„ student
567
00:45:57,740 --> 00:46:02,680
ุชุจุนุชูŠ ุญุตู„ุช ุงุนู„ู‰ game ูˆ ุจุงู„ุชุงู„ูŠ ุงู†ุง ุงู„ุงู† ู‡ุงู† ู‡ุตูŠุฑ
568
00:46:02,680 --> 00:46:07,260
ููŠ ุนู†ุฏ ุงู„ studentู‡ูŠ ุงู„ู€ Internal node ุงู„ุฌุงูŠุฉ ูˆููŠู‡ุง
569
00:46:07,260 --> 00:46:13,680
two different values ุญู‚ุณู… ุงู„ data set ุจุนุฏ ู‡ูŠูƒ ุญู‚ุณู…
570
00:46:13,680 --> 00:46:16,860
ุงู„ data set ุชุจุนุง ู„ู„ nodes ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู‡ูŠูƒ ูˆ
571
00:46:16,860 --> 00:46:20,960
ุจู‡ูƒุฏ ุตุงุฑุช ูƒู„ ุงู„ nodes ุจุชู†ุชู…ูŠ ู„ู†ูุณ ุงู„ class ูƒู„ ุงู„
572
00:46:20,960 --> 00:46:24,620
samples ุจุชู†ุชู…ูŠ ู„ู†ูุณ ุงู„ class ูู‡ุงู† ุจูˆู‚ู ู‡ุฐู‡ already
573
00:46:24,620 --> 00:46:28,260
ูƒู„ู‡ุง ุจุชู†ุชู…ูŠ ู„ู†ูุณ ุงู„ class ูุงู†ุง ูˆู‚ูุช ู‡ุงู† ูˆูˆู‚ูุช ู‡ุงู†
574
00:46:28,260 --> 00:46:31,540
ู‡ุชูƒูˆู† ุงู„ final tree ุชุจุนุชูŠ ุทุจุนุง ู‡ูŠ ุงู„ุญุณุจุฉ ุงู„ู„ูŠ
575
00:46:31,540 --> 00:46:36,430
ุนู†ุฏู†ุงู‡ุง ู…ุฑุฉ ุชุงู†ูŠุฉ ุงู†ุง ููŠ ุงู„ุขุฎุฑุงู„ู€ Tree ุชุจุนุชูŠ ุฃุญุตู„
576
00:46:36,430 --> 00:46:40,330
ุนู„ูŠู‡ุง ุงู„ู„ูŠ ุงุญู†ุง ุดูู†ุงู‡ุง ู…ุณุจู‚ุง ุงู„ู…ูุฑูˆุถ ู‚ุจู„ ู…ุง ูŠุจุฏุฃ
577
00:46:40,330 --> 00:46:50,130
ุจุงู„ุดุบู„ ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡ ุงู„ income ู…ุงุจูŠู†ุชุด ุนู†ุฏูŠ ู„ุฅู†
578
00:46:50,130 --> 00:46:54,770
ูุนู„ูŠุง ูˆุฒู†ู‡ุง ูƒุงู† ู„ุง ูŠุฐูƒุฑ ู…ู‚ุงุฑู†ุฉ ุจุงู„ data set ูˆ ู„ู…ุง
579
00:46:54,770 --> 00:46:57,570
ุฃู†ุง ู…ุงุถู„ุด ุนู†ุฏูŠ rows ุฃูˆ ู…ุงุถู„ุด ุนู†ุฏูŠ sample ุฃุฑูˆุญ
580
00:46:57,570 --> 00:47:01,650
ุฃุฌุณู…ู‡ุง ุงู„ุขู† ุนุดุงู†
581
00:47:02,490 --> 00:47:06,390
ู…ุงู†ุทูˆู„ุด ุนู„ูŠูƒู… ุจุนุฏ ู…ุง ุญุณุจู†ุง ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ
582
00:47:06,390 --> 00:47:11,430
ุนู†ุฏู‡ุง ููŠ ุงู„ continuous attributes ููŠ ุญุงู„ุฉ ุงู„
583
00:47:11,430 --> 00:47:14,470
attributes ุงู„ู„ูŠ ุนู†ุฏูƒ continuous attribute ุงูŠุด ุงู„ุญู„
584
00:47:14,470 --> 00:47:19,610
ุงุนู…ู„ discretization ุงุนู…ู„ู‡ุง categories ุฌุณู…ู‡ุง ู„ูุฆุงุช
585
00:47:19,610 --> 00:47:22,830
ุงุณุชุฎุฏู… ุงู„ binning ูˆ ุงุนุทูŠ label ู„ูƒู„ bin ูˆ ุงุดุชุบู„
586
00:47:22,830 --> 00:47:28,710
ุนู„ูŠู‡ุง ุจุชูƒุงุดูŠ ุชุดุชุบู„ ุนู„ูŠูƒ ููŠ ุญู„ ุจุณูŠุท ุฌุฏุง ุงู„ุญู„ ุจูŠู‚ูˆู„ูƒ
587
00:47:28,710 --> 00:47:33,760
ุฑุชุจ ุงู„ data set ุชุจุน ู„ู„ items ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูƒุฑุชุจุช
588
00:47:33,760 --> 00:47:38,260
ุงู„ items ุชู…ุงู… ูุตุงุฑุช ุงู„ data sorted ุงู† ููŠ ุญุงู„ ูƒุงู†ุช
589
00:47:38,260 --> 00:47:43,260
ุนู†ุฏูŠ ุงู„ age ุนุจุงุฑุฉ ุนู† number ุตุงุฑ ุนู†ุฏูŠ ุชู…ู†ุชุนุด ุฎู…ุณุฉ ูˆ
590
00:47:43,260 --> 00:47:48,780
ุนุดุฑูŠู† ุชู„ุงุชูŠู† ุณุจุนุฉ ูˆ ุชู„ุงุชูŠู† ุงุฑุจุนูŠู† ุงู„ุงู† ุงู†ุช ุจู‚ู‰
591
00:47:48,780 --> 00:47:55,500
ุชูŠุฌูŠ ุชูุญุต ุจูŠู† ูƒู„ two nodes ูŠุนู†ูŠ ู‡ุชุงุฎุฏ
592
00:47:55,500 --> 00:48:00,200
ุงู„ midpoint ุงู„ู„ูŠ ุจูŠู† ู‡ุฏูˆู„ ุงู„ุงุชู†ูŠู† ุงูˆ ุงู„ุฃุณู‡ู„ ู„ูƒ
593
00:48:01,200 --> 00:48:03,600
ูุนู„ุงู‹ ู‡ูŠ ุนุจุงุฑุฉ ุนู† Discretization ู„ูƒู†ู‡ุง Binary
594
00:48:03,600 --> 00:48:07,780
Discretization ู…ุน ุงู„ุฃุฑู‚ุงู… ุงู†ุช ุงูŠุด ุงู„ู…ู‚ุงุฑู†ุงุช ุชุจุนุชูƒุŸ
595
00:48:07,780 --> 00:48:12,460
ุงู…ุง ู‡ุชู‚ูˆู„ู„ูŠ ุฃู‚ู„ ุฅุฐุง ู‚ูˆู„ุช ุฃู‚ู„ ู…ู† ูƒุฏู‡ ูู‡ูŠ ุฃูƒุจุฑ ุฃูˆ
596
00:48:12,460 --> 00:48:16,340
ุชุณุงูˆูŠ ูƒุฏู‡ ุฅุฐุง ู‚ูˆู„ุช ุฃูƒุจุฑ ู…ู† ุฃูƒุจุฑ ู…ู† ุฃูˆ ุชุณุงูˆูŠ ูƒุฏู‡
597
00:48:16,340 --> 00:48:19,280
ูู‡ูŠ ุฃู‚ู„ ู…ู† ูƒุฏู‡ ุนูƒุณู‡ุง ุชู…ุงู…ุง ูุญูƒูˆู† ุจุดุบู„ ุนู„ูŠู‡ุง ู…ุน
598
00:48:19,280 --> 00:48:23,080
binary ูŠุนู†ูŠ ุจูŠู† ุฌุณูŠู† ุจุตูŠุฑ ุจุงุฎุฏ decision ู‡ุงู† ุจู‚ูˆู„ู‡
599
00:48:23,080 --> 00:48:30,500
ุฃู‚ู„ ุฃูˆ ุชุณุงูˆูŠ ุฎู…ุณุฉ ูˆุนุดุฑูŠู† ุทุจ ู…ุง ู‡ูŠ ุชู…ู†ุชุนุด ุจุงุฌูŠ ู‡ุงู†
600
00:48:33,210 --> 00:48:39,230
ุฃู‚ู„ ุฃูˆ ุชุณุงูˆูŠ ุชู„ุงุชูŠู† ู…ุนุชูˆุง ู‡ุฏูˆู„ ููŠ partitions ูˆ
601
00:48:39,230 --> 00:48:42,190
ู‡ุฏูˆู„ ููŠ partitions ู…ุน ุงู„ continuous attributes ุฅุฐุง
602
00:48:42,190 --> 00:48:45,830
ุงู†ุช ุจุฏูƒ ุชุดุชุบู„ ู…ุน ุงู„ continuous values ู…ุนู†ุงุชู‡ ุงู†ุช
603
00:48:45,830 --> 00:48:49,990
ู‡ูŠูƒูˆู† ููŠ ุนู†ุฏูƒ too many partitions ู„ุญุฏ ู…ุง ุชุตู„ ู„
604
00:48:49,990 --> 00:48:55,300
best point ุงู„ู„ูŠ ุจุชุนู…ู„ splitูŠุนู†ูŠ ู‡ุญุณุจ ุงู„ุขู† ุงู„ุฌุณู…
605
00:48:55,300 --> 00:48:58,920
ูƒุฏู‡ ูƒุงู†ุช ู‡ุงู† ูˆ ู„ุง ู„ู…ุง ูƒุงู†ูˆุง ุชู†ุชูŠู† ูˆ ุชู„ุงุชุฉ ูˆ ู„ู…ุง
606
00:48:58,920 --> 00:49:03,160
ูƒุงู†ูˆุง ุชู„ุงุชุฉ ูˆ ุงุชู†ูŠู† ูˆ ุชุฌุฑุจ ูƒู„ู‡ู… ูˆ ุชุงุฎุฏ ุฃุนู„ู‰ gene
607
00:49:03,160 --> 00:49:06,900
ููŠู‡ู… ู„ุฃู† ููŠ ุงู„ุขุฎุฑ ุฃู†ุง ุจุฏูˆุฑ ุนู„ู‰ ุงู„ gene ู„ูƒู„ ุงู„ data
608
00:49:06,900 --> 00:49:12,320
set ุชุจุนุชูŠ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู‡ุงู† ุงู„ุงู† ู‡ุฏู ุงู„ู…ูˆุถูˆุน ุงู„
609
00:49:12,320 --> 00:49:15,810
spring ู„ู„ continuous valuesู„ูƒู† ุงู„ู€ Information
610
00:49:15,810 --> 00:49:21,330
Game ุฏุงุฆู…ุง ุจูŠุญุงุฒ ู„ู„ู€ attributes ุฃูˆ ู„ู„ู€ test ุงู„ู„ูŠ
611
00:49:21,330 --> 00:49:25,230
ุจูŠูƒูˆู† ููŠู‡ุง two ุฃูˆ ููŠู‡ุง many outcomes ุงู„ู„ูŠ ููŠู‡ุง
612
00:49:25,230 --> 00:49:30,490
values ูƒุชูŠุฑุฉ ุนุดุงู† ู‡ูŠ ูƒุงู†ุช ููŠ ุงู„ุฃูˆู„ ุนู†ุฏู‰ ุงู„ age
613
00:49:30,490 --> 00:49:33,190
ูƒุงู†ุช ู‡ูŠ ุฃูƒุซุฑ ุงู„ values ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุฌุงู„ูƒ ู…ู…ูƒู† ุงุญู†ุง
614
00:49:33,190 --> 00:49:37,070
ู†ุญู„ ู‡ุฐู‡ ุงู„ู…ุดูƒู„ุฉ ูˆ ู†ุนุชู…ุฏ ุฃูˆ ู†ุญุงูˆู„ ู†ู‚ุถูŠ ุนู„ู‰ ู…ูˆุถูˆุน
615
00:49:37,070 --> 00:49:39,930
ุงู†ุญูŠุงุฒ ุงู„ values ุงู„ูƒุชูŠุฑุฉ ุงู„ู„ูŠ ู‡ูŠ ู…ูˆุถูˆุน ุงู„ gain
616
00:49:39,930 --> 00:49:43,500
ratioุงู„ู€ Gain Ratio ููƒุฑุชู‡ุง ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ ุงู†ู‡ ุงู†ุง
617
00:49:43,500 --> 00:49:48,240
ุจุฏู‡ ุงุฑูˆุญ ุงุญุณุจ ุงู„ split info ุงุญู†ุง ุณุงุจู‚ุง ูƒุงู†ุช ู‡ุฐู‡
618
00:49:48,240 --> 00:49:52,240
ุงู„ู‚ูŠู…ุฉ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู†ุง ู‡ูŠ ุนุฏุฏ ุนู†ุงุตุฑ ุงู„ partition ุนู„ู‰
619
00:49:52,240 --> 00:49:56,200
.. ุนู„ู‰ ูƒู„ ุงู„ partition ููŠ ู…ูˆุถูˆุน ุงู„ probability ู„ูƒู„
620
00:49:56,200 --> 00:49:58,660
ุงู„ partition ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ูˆ ุจุนุฏ ู…ุง ุจุญุณุจ ุงู„
621
00:49:58,660 --> 00:50:02,280
gain ุจุฑูˆุญ ุจุญุท ุนู„ูŠู‡ุง ุงู„ split ratio ูˆ ู‡ูŠูƒ ุจุฑุถู‡ ุจุฑุฌุน
622
00:50:02,280 --> 00:50:07,180
ุจุงุฎุฏ ุงู„ maximum split ratio ูƒุฐู„ูƒ ููŠ ุนู†ุฏ ุงู„ gain
623
00:50:07,180 --> 00:50:13,020
indexุจูŠุนุชู…ุฏ ุนู„ู‰ ุงู„ู€ Multi-Valued Attributes ุจุดูƒู„
624
00:50:13,020 --> 00:50:19,340
ูƒุจูŠุฑ ุงู„ู€ Ched ุจูŠุนุชู…ุฏ ุนู„ู‰ ุงู„ู€ Chi-Square ุนุดุงู† ุชุญุณุจ
625
00:50:19,340 --> 00:50:21,420
ุงู„ู€ Independences ุฃูˆ ููŠ ู…ูˆุถูˆุน ุงู„ู€ Independences
626
00:50:21,420 --> 00:50:24,980
ูˆููŠ ุนู†ุฏ ุงู„ูƒุงุฑุช ูˆุฅู„ู‰ ุฃุฎุฑู‰ ุฃูŠ ูˆุงุญุฏุฉ ู…ู†ู‡ู… ุฃู†ุง ุฃุฎุชุงุฑ
627
00:50:24,980 --> 00:50:28,580
ู„ุนุดุงู† ุฃู†ุง ุฃุดุชุบู„ ู…ุงููŠุด ูุฑู‚ ู…ุง ุจูŠู†ู‡ู… ูƒุชูŠุฑ ุงู†ุช ุญุณุจ ุงู„
628
00:50:28,580 --> 00:50:32,500
data set ูˆุญุณุจ ูู‡ู…ูƒ ุงู„ data set ู…ู…ูƒู† ุชุฎุชุงุฑ ุฃูŠ ูˆุงุญุฏุฉ
629
00:50:32,500 --> 00:50:36,810
ู…ู†ู‡ู… ู„ูƒู† ุงู„ุฃูƒุซุฑ ุนููˆุงุงู„ุฃูƒุชุฑ ุงุณุชุฎุฏุงู…ุง ุงู„ู€
630
00:50:36,810 --> 00:50:40,990
Information Gain ูˆู…ู† ุซู… ุงู„ุฌู†ูŠ ุฃูˆ ุงู„ุนูƒุณ ุงุญู†ุง ุจู‡ูŠูƒ
631
00:50:40,990 --> 00:50:44,190
ุจู†ูƒูˆู† ุชู‚ุฑูŠุจุง ุฎู„ุตู†ุง ูˆุถุน ู„ุนูŠู†ุง one slide ุฎู„ูŠู†ุง
632
00:50:44,190 --> 00:50:51,390
ู†ู†ู‡ูŠู‡ุง ุงู„ุขู† ุฑุณู…ุช ู„ุชุฑูŠ ูˆุญุตู„ุช ุนู„ู‰ ู„ุชุฑูŠ ูˆ ุงู„ data set
633
00:50:51,390 --> 00:50:56,290
ุชุจุนุช ูƒุจูŠุฑุฉ ูˆ ูƒุงู†ุช ุงู„ depth ุฃูˆ ุนู…ู‚ ุงู„ุดุฌุฑุฉ ุชุจุนุช ูƒุชูŠุฑ
634
00:50:56,290 --> 00:51:01,370
ุนุงู„ูŠุฉ ุทุจ ุงูŠุด ุงู„ุญู„ุŸ ู‡ุงุฏ ุงุญู†ุง ุจู†ุณู…ูŠู‡ุง ุงู„ tree ู‡ุงุฏ ..
635
00:51:01,370 --> 00:51:06,880
ุงูˆ ุจูŠุญุตู„ู†ุง ุนู„ู‰ ู…ุฑุญู„ุฉ ุงุณู…ู‡ุง ุงู„ overfittingู…ุดูƒู„ุฉ ุฅู†ู‡
636
00:51:06,880 --> 00:51:10,900
ุงู„ู€Tree ู‡ุฐู‡ ุฌุงุจุชู‡ ุชู…ุงู…ุง ู…ุน ู…ูŠู†ุŸ ู…ุน ุงู„ู€Training
637
00:51:10,900 --> 00:51:14,060
Data ุงู„ู„ูŠ ุฃู†ุง ุจุฏูŠุชู‡ุง Overfit Fit ูŠุง ุดุจุงุจ ู…ู†ุงุณุจ
638
00:51:14,060 --> 00:51:19,440
ูˆู„ู…ู‘ุง ุฃู‚ูˆู„ Overfit ู…ู†ุงุณุจ ุจุฏุฑุฌุฉ ูƒุจูŠุฑุฉ ู„ู…ูŠู†ุŸ ู„ู„ุญุงู„ุฉ
639
00:51:19,440 --> 00:51:23,240
ุงู„ู„ูŠ ู‡ุฐู‡ุŒ ูŠุนู†ูŠ ุจูŠู† ุฌูˆุณูŠู†ุช ูˆูƒุฃู†ู‡ ุงู„ุดุฌุฑุฉ ู‡ุฐู‡ ุฒุจุทุช
640
00:51:23,240 --> 00:51:27,320
ุญุงู„ู‡ุง ุชู…ุงู…ุง ู…ุน ุงู„ู€Dataset ุทุจ ุบูŠุฑ ู‡ูŠ ูƒุงู†ุช ู„ุฃ ุจุชุฏูŠู†ูŠ
641
00:51:27,320 --> 00:51:31,700
ู…ุดุงูƒู„ ุฅูŠุด ุงู„ุญู„ุŸ ุงู„ู€Overfitting ู…ุน ุงู„ู€Binary Tree
642
00:51:31,700 --> 00:51:34,620
ุฃูˆ ู…ุน ุงู„ู€Decision Tree ุจูŠุนู†ูŠ Too Many Branches
643
00:51:37,860 --> 00:51:41,240
ู…ู…ูƒู† ูŠุนูƒุณ ุงู„ู€ outlayer ู„ูˆ ูƒุงู† ููŠ ุนู†ุฏูŠ outlayer
644
00:51:41,240 --> 00:51:44,620
ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู‡ุงู† ูˆ ุจุฏูŠู†ูŠ ุจูˆุฑ accuracy for unseen
645
00:51:44,620 --> 00:51:48,580
ู‡ุฐุง ุงู„ู…ูู‡ูˆู… ุงู„ outfitting ุงู„ overfitting ุงู„
646
00:51:48,580 --> 00:51:51,880
overfitting ูŠุนู†ูŠ ุงุชู†ุง ุณูˆุงุช ุงูƒุซุฑ ู…ุน ุงู„ data set
647
00:51:51,880 --> 00:51:56,190
ุงู„ู„ูŠ ุงู†ุง ุนู…ู„ุช ุนู„ูŠู‡ุง trainingูˆ ุบูŠุฑ ุตุงู„ุญุฉ ู„ู„ู€ .. ู„ู„ู€
648
00:51:56,190 --> 00:51:59,150
correct prediction ู…ุน ุงู„ู€ unseen ุฅูŠุด ุงู„ุญู„ุŸ ููŠ ุนู†ุฏูŠ
649
00:51:59,150 --> 00:52:02,150
two approaches ุทุจุนุง ุงู†ุช ู…ุด ู‡ุชุดุชุบู„ ูˆู„ุง ูˆุงุญุฏ ููŠู‡ู…
650
00:52:02,150 --> 00:52:05,410
ู‡ูŠุชู… ุงู„ุดุบู„ ุชู„ู‚ุงุฆูŠ ุงู„ู…ูุฑูˆุถ ู…ู† ุฎู„ุงู„ ุงู„ู€ python pre
651
00:52:05,410 --> 00:52:09,090
-pruning ุงู†ู‡ ุงู†ุง ูุนู„ูŠุง ุงู„ attributes ุฃูˆ ุฃุฏูˆุฑ ุนู„ู‰
652
00:52:09,090 --> 00:52:11,190
ุงู„ attributes ุฃูˆ ุงู„ weak attribute ูˆ ุฃุฎู„ุต ู…ู†ู‡ุง ู…ู†
653
00:52:11,190 --> 00:52:19,550
ุงู„ุจุฏุงูŠุฉ ุงู†ู‡ .. ุงู† ุงุฑุจุท ุจู†ุงุก ุงู„ุดุฌุฑุฉ ุจุงู„ุฅูŠู‡ุŸ do not
654
00:52:19,550 --> 00:52:21,530
split a node if ..
655
00:52:26,240 --> 00:52:28,680
ู…ุงู„ู‡ุงุด ุนู„ุงู‚ุฉ ูƒุชูŠุฑ ุจุงู„ู€ threshold ุงู„ู…ูˆุฌูˆุฏ ูŠุนู†ูŠ ุจูŠู†
656
00:52:28,680 --> 00:52:32,040
ุฌูˆุณูŠู† ุฃุฑูˆุญ ุฃุญุท minimum ู„ู„ู€ threshold ู…ุด ุงุญู†ุง ู‚ูˆู„ู†ุง
657
00:52:32,040 --> 00:52:36,500
ุงู„ gain .. ุงู„ู…ูุฑูˆุถ .. ุงู„ gain ุชุจุนุชูŠ ุฃุนู„ู‰ gain ุทุจ
658
00:52:36,500 --> 00:52:38,780
ู…ุงุจุฏูŠุด ุจุณ ุฃุญุท gain ุฃุนู„ู‰ gain ูˆ ุฃุฑูˆุญ ุฃุนู…ู„ .. ูˆ ุฃู„ุฎ
659
00:52:38,780 --> 00:52:42,420
.. ูˆ ุฃู„ุฎู… ุญุงู„ูŠ ููŠ ูƒู„ ุงู„ุญุณุจุงุช ู„ุฃ ูƒู…ุงู† ู‡ุฏูˆู„ ุงู„ู„ูŠ ุชุญุช
660
00:52:42,420 --> 00:52:46,260
ุงู„ู„ูŠ ุจุฏูˆู† gain ู‚ู„ูŠู„ุฉ ู…ู† ุฃูˆู„ ู…ุฑุฉ ุจุฏู‡ ุฃุฑูˆุญ ูƒู„ู‡ู… ุจุฏูŠ
661
00:52:46,260 --> 00:52:50,160
ุฃุนู…ู„ู‡ู… neglect ูˆ ู…ุงุจุฏูŠุด ุฅูŠุงู‡ู… ุทุจุนุง ู‡ุงูŠ ุญูŠูƒูˆู† ููŠ
662
00:52:50,160 --> 00:52:53,400
ุนู†ุฏูŠ ุชุญุฏูŠ ูƒูŠู ู…ู…ูƒู† ุฃุฎุชุงุฑ ุงู„ threshold ุงู„ุตุญูŠุญุฉ ุงู„
663
00:52:53,400 --> 00:52:58,310
boss browning ุจุนุฏ ู…ุง ุฃู†ุงุจู†ูŠุช ุงู„ุดุฌุฑุฉ ุจุงู„ูƒุงู…ู„ ุฃุฑูˆุญ
664
00:52:58,310 --> 00:53:03,150
ุฃุจุฏุฃ ุฃุฌุดุจุฑ ููŠู‡ุง ุจุนุจุฑุฉ ู„ุฅู†ูŠ ุฃุฑูˆุญ ุฃูุญุต ู…ูŠู† ุงู„ุฃูƒุซุฑ
665
00:53:03,150 --> 00:53:06,970
rows ุฃูˆ ุฃูƒุซุฑ branches ู…ุณุชุฎุฏู…ุฉ ู‡ูŠ ุงู„ู„ูŠ ุฃุจู‚ูŠู‡ุง ูˆ
666
00:53:06,970 --> 00:53:11,450
ุงู„ุฃู‚ู„ ุงุณุชุฎุฏุงู…ุง ุฃุฎู„ุต ู…ู†ู‡ุง ุญุณุจ ุงู„ data set ุงู„ู„ูŠ
667
00:53:11,450 --> 00:53:15,430
ู…ูˆุฌูˆุฏ ุนู†ุฏู‰ ุฃุฎุฑ ุฎุทูˆุฉ ุฃูˆ ุฃุฎุฑ slide ููŠ ู…ูˆุถูˆุน ููŠ ู…ูˆุถูˆุน
668
00:53:15,430 --> 00:53:18,630
ูƒูŠ ุจุฏู‰ ุฃุณุชุฏุนูŠู‡ุง ุงู„ุฎุทูˆุงุช ุงู„ุณุงุจู‚ุฉ ููŠ ุงู„ python ู†ูุณู‡ุง
669
00:53:18,630 --> 00:53:22,590
from sklearn.tree import decision tree classifier
670
00:53:24,140 --> 00:53:27,880
ุงู„ู…ูˆุฏูŠู„ ุงู„ู€ Decision Tree Classifier ุนู…ู„ุช ู„ู‡ fit
671
00:53:27,880 --> 00:53:31,720
ู‚ู„ุช ู„ู‡ ูˆ ู‡ุฐู‡ ุงู„ุฌุฒุฆูŠุฉ ููŠ ุงู„ุณุทุฑ ู‡ุฐุง ุจุชู†ุจู†ู‰ ุงู„ุดุฌุฑุฉ
672
00:53:31,720 --> 00:53:36,500
ุงู„ุขู† ุงู„
673
00:53:36,500 --> 00:53:39,340
sample test ู†ูุณู‡ุง ู„ุงู† ุดุบุงู„ุฉ ู†ูุณูŠ ุจุฏุง ุชุณุช ู…ุนุงูƒู… ู…ู†
674
00:53:39,340 --> 00:53:44,060
ุงู„ุจุฏุงูŠุฉ ุฌุฑุจุชู‡ุง ู…ุน ุงู„ kenia sniper ูˆุฌุฑุจุชู‡ุง ู…ุนุงู„ู†ุงูŠู
675
00:53:44,060 --> 00:53:48,840
ุจุงูŠุณูŠู† ุงุฑูˆุญ ุชุนู…ู„ ุงู„ test ูˆ ู‡ู†ุญุฏุฏู†ูŠ setosa ุจูƒู„
676
00:53:48,840 --> 00:53:53,600
ุชุฃูƒูŠุฏ ูˆุจู‡ูŠูƒ ุจู†ูƒูˆู† ุงุญู†ุง ูุนู„ูŠุง ุงู†ุชู‡ูŠู†ุง ู…ู† ู…ูˆุถูˆุน ุงู„
677
00:53:53,600 --> 00:53:57,040
decision tree ู„ู…ุญุงุถุฑุชู†ุง ุงู„ูŠูˆู… ุงู„ู…ุทู„ูˆุจ ุจูŠู†ูƒูˆุง
678
00:53:57,040 --> 00:53:59,500
ุชุฌุฑุจูˆุง ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ ููŠ ุนู†ุฏู†ุง different data set
679
00:53:59,500 --> 00:54:02,780
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ slide ุณุงุจู‚ุง ุฌุฑุจูˆุง ุงู„ูƒู„ุงู… ู‡ุฐุง ุนู„ูŠู‡ุง ูˆ
680
00:54:02,780 --> 00:54:05,000
ุฌุฑุจูˆุง ุงู„ูƒู„ุงู… ุนู„ูŠู‡ุง ู‡ุฐุง ูƒู„ุงู… ุนู„ูŠู‡ุง ูŠุนู†ูŠ ุจูŠู†ุฌูˆ ุณูŠู†
681
00:54:05,000 --> 00:54:08,470
ู‡ุฐุง ุงู„ูƒู„ุงู… ู…ุด ู‡ุชุชู‚ู†ูˆู‡ ู…ู† ู…ุฑุฉ ูˆ ุชู†ุชูŠู† ูˆ ุชู„ุงุชุฉุงู„ุดุบู„
682
00:54:08,470 --> 00:54:12,130
ุงู„ุชุงู†ูŠ ุงู„ู„ูŠ ุจุฏูŠ ุงูŠุงู‡ุง ู…ู†ูƒูˆุง ุจุนุฏ ุชุฌุฑูŠุจ ุงู„ุนู…ู„ ูŠุจุฏูˆ
683
00:54:12,130 --> 00:54:15,730
ุชุนุชุจุฑูˆู‡ุง ูƒ assignment ุนู„ูŠูƒู… ุงู„ุขู† ุชุจุฏูˆ ุชุฑูˆุญ ุชููƒุฑูˆุง
684
00:54:15,730 --> 00:54:18,570
ุงูˆ ุชุฏูˆุฑูˆู„ูŠ ูƒูŠู ู…ู…ูƒู† ุงู†ุง ุงุฐุง ูƒุงู†ุช ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ุงู„
685
00:54:18,570 --> 00:54:21,930
tree ุจุนุฏ ู…ุง ุงู†ุง ุนู…ู„ุชู„ู‡ุง ูุช ู‡ู„ ููŠ ู…ุฌุงู„ ุงุฑุณู… ุงู„ tree
686
00:54:21,930 --> 00:54:25,690
ุชุจุนุช ุจุงู„ ุจุงูŠุซูˆู† ุงู‡ ููŠ ู…ุฌุงู„ ูˆู‡ุฐู‡ ู…ุชุฑูˆูƒุฉ ู„ูƒู… ูˆุงู„ุณู„ุงู…
687
00:54:25,690 --> 00:54:27,470
ุนู„ูŠูƒู… ูˆุฑุญู…ุฉ ุงู„ู„ู‡ ูˆุจุฑูƒุงุชู‡