abdullah's picture
Add files using upload-large-folder tool
3a258c2 verified
1
00:00:00,000 --> 00:00:06,040
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ุซุงู„ุซุฉ ุจุนุฏ
2
00:00:06,040 --> 00:00:14,360
ุญุงู„ุฉ ุงู„ุชูˆุงุฑู‚ ู„ู…ุณุงู‚ ุฑูŠุงุถูŠุงุช ู…ู†ูุตู„ุฉ ู„ุทู„ุงุจ ูˆุทุงู„ุจุงุช
3
00:00:14,360 --> 00:00:18,880
ุงู„ุฌุงู…ุนุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ูƒู„ูŠุฉ ุชูƒู†ูˆู„ูˆุฌูŠุง ุงู„ู…ุนู„ูˆู…ุงุช ููŠ ู‚ุณู…
4
00:00:18,880 --> 00:00:25,940
ุงู„ุญูˆุณุจุฉ ุงู„ู…ุชู†ู‚ู„ุฉ ุชุญุฏุซู†ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุนู† ุฅูŠุฌุงุฏ
5
00:00:25,940 --> 00:00:30,960
ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ. ุงู„ูŠูˆู… ุจุฏู†ุง ู†ูˆุธู ู‡ุฐู‡
6
00:00:30,960 --> 00:00:40,440
ุงู„ู…ุนู„ูˆู…ุงุช ููŠ ุญู„ system of linear equations ูŠุนู†ูŠ
7
00:00:40,440 --> 00:00:47,360
ุจุฏู†ุง ู†ูˆุธู ุงู„ู…ุนู„ูˆู…ุฉ ููŠ ุญู„ ู…ุนุงุฏู„ุงุช ุฎุทูŠุฉ ู…ุนุงุฏู„ุชูŠู†
8
00:00:47,360 --> 00:00:54,100
ุฎุทูŠุชูŠู† ุจู…ุฌู‡ูˆู„ูŠู† ุฃูˆ ุซู„ุงุซ ู…ุนุงุฏู„ุงุช ุฎุทูŠุฉ ุจุซู„ุงุซุฉ ู…ุฌุงู‡ูŠู„
9
00:00:54,860 --> 00:00:59,280
ู„ูˆ ุฌูŠู†ุง ู†ุชุทู„ุน ููŠ ุงู„ุจุฏุงูŠุฉ ุงู„ู„ูŠ ูƒุงู† ุนู†ุฏู†ุง ู…ุนุงุฏู„ุฉ
10
00:00:59,280 --> 00:01:03,820
ุฎุทูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ax ุจุชุณุงูˆูŠ b ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฎุทูŠุฉ
11
00:01:03,820 --> 00:01:08,660
ูˆูุฑุถู†ุง ุฃู† ุงู„ู€ a ู„ุง ุชุณุงูˆูŠ ุตูุฑ ูˆุทู„ุจ ู…ู†ู‡ุง ุทุจุนุง a ุนุจุงุฑุฉ
12
00:01:08,660 --> 00:01:12,580
ุนู† ุนุฏุฏ ูˆ b ุนุจุงุฑุฉ ุนู† ุนุฏุฏ ูˆ x ุนุจุงุฑุฉ ุนู† ู…ุฌู‡ูˆู„ ุทุจุนุง
13
00:01:12,580 --> 00:01:16,040
ู‡ุฐู‡ ุฒูŠ ู…ุง ุฃู†ุชู… ุนุงุฑููŠู† ุฒูŠ ู…ุง ุฃุฎุฐู†ุงู‡ุง ุณุงุจู‚ุง ููŠ
14
00:01:16,040 --> 00:01:22,060
ุงู„ุฅุนุฏุงุฏูŠุฉ ุฃู†ู‡ ุจู†ุฌุณู… ุงู„ุฌู‡ุชูŠู† ุนู„ู‰ ุงู„ a ุจุชุทู„ุน ุนู†ุฏูŠ x
15
00:01:22,060 --> 00:01:28,300
ุจุชุณุงูˆูŠ b ุนู„ู‰ a ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ x ุจุชุณุงูˆูŠ a inverse ููŠ b
16
00:01:28,300 --> 00:01:34,640
ุญูŠุซ a ู„ุง ุชุณุงูˆูŠ ุตูุฑ. ู‡ุฐู‡ ุทุจุนุง ู…ุนู„ูˆู…ุงุช ุณุงุจู‚ุฉ ุจุณ ุนุดุงู†
17
00:01:34,640 --> 00:01:38,960
ู†ุนุฑู ุฃู† ููŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ู…ุนุงุฏู„ุฉ ุฎุทูŠุฉ ููŠ ู…ุฌู‡ูˆู„ ูˆุงุญุฏ
18
00:01:38,960 --> 00:01:45,520
ุงู„ุขู† ู„ูˆ ูƒุงู† ููŠ ุนู†ุฏู†ุง ู…ุนุทูŠู†ุง ู…ุนุงุฏู„ุชูŠู† ุฎุทูŠุชูŠู† ูŠุนู†ูŠ
19
00:01:45,520 --> 00:01:50,020
ุฏุฑุฌุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุชุบูŠุฑ ู‡ุฐุง ูˆุงุญุฏ ูˆุฏุฑุฌุฉ ุงู„ู…ุชุบูŠุฑ ู‡ุฐุง
20
00:01:50,020 --> 00:01:54,850
ูˆุงุญุฏ ุจุฑุถู‡. ุงู„ุขู† ู„ูˆ ูƒุงู† ุนู†ุฏู†ุง ู‡ุฐู‡ ู…ุนุงุฏู„ุฉ ุฎุทูŠุฉ ููŠ
21
00:01:54,850 --> 00:01:57,990
ู…ุฌู‡ูˆู„ูŠู†ุŒ ู‡ุฐู‡ ุงู„ู…ุฌู‡ูˆู„ ุงู„ุฃูˆู„ ูˆู‡ุฐู‡ ุงู„ู…ุฌู‡ูˆู„ ุงู„ุซุงู†ูŠ
22
00:01:57,990 --> 00:02:02,030
ูˆุงู„ู…ุนุงุฏู„ุฉ ุงู„ุซุงู†ูŠุฉ ุจุฑุถู‡ ู…ุนุงุฏู„ุฉ ุฎุทูŠุฉ ููŠ ู†ูุณ
23
00:02:02,030 --> 00:02:07,550
ุงู„ู…ุฌู‡ูˆู„ูŠู† ุงู„ู„ูŠ ููˆู‚. ุจุณูŠุฑุฉ ุฃู†ู‡ ุงู„ุขู† ุฅู…ูƒุงู†ูŠุฉ ู†ุญูƒูŠ ุนู†
24
00:02:07,550 --> 00:02:12,930
ุงู„ุญู„ูˆู„ ุงู„ู…ุดุชุฑูƒุฉ. ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ุฅูŠุฌุงุฏ X1 ูˆ X2 ุงู„ู„ูŠ
25
00:02:12,930 --> 00:02:17,850
ุจุชุญู‚ู‚ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰ ูˆุจุชุญู‚ู‚ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุซุงู†ูŠุฉ ููŠ
26
00:02:17,850 --> 00:02:23,030
ู†ูุณ ุงู„ูˆู‚ุช. ุทุจุนุง ุฒู…ุงู† ุงุญู†ุง ูƒู†ุง ููŠ ุงู„ุฅุนุฏุงุฏูŠุฉ ู†ุฌูŠ ู†ุถุฑุจ
27
00:02:23,030 --> 00:02:30,270
ู†ูˆุญู‘ุฏ ุงู„ู„ูŠ ู‡ูˆ ู…ุนุงู…ู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ X1 ู‡ู†ุง ูˆ X1 ู‡ู†ุง ูˆ
28
00:02:30,270 --> 00:02:33,890
ุจุนุฏูŠู† ู†ุทุฑุญ ุงู„ู…ุนุงุฏู„ุชูŠู† ู…ู† ุจุนุถ ุจูŠุทู„ุน ุนู†ุฏูŠ ู‚ูŠู…ุฉ X2 ูˆ
29
00:02:33,890 --> 00:02:39,510
ุจุนุฏูŠู† ู†ุนูˆุถ ุนู† X1 ุจูŠุทู„ุน ุนู†ุฏูŠ X1 ุจู†ูƒูˆู† ุฌุจู†ุง ู‚ูŠู…ุฉ X1 ูˆ
30
00:02:39,510 --> 00:02:43,390
ู‚ูŠู…ุฉ X2. ุทุจุนุง ู…ุด ู‡ุฐุง ุงู„ู„ูŠ ุจุฏู†ุง ุฅูŠุงู‡ ุงู„ูŠูˆู…. ุจุฏู†ุง
31
00:02:43,390 --> 00:02:47,050
ู†ูˆุธู‘ู ุงู„ู„ูŠ ู‡ูˆ ู…ุนู„ูˆู…ุงุชู†ุง ููŠ ุงู„ู€ matrices ุฃูˆ ููŠ
32
00:02:47,050 --> 00:02:52,710
ุงู„ู…ุตููˆูุงุช ู„ุญู„ ุงู„ู„ูŠ ู‡ูˆ ู†ุธุงู… ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุนุงุฏู„ุงุช
33
00:02:52,710 --> 00:02:57,970
ุงู„ุฎุทูŠุฉ ููŠ ู…ุฌู‡ูˆู„ูŠู†. ู†ุดูˆู ู‡ุฐู‡ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ุขู† ู‡ุฐุง
34
00:02:57,970 --> 00:03:00,930
ุงู„ู†ุธุงู… ุจุฏูŠ ุฃุญู„ู‡ ุนู† ุทุฑูŠู‚ ุงู„ู€ matrices ู†ุดูˆู ุฅูŠุด ุจุฏูŠ
35
00:03:00,930 --> 00:03:07,580
ุฃุณูˆูŠ. ููŠ ุนู†ุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ ุฃูˆู„ ุดุบู„ุฉ ุงู„ู„ูŠ ู‡ูŠ ุจุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ
36
00:03:07,580 --> 00:03:13,360
ู†ุญูƒูŠ ุนู† ุญุงุฌุฉ ุงุณู…ู‡ุง ุงู„ู„ูŠ ู‡ูŠ ู…ุตููˆูุฉ ุงู„ุนูˆุงู…ู„ ูˆุญุงุฌุฉ
37
00:03:13,360 --> 00:03:17,720
ุงุณู…ู‡ุง ู…ุตููˆูุฉ ุงู„ู…ุฌู‡ูˆู„ ูˆุญุงุฌุฉ ุงุณู…ู‡ุง ู…ุตููˆูุฉ ุงู„ุญุฏูˆุฏ
38
00:03:17,720 --> 00:03:24,440
ุงู„ู…ุทู„ู‚ุฉ. ุงู„ู…ุทู„ู‚ุฉ. ูุฎู„ูŠู†ุง ุงุญู†ุง ู†ูŠุฌูŠ ุงู„ู„ูŠ ู‡ูˆ ู†ุณุชุฎุฏู…
39
00:03:24,440 --> 00:03:30,340
ุงู„ู…ุตููˆูุงุช ููŠ ุงู„ู„ูŠ ู‡ูˆ ุฅูŠุฌุงุฏ ุงู„ุญู„ูˆู„. ุงุทู„ุนูˆุง ู…ู† ุฏูŠ ุงู„ุขู†
40
00:03:30,340 --> 00:03:35,100
ุฃูˆู„ ุดูŠุก ุจู†ุฌูŠ ุจู†ุทู„ุน ูƒูŠู ุจุฏู†ุง ู†ูˆุฌุฏ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุตูˆูุฉ
41
00:03:35,100 --> 00:03:40,280
ุงู„ู„ูŠ ู‡ูŠ ุชุจุนุช ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู† ู…ุตููˆูุฉ ุนูˆุงู…ู„ ุงู„ู„ูŠ ุนู†ุฏูŠ
42
00:03:40,280 --> 00:03:47,240
ุฎู„ูŠู†ูŠ ุฃูˆุฌุฏ ู‡ุฐู‡ ุงู„ู…ุตูˆูุฉ. ูƒูŠู ู†ูˆุฌุฏ ู…ุตููˆูุฉ ุงู„ุนูˆุงู…ู„ ู‡ูŠ
43
00:03:47,240 --> 00:03:52,320
ู…ุตููˆูุฉ ุงู„ุนูˆุงู…ู„. ุทุจุนุง ู…ุตููˆูุฉ ุงู„ุนูˆุงู…ู„ ู‡ูŠูƒูˆู† ุฏุฑุฌุชู‡ุง ุงู„ู„ูŠ
44
00:03:52,320 --> 00:03:57,250
ู‡ูˆ ุนุฏุฏ ุงู„ู…ุฌู‡ูˆู„ ุงุซู†ูŠู† ูˆุนุฏุฏ ุงู„ู…ุนุงุฏู„ุงุช ุงุซู†ูŠู†. ูŠุนู†ูŠ ุนุฏุฏ
45
00:03:57,250 --> 00:04:00,870
ุงู„ู…ุฌู‡ูˆู„ ุถุฑุจ ุนุฏุฏ ุงู„ู…ุนุงุฏู„ุงุช ูŠุนู†ูŠ ุนุจุงุฑุฉ ุนู† ู…ุตููˆูุฉ
46
00:04:00,870 --> 00:04:05,170
ู…ุฑุจุนุฉ ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู†. ูƒูŠู ุจู†ุฌูŠุจู‡ุงุŸ ุจู†ุฌุนู„ ุงู„ู…ุฌู‡ูˆู„
47
00:04:05,170 --> 00:04:10,710
ุงู„ุฃูˆู„ ู…ุนุงู…ู„ู‡ ุงุซู†ูŠู† ู‡ูŠู‘ู‡. ุงู„ู…ุฌู‡ูˆู„ ุงู„ุซุงู†ูŠ x ุงุซู†ูŠู†
48
00:04:10,710 --> 00:04:14,190
ู…ุนุงู…ู„ู‡ ุซู„ุงุซุฉ ู‡ูŠู‘ู‡. ุฎู„ุตู†ุง ู…ู† ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰ ู†ุฌูŠ
49
00:04:14,190 --> 00:04:18,810
ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุซุงู†ูŠุฉ. ุงู„ู…ุนุงู…ู„ ูˆุงุญุฏ ู‡ู†ุงุŒ ุงู„ู…ุนุงู…ู„ ุงู„ุซุงู†ูŠ
50
00:04:18,810 --> 00:04:22,910
ุฅูŠุดุŸ ุณุงู„ุจ ุงุซู†ูŠู†. ุตุงุฑุช ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุฌุงู‡ุฒุฉ ู‡ูŠ ู…ุตููˆูุฉ
51
00:04:22,910 --> 00:04:27,470
ุงู„ุนูˆุงู…ู„ ุฃูˆ ุนูˆุงู…ู„ ุงู„ู„ูŠ ู‡ูŠ ู…ู† ุงู„ู…ุฌู‡ูˆู„ ุงู„ู„ูŠ ููŠ
52
00:04:27,470 --> 00:04:32,190
ุงู„ู…ุนุงุฏู„ุฉ. ุงู„ุขู† ุงู„ู…ุตููˆูุฉ ุงู„ุซุงู†ูŠุฉ ู‡ูŠ ู…ุตููˆูุฉ ุนู…ูˆุฏ ุนู…ูˆุฏ
53
00:04:32,190 --> 00:04:36,610
ู‡ูŠูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ุฏุฑุฌุชู‡ุง ุนุฏุฏ ุฃุณุทูˆุฑู‡ุง ุจุนุฏุฏ ุงู„ู…ุฌู‡ูˆู„
54
00:04:36,610 --> 00:04:41,630
ูˆุทุจุนุง ุนู…ูˆุฏ ูˆุงุญุฏ ูุจุชุตูŠุฑ ุนู†ุฏูŠ ู…ุฌู‡ูˆู„ูŠู† ูŠุนู†ูŠ
55
00:04:41,630 --> 00:04:46,560
ุฏุฑุฌุชู‡ุง ุงุซู†ูŠู† ููŠ ูˆุงุญุฏ. ุงู„ุขู† ู‡ุฐุง ุจู†ุณู…ูŠู‡ุง ู…ุตููˆูุฉ
56
00:04:46,560 --> 00:04:50,980
ุงู„ู…ุฌุงู‡ูŠู„ ุงู„ู„ูŠ ุงุญู†ุง ุจู†ุจุญุซ ุนู†ู‡ุง ุงู„ู„ูŠ ุจุฏู†ุง ู†ูˆุฌุฏ ู‚ูŠู…ุฉ
57
00:04:50,980 --> 00:04:55,920
X1 ูˆ X2 ุชุณุงูˆูŠ ุฅูŠุดุŸ ุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูŠ ู…ุตููˆูุฉ ุงู„ุนู…ูˆุฏ
58
00:04:55,920 --> 00:05:00,960
ุงู„ู…ูƒูˆู†ุฉ ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ุญุฏ ุงู„ู…ุทู„ู‚ ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰ ูˆ
59
00:05:00,960 --> 00:05:04,940
ุงู„ุญุฏ ุงู„ู…ุทู„ู‚ ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุซุงู†ูŠุฉ ูŠุนู†ูŠ ุฎู…ุณุฉ ูˆุณุงู„ุจ ูˆุงุญุฏ
60
00:05:05,450 --> 00:05:10,550
ุงู„ุขู† ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุจุนุฏ ู…ุง ูƒุชุจู†ุงู‡ุง ุนู„ู‰ ุตูˆุฑุฉ a ู…ุตููˆูุฉ
61
00:05:10,550 --> 00:05:14,450
ููŠ x ู…ุตููˆูุฉ ุจูŠุณุงูˆูŠ ุจูŠ ู…ุตููˆูุฉ ุตุงุฑุช ุนู„ู‰ ุตูˆุฑุฉ ู…ุตููˆูุฉ
62
00:05:14,450 --> 00:05:20,090
ax ุจุชุณุงูˆูŠ ax ุจุชุณุงูˆูŠ b. ุงู„ุขู† ู‡ุฐู‡ ุจูŠูƒูˆู† ู†ู‚ุฏุฑ ู†ุญู„ู‡ุง ูˆ
63
00:05:20,090 --> 00:05:25,970
ู†ูˆุฌุฏ ุญู„ู‡ุง ุฅุฐุง ูƒุงู† ู‡ุฐุง ุงู„ู€ a inverse ู„ู‡ ู…ูˆุฌูˆุฏ. ุฅุฐุง
64
00:05:25,970 --> 00:05:29,530
ุงู„ู€ A inverse ููŠู‡ ู…ูˆุฌูˆุฏ ู‡ูŠู† ุจู†ู‚ุฏุฑ ู†ุญู„ู‡ุง ุนู† ุทุฑูŠู‚ ุงู„ู€
65
00:05:29,530 --> 00:05:33,990
matrices. ู…ุด ู…ูˆุฌูˆุฏ ู…ุง ุฃู‚ุฏุฑุด ุฃุญูƒูŠ ุนู† ุงู„ุญู„ูˆู„ ุจุทุฑูŠู‚ุฉ ุงู„ู€
66
00:05:33,990 --> 00:05:38,090
matrices. ุฏู‡ ู†ุดูˆู ูƒุฏู‡ ุงู„ุขู† ุฅุฐุง ูƒุงู† ุงู„ู€ A inverse
67
00:05:38,090 --> 00:05:43,150
ู…ูˆุฌูˆุฏ ู…ุนู†ุงุชู‡ ุฃู†ู‡ ุจู‚ุฏุฑ ุฃุถุฑุจ ู‡ู†ุง ููŠ A inverse ูˆู‡ู†ุง
68
00:05:43,150 --> 00:05:46,490
ููŠ A inverse. ู„ู…ุง ุฃุถุฑุจ ุงู„ู€ A inverse ููŠ ุงู„ู€ A ุจุชุทู„ุน
69
00:05:46,490 --> 00:05:50,210
ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ identity. ุงู„ู€ identity ู„ู…ุง ุชุถุฑุจ
70
00:05:50,210 --> 00:05:54,870
ููŠ X ู‡ุด ุจุชุทู„ุน ุนู†ุฏูŠ X. ูˆู‡ู†ุง ุงู„ู„ูŠ ุถุฑุจู†ุงู‡ a inverse
71
00:05:54,870 --> 00:05:58,550
ุจูŠุตูŠุฑ a inverse ููŠ b ุจูŠุตูŠุฑ x ุงู„ู„ูŠ ู‡ูŠ ู…ุตููˆูุฉ
72
00:05:58,550 --> 00:06:03,370
ุงู„ู…ุฌู‡ูˆู„ ุจุชุณุงูˆูŠ ุงู„ู€ a inverse ู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ู‡ูŠ
73
00:06:03,370 --> 00:06:09,290
ุงู„ุนูˆุงู…ู„ ู…ุถุฑูˆุจุฉ ููŠ b ุงู„ู„ูŠ ู‡ูŠ ู…ุตููˆูุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุญุฏ
74
00:06:09,290 --> 00:06:13,430
ุงู„ู…ุทู„ู‚. ูŠุนู†ูŠ ูˆูƒุฃู†ู‡ ู…ู† ุงู„ุขู† ูˆุทุงู„ุน ุงู„ุฃู…ุฑ ุณู‡ู„ ุฅูŠุด
75
00:06:13,430 --> 00:06:18,830
ุจู†ุณูˆูŠุŸ ุจู†ุฌูŠ ุจู†ุญุฏุฏ ู…ุตููˆูุฉ ุงู„ู…ุฌู‡ูˆู„ ุฃูŠ ู…ุตููˆูุฉ ุนูˆุงู…ู„
76
00:06:18,830 --> 00:06:23,530
ุงู„ู…ุฌู‡ูˆู„ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุญุฏ ู‡ุฐุง ูˆุงู„ุญุฏ ู‡ุฐุง ูˆุงู„ุญุฏ ู‡ุฐุง ูˆุงู„ุญุฏ
77
00:06:23,530 --> 00:06:29,920
ู‡ุฐุง ุงู„ู„ูŠ ู‡ูŠ ุนูˆุงู…ู„ ุงู„ู…ุฌู‡ูˆู„. ู…ุตููˆูุฉ ุงู„ุนูˆุงู…ู„ ุถุฑุจ ู…ุตููˆูุฉ
78
00:06:29,920 --> 00:06:33,820
ุงู„ู…ุฌู‡ูˆู„ ุจูŠุณุงูˆูŠ ู…ุตููˆูุฉ ุงู„ุญุฏูˆุฏ ุงู„ู…ุทู„ู‚ุฉ ุฒูŠ ู…ุง ุงุญู†ุง
79
00:06:33,820 --> 00:06:38,500
ุดุงูŠููŠู†. ุจุนุฏ ู‡ูŠูƒ ุจู†ุฌูŠ ุจู†ู‚ูˆู„ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุจู†ุฌูŠุจ ู„ู‡ุง
80
00:06:38,500 --> 00:06:42,700
ุงู„ู€ A inverse ุจู†ุถุฑุจู‡ุง ููŠ ู‡ุฐู‡ ุจุชุทู„ุน ุงู„ู„ูŠ ู‡ูŠ X ูˆุงุญุฏ ูˆ
81
00:06:42,700 --> 00:06:47,500
X ุงุซู†ูŠู†. ูŠุนู†ูŠ ุจุชุทู„ุน X ุฅูŠุด ุจุชุณุงูˆูŠุŸ A inverse ููŠ B. ุฎู„ูŠ
82
00:06:47,500 --> 00:06:53,060
ู†ุดูˆู ู‡ุฐุง ุงู„ุขู† ุงู„ูƒู„ุงู… ุนู…ู„ูŠุง ููŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
83
00:06:54,530 --> 00:06:58,670
ุตุงุฑ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ matrix form ุฃูˆ ุตูˆุฑุฉ ุงู„ุชุญูˆูŠู„
84
00:06:58,670 --> 00:07:03,830
ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุฎุทูŠุฉ ุฅู„ู‰ ุตูˆุฑุฉ ู…ุตููˆูุงุช ู‡ูŠ ุงู„ู€ a ูˆู‡ูŠ ุงู„ู€ x
85
00:07:03,830 --> 00:07:09,550
ูˆู‡ูŠ ู…ูŠู† ุงู„ู€ b. ู‚ู„ู†ุง ุงู„ุญู„ ู‡ูŠูƒูˆู† x ู‡ุฐุง ูƒู„ู‡ ุจูŠุณุงูˆูŠ a
86
00:07:09,550 --> 00:07:13,650
inverse ููŠ ุงู„ู€ b. ู‡ู†ุง ู†ูˆุฌุฏ ุงู„ู€ a inverse ู‡ูŠ ุงู„ู€ a ู‡ูŠู‡ุง
87
00:07:13,650 --> 00:07:18,560
ู‚ุฏุงู…ู†ุง. ุนุดุงู† ู†ุฌุฏ ุงู„ู€ a inverse ุจู„ุฒู… ู…ู† ุงู„ู…ุญุฏุฏ ุฒูŠ ู…ุง
88
00:07:18,560 --> 00:07:21,860
ุฃู†ุชู… ุนุงุฑููŠู† ุงุซู†ูŠู† ููŠ ู†ุงู‚ุต ุงุซู†ูŠู† ุจุชุทู„ุน ู†ุงู‚ุต ุฃุฑุจุนุฉ
89
00:07:21,860 --> 00:07:25,900
ู†ุงู‚ุต ุฃุฑุจุนุฉ ู†ุงู‚ุต ุฃุฑุจุนุฉ ุฅูŠุด ุจูŠุณุงูˆูŠุŸ ู†ุงู‚ุต ุฃุฑุจุนุฉ ุขุณู
90
00:07:25,900 --> 00:07:29,660
ู†ุงู‚ุต ุซู„ุงุซุฉ ุจุชุทู„ุน ู†ุงู‚ุต ุณุจุนุฉ. ุฅุฐุง ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ู„ู‡
91
00:07:29,660 --> 00:07:34,740
ุณุงู„ุจ ุณุจุนุฉ. ุฅุฐุง ุงู„ุขู† ุงู„ู€ a inverse ุณู‡ู„ ุฅูŠุฌุงุฏู‡ ุจุณ ุจูŠุฌูŠ
92
00:07:34,740 --> 00:07:38,600
ุจู†ุบูŠุฑ ู‡ุฐุง ุงู„ุนู†ุตุฑ ู…ูƒุงู† ู‡ุฐุง ูˆู‡ุฐุง ุงู„ุนู†ุตุฑ ูˆู‡ุฐุง
93
00:07:38,600 --> 00:07:44,380
ุจู†ุนู…ู„ู‡ ุณุงู„ุจ ูˆุจู†ุถุฑุจู‡ู… ููŠ ู…ูŠู†ุŸ ููŠ ู…ู‚ู„ูˆุจ ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู†ุŸ
94
00:07:44,380 --> 00:07:48,440
ุงู„ู„ูŠ ู‡ูŠ ุณุงู„ุจ ุณุจุนุฉ ูŠุนู†ูŠ ุจู†ุถุฑุจู‡ู… ููŠ ูˆุงุญุฏ ุนู„ู‰ ุงู„ู„ูŠ
95
00:07:48,440 --> 00:07:54,020
ู‡ูŠ ูˆุงุญุฏ ุนู„ู‰ ุงู„ุณุจุนุฉ. ุฒูŠ ู…ุง ู‚ู„ู†ุง ุฅูŠุด ุนู†ุฏู†ุงุŸ ุตุงุฑ ุนู†ุฏู†ุง ุงู„ู€ a
96
00:07:54,020 --> 00:07:58,810
inverse ุฅูŠุด ุจูŠุณุงูˆูŠุŸ ุงู„ู€ a inverse ู‡ูŠู‘ู‡ ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰
97
00:07:58,810 --> 00:08:03,150
ุณุจุนุฉ ููŠ ู‚ูŠู…ุฉ ุงู„ู…ุตููˆูุฉ ู‡ุฐู‡ ู„ู…ุง ุจุฏู„ู†ุง ู‡ุฐุง ู…ูƒุงู† ู‡ุฐุง
98
00:08:03,150 --> 00:08:07,690
ูˆุฌูŠู†ุง ุบูŠุฑู†ุง ุฅุดุงุฑุฉ ู‡ุฐูˆู„ ูุตุงุฑ ุนู†ุฏูŠ ุณุจุนุฉ ููŠ ุงุซู†ูŠู† ููŠ
99
00:08:07,690 --> 00:08:12,470
ุซู„ุงุซุฉ ููŠ ูˆุงุญุฏ ููŠ ู†ุงู‚ุต ุงุซู†ูŠู†. ู„ู…ุง ุฏุฎู„ู†ุง ุงู„ู†ุงู‚ุต ุฌูˆุง ุตุงุฑ
100
00:08:12,470 --> 00:08:15,390
ุนู†ุฏูŠ ุงู„ุขู† x ุฅูŠุด ุจุชุณุงูˆูŠุŸ ุจุชุณุงูˆูŠ ุงู„ู€ a inverse ู‡ู†ุง
101
00:08:15,390 --> 00:08:19,650
ูˆุฌุฏู†ุงู‡ุง ู‡ูŠู‡ุง ูƒู„ู‡ุง ู…ุถุฑูˆุจุฉ ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ู€ B. ู…ูŠู† ุงู„ู€
102
00:08:19,650 --> 00:08:23,150
BุŸ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุตููˆูุฉ ู‡ุฐู‡ ู‡ูŠ ุงู„ู€ B. ู„ุฃู† ุถุฑุจู†ุง ู‡ุฐู‡
103
00:08:23,150 --> 00:08:25,370
ุงู„ู…ุตููˆูุฉ ููŠ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุฒูŠ ู…ุง ุจุชุนุฑููˆุง ุงู„ุถุฑุจ
104
00:08:25,370 --> 00:08:29,370
ุงู„ุนุงุฏูŠ ุจูŠุทู„ุน ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู‚ูŠู…ุฉ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ
105
00:08:29,370 --> 00:08:33,030
ุทู„ุนุช ุนู†ุฏูŠ. ู„ุฃู† ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ู„ู…ุง ู†ุถุฑุจ ุงู„ุณุจุนุฉ ููŠู‡ุง
106
00:08:33,030 --> 00:08:37,460
ุจูŠุทู„ุน ุนู†ุฏูŠ 1 1 1. ุฅุฐุง X ุทู„ุนุช ุนุฏุฏ D ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุตููˆูุฉ
107
00:08:37,460 --> 00:08:42,160
ู‡ุฐู‡. X ูˆุงุญุฏ X ุงุซู†ูŠู† ู…ุด ุญุชุณุงูˆูŠ ูˆุงุญุฏ ูˆุงุญุฏ ูŠุนู†ูŠ X ูˆุงุญุฏ
108
00:08:42,160 --> 00:08:46,260
ุทู„ุนุช ูˆุงุญุฏ ูˆ X ุงุซู†ูŠู† ุทู„ุนุช ูˆุงุญุฏ. ูˆ X ุงุซู†ูŠู† ุทู„ุนุช ูˆุงุญุฏ
109
00:08:46,260 --> 00:08:47,100
ูˆ X ุงุซู†ูŠู† ุทู„ุนุช ูˆุงุญุฏ. ูˆ X ุงุซู†ูŠู† ุทู„ุนุช ูˆุงุญุฏ. ูˆ X ุงุซู†ูŠู†
110
00:08:47,100 --> 00:08:47,180
ุทู„ุนุช ูˆุงุญุฏ. ูˆ X ุงุซู†ูŠู† ุทู„ุนุช ูˆุงุญุฏ. ูˆ X ุงุซู†ูŠู† ุทู„ุนุช ูˆุงุญุฏ
111
00:08:47,180 --> 00:08:48,480
ูˆ X ุงุซู†ูŠู† ุทู„ุนุช ูˆุงุญุฏ. ูˆ X ุงุซู†ูŠู† ุทู„ุนุช ูˆุงุญุฏ. ูˆ X ุงุซู†ูŠู†
112
00:08:48,480 --> 00:08:51,360
ุทู„ุนุช ูˆุงุญุฏ. ูˆ X ุงุซู†ูŠู† ุทู„ุนุช ูˆุงุญุฏ. ูˆ X ุงุซู†ูŠู† ุทู„ุนุช ูˆุงุญุฏ
113
00:08:51,360 --> 00:08:55,240
ูˆ X ุงุซู†ูŠู† ุทู„ุนุช ูˆุงุญุฏ. ูˆ X ุงุซู†ูŠู† ุทู„ุนุช ูˆุงุญุฏ. ูˆ X ุงุซู†ูŠู†
114
00:08:55,240 --> 00:09:01,320
ุทู„ุนุช ูˆุงุญุฏ. ูˆ X ุงุซู†ูŠู† ุทู„ุนุช ูˆุงุญุฏ. ุงู„ุขู† ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ
115
00:09:01,320 --> 00:09:05,220
ู‚ุจู„ ุจุดูˆูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุนุงุฏู„ุชูŠู† ุงู„ุฎุทูŠุชูŠู† ุทู„ุน ุนู†ุฏู‡ู…
116
00:09:05,220 --> 00:09:10,860
ุงู„ุญู„ ุงู„ูˆุญูŠุฏ ุงู„ู„ูŠ ู‡ูˆ ูƒุงู† X1 ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ูˆ X2 ุจูŠุณุงูˆูŠ
117
00:09:10,860 --> 00:09:14,780
ูˆุงุญุฏ. ุฐุงูƒ ุญู„ ูˆุญูŠุฏ. ุงู„ุขู† ู…ู…ูƒู† ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ู‡ูŠ
118
00:09:14,780 --> 00:09:19,280
ู…ุนุงุฏู„ุชูŠู† ุฎุทูŠุชูŠู† ูŠุทู„ุน ู„ู‡ู… ุนุฏุฏ ู„ุง ู†ู‡ุงุฆูŠ ู…ู† ุงู„ุญู„ูˆู„ ู…ุชู‰
119
00:09:19,280 --> 00:09:22,580
ุจูŠุทู„ุน ู„ู‡ู… ุนุฏุฏ ู„ุง ู†ู‡ุงุฆูŠ ู…ู† ุงู„ุญู„ูˆู„ ุฒูŠ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡
120
00:09:22,580 --> 00:09:28,040
ูˆุจู†ุณู…ูŠ ุงู„ู€ equations are consistent. ู…ุงุดูŠ ู„ูƒู† ู„ู‡ู…
121
00:09:28,040 --> 00:09:32,800
infinite number of solutions. ู„ูŠุดุŸ ู„ุงุญุธ ุฅู† ู‡ุฐู‡ 2x1
122
00:09:32,800 --> 00:09:38,240
ุฒูŠ 3x2 ุจูŠุณุงูˆูŠ 5 ู‡ุฐู‡ ุจูŠุณุงูˆูŠ 4x1 ุฒูŠ 6x2 ุจูŠุณุงูˆูŠ 10
123
00:09:38,240 --> 00:09:42,580
ู„ุงุญุธ ู‡ุฐู‡ ู‡ูŠ ู†ูุณู‡ุง ุงู„ู„ูŠ ููˆู‚ ุจุณ ู…ุถุฑูˆุจุฉ ู‡ุฐู‡ ููŠ ุฅูŠู‡ุŸ
124
00:09:42,580 --> 00:09:45,720
ููŠ 2. ูŠุนู†ูŠ ุฃู†ุง ู…ุง ุนู†ุฏูŠุด ู…ุนุงุฏู„ุชูŠู† ููŠ ุงู„ูˆุงู‚ุน ุฃู†ุง ุนู†ุฏูŠ
125
00:09:45,720 --> 00:09:49,500
ู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉ. ูˆู…ุง ุฏุงู… ุนู†ุฏูŠ ู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉ ูŠุนู†ูŠ ู…ุฌู‡ูˆู„ูŠู†
126
00:09:49,500 --> 00:09:52,840
ุงู„ู„ูŠ ู‡ูˆ ู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉ ููŠ ุงู„ู…ุฌู‡ูˆู„ูŠู† ุนุดุงู† ู‡ูŠูƒ ู„ูˆ
127
00:09:52,840 --> 00:09:57,520
ุฃุนุทูŠุชู‡ X1 ู…ุซู„ุง ุตูุฑ ุชุทู„ุน X2ุŒ X2 ุจูŠุณุงูˆูŠ ุฎู…ุณุฉ ุนู„ู‰ ุชู„ุงุชุฉ
128
00:09:57,520 --> 00:10:03,180
ู„ูˆ ุฃุนุทูŠุชู‡ X1 ู…ุซู„ุง ุจู†ุต ุจูŠุตูŠุฑ ู‡ุงุฏูŠ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ
129
00:10:03,180 --> 00:10:07,840
ุจุชู†ุฌู„ู‡ุงู†ุฉ ุจูŠุตูŠุฑ ุฃุฑุจุนุฉ X2 ุจูŠุณุงูˆูŠ ุฃุฑุจุนุฉ ุนู„ู‰ ุชู„ุงุชุฉ ุจุชุนุทูŠ
130
00:10:07,840 --> 00:10:11,800
X1 ุฌุฏ ู…ุง ุจุฏูƒ ู…ู† ุงู„ู‚ูŠุงู… ู‡ูŠุทู„ุนู„ูƒ ุนุฏุฏ ู„ุงู†ู‡ุงุฆูŠุŒ ุฅุฐุง ู…ู†
131
00:10:11,800 --> 00:10:17,000
ุฅูŠุด ู…ู† ุงู„ุญู„ูˆู„ุŒ ุจุณ ู„ู„ู…ุนุฑูุฉ ุจุฏูŠ ุชุนุฑูู‡ ุฅู†ู‡ ููŠ ุงู„ู†ุธุงู…
132
00:10:17,000 --> 00:10:21,040
ุงู„ุฃูˆู„ุงู†ูŠ ู„ู…ุง ูƒุงู†ุช A inverse ู…ูˆุฌูˆุฏุฉ ุงู„ู„ูŠ ู‡ูˆ ูƒุงู†
133
00:10:21,040 --> 00:10:25,760
ุนู†ุฏูŠ one solutionุŒ ุงู„ุขู† ู„ู…ุง inverse ู…ุด ู…ูˆุฌูˆุฏุฉ ู„ุฅูŠู‡
134
00:10:25,760 --> 00:10:29,780
inverseุŒ ู„ุฅู†ู‡ ู„ูŠุด ู…ุด ู…ูˆุฌูˆุฏุฉ ู„ูˆ ุฌูŠุช ุฃุฎุฏุช ุงู„ู„ูŠ ู‡ูŠ
135
00:10:29,780 --> 00:10:34,120
ุงู„ู…ุตููˆูุฉ ุชุจุนุช ุงู„ุนูˆุงู…ู„ ู‡ูŠุทู„ุน ุชู†ูŠู† ูˆุชู„ุงุชุฉ ุฃูˆ ุฃุฑุจุนุฉ
136
00:10:34,120 --> 00:10:40,420
ุฃูˆ ุณุชุฉุŒ ู‡ุฐู‡ ู„ูŠุณุช ู„ุฏูŠู‡ุง inverseุŒ ู„ู…ุง
137
00:10:40,420 --> 00:10:45,360
ูŠูƒูˆู† ู„ุฏูŠู‡ุง inverseุŒ ูŠุนู†ูŠ ุฅุฐุง ู„ู… ูŠูƒู† ู„ุฏูŠู‡ุง inverse
138
00:10:45,360 --> 00:10:45,780
ูŠุนู†ูŠ ุฅุฐุง ู„ู… ูŠูƒู† ู„ุฏูŠู‡ุง inverse
139
00:10:45,780 --> 00:10:46,180
ูŠุนู†ูŠ ุฅุฐุง ู„ู… ุฃูƒู† ู„ุฏูŠู‡ุง inverse
140
00:10:46,180 --> 00:10:46,640
ุฃูƒู† ู„ุฏูŠู‡ุง inverse
141
00:10:46,640 --> 00:10:46,740
ู„ุฏูŠู‡ุง inverse
142
00:10:46,740 --> 00:10:46,780
inverse
143
00:10:46,780 --> 00:10:50,260
ูŠุนู†ูŠ ุฅุฐุง ู„ู… ุฃูƒู† ู„ุฏูŠู‡ุง inverse
144
00:10:50,260 --> 00:10:53,820
ู„ุฏูŠู‡ุง
145
00:10:55,630 --> 00:11:01,690
ู„ูƒู† ู„ูˆ ุฌูŠู†ุง ู„ุญุงู„ุฉ ุฃุฎุฑู‰ ู…ู…ูƒู† ุงู„ู„ูŠ ู‡ูˆ ููŠ ุญุงู„ุฉ ุงู„ู„ูŠ
146
00:11:01,690 --> 00:11:05,210
ู‡ูŠ ุจุฑุถู‡ ูŠุทู„ุน ุงู„ a-inverse does not exist ุชุทู„ุน ุนู†ุฏูŠ
147
00:11:05,210 --> 00:11:11,970
ู…ุงููŠุด solutionุŒ ู„ู†ูŠู† ู„ู„ู…ุนุงุฏู„ุงุช ุงู„ุฃู†ูŠุฉุŒ ู„ุงุญุธูˆุง ููŠ
148
00:11:11,970 --> 00:11:18,670
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชุงู†ูŠุฉ 2x1 ุฒูŠ 3x2 ุจุณุงูˆุฉ 5ุŒ 4x1 ุฒูŠ 6x2
149
00:11:18,670 --> 00:11:26,470
ุจุณุงูˆุฉ 9ุŒ ุงู„ุขู† ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ู…ุงููŠุด ุฅู„ู‡ุง ุฅูŠุด ุงู„ู…ุนุงุฏู„ุชูŠู†
150
00:11:26,470 --> 00:11:33,730
ู…ุงููŠุด ุฅู„ู‡ุง ุญู„ูˆู„ุŒ ู„ูˆ ู„ุงุญุธุชู‡ ุชุฌูŠ ุงู„ a inverse ุงู„ู„ูŠ ู‡ูŠ
151
00:11:33,730 --> 00:11:40,950
ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู…ุตููˆูุฉ ุงู„ุนูˆุงู…ู„ 2ร—6 ุจ 12 ู†ุงู‚ุต 12 ุตูุฑ
152
00:11:40,950 --> 00:11:44,310
ุฅุฐุง ุงู„ a inverse does not existุŒ does not existุŒ ู„ูƒู†
153
00:11:44,310 --> 00:11:48,950
ู…ุด ุฒูŠ ุงู„ู„ูŠ ููˆู‚ ู„ูˆ ุทู„ุนู†ุง ุนู„ู‰ ู‡ุฐู‡ ู‡ุชูƒูˆู† ู‡ุฐู‡ ุฏุฑุจู†ุงู‡ุง
154
00:11:48,950 --> 00:11:52,790
ูˆูƒุฃู†ู‡ ููŠ ุงุชู†ูŠู† ุจุณุงูˆูŠุฉ ุฏูŠ ุงุดูŠ ู‡ู†ุง ุชุณุนุฉุŒ ูุงู„ุขู† ู‡ุฐู‡
155
00:11:52,790 --> 00:11:57,090
ุชุณุนุฉ ู…ุด ุนุดุฑุฉ ุนุดุงู† ู‡ูŠูƒ ู„ูˆ ุงุฌูŠุช ุงุนุทูŠุช ุงู„ู„ูŠ ู‡ูˆ ุถุฑุจุช
156
00:11:57,090 --> 00:12:02,050
ู‡ุฐู‡ ู…ุซู„ุง ููŠ ุงุชู†ูŠู†ุŒ ู„ูˆ ุถุฑุจุช ู‡ุฐู‡ ููŠ ุงุชู†ูŠู† ูˆุฌูŠุช ุญู„ุงุช
157
00:12:02,050 --> 00:12:05,090
ู…ุน ุจุนุถ ุงู„ู…ุนุงุฏู„ุฉ ุฅู†ู‡ ู…ุงุนุฑูุด ู†ุญู„ู… ุจุงู„ matrices ุฒูŠ ู…ุง
158
00:12:05,090 --> 00:12:08,470
ู‚ู„ู†ุง ูˆุถุฑุจู†ุง ู‡ุฏู ุงุชู†ูŠู† ุจูŠุตูŠุฑ ุฃุฑุจุน ุงูƒุณ ูˆุงุญุฏ ุณุชุฉ ุงูƒุณ
159
00:12:08,470 --> 00:12:12,790
ุงุชู†ูŠู† ุจูŠุณุงูˆูŠ ุนุดุฑุฉุŒ ูˆ ุฌูŠุช ุทุฑุญุช ู…ุน ุจุนุถ ุทุฑุญุช ู…ู† ุจุนุถ
160
00:12:12,790 --> 00:12:17,270
ู‡ูŠุทู„ุน ู‡ุฐุง ุตูุฑ ู‡ู†ุง ุตูุฑ ู‡ูŠุฑูˆุญ ู…ุน ุจุนุถุŒ ุฌุฑุจ ู„ุญุงู„ูƒ ูˆ
161
00:12:17,270 --> 00:12:21,670
ู‡ูŠุทู„ุน ู‡ู†ุง ุนุดุฑุฉ ู†ุงู‚ุต ุชุณุนุฉ ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ
162
00:12:21,670 --> 00:12:25,390
ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ุทู„ุน ู‡ู†ุง ุตูุฑุŒ ูŠุนู†ูŠ ุตูุฑ ุจูŠุทู„ุน ุจูŠุณุงูˆูŠ ูˆุงุญุฏ
163
00:12:25,390 --> 00:12:28,670
ุฃูˆ ุจูŠุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ ูˆู‡ุฐุง ู…ุณุชุญูŠู„ุŒ ุนุดุงู† ู‡ูŠูƒ ุจู†ุณู…ูŠู‡
164
00:12:28,670 --> 00:12:34,380
inconsistentุŒ ุฅุฐุง ู„ู„ุนู„ู… ูŠุง ุดุจุงุจ ูˆูŠุง ุจู†ุงุช ุฅู†ู‡ ููŠ ุญุงู„ุฉ
165
00:12:34,380 --> 00:12:37,240
ุงู„ a inverse does not exist ุงุญู†ุง ู…ุง ู†ู‚ุฏุฑ ู†ุญู„
166
00:12:37,240 --> 00:12:45,160
ุจูˆุงุณุทุฉ
167
00:12:45,160 --> 00:12:49,090
ุงู„ matrices ู„ุฃู†ู‡ุง ู…ุด ู‡ุชุธุจุทุŒ ู„ูƒู† ุนู†ุฏู…ุง ุชูƒูˆู† a inverse
168
00:12:49,090 --> 00:12:52,390
ู„ุง ุชูˆุฌุฏ ุนู†ุฏูŠ ุญุงู„ุชูŠู† ุญุงู„ุฉ ุจุณุŒ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูŠ
169
00:12:52,390 --> 00:12:55,470
ุนู†ุฏูŠ infinite number of solutions ูŠุนู†ูŠ ุนุฏุฏ ู„ุงู†ู‡ุงูŠุฉ
170
00:12:55,470 --> 00:12:59,790
ู…ู† ุงู„ุญู„ูˆู„ุŒ ุงู„ุญุงู„ุฉ ุงู„ุชุงู†ูŠุฉ has no solution ูŠุนู†ูŠ
171
00:12:59,790 --> 00:13:04,330
ู„ู„ู…ุนู„ูˆู…ุงุช ุงู„ู…ุนุงุฏู„ุชูŠู† ุงู„ุฃู†ูŠุฉ ุจูŠูƒูˆู† ู„ู‡ุง unique
172
00:13:04,330 --> 00:13:08,090
solution ุงู„ู„ูŠ ู‡ูˆ ุญู„ ูˆุญูŠุฏ ูˆู‡ุฐุง ุงู„ุญุงู„ุฉ ุงู„ู„ูŠ ุงุญู†ุง
173
00:13:08,090 --> 00:13:11,310
ุจู†ุนุฑู ู†ุญู„ู‡ุง ู„ุฅู†ู‡ ุจูŠูƒูˆู† ุงู„ a inverse exist ู„ุฅู†ู‡
174
00:13:11,310 --> 00:13:15,930
determinant ุจุชุทู„ุน ุจุณุงูˆูŠุด ุตูุฑุŒ ุงู„ุญุงู„ุฉ ุงู„ุซุงู†ูŠุฉ a
175
00:13:15,930 --> 00:13:19,150
inverse does not exist ุจูŠูƒูˆู† ูŠุง ุฅู…ุง ุนุฏุฏ ู„ุงู†ู‡ุงุฆูŠ ู…ู†
176
00:13:19,150 --> 00:13:23,730
ุงู„ุญู„ูˆู„ ูŠุง ุฅู…ุง ู…ุงู„ู‡ุงุด ุญู„ูˆู„ุŒ ูˆู‡ุฐู‡ ุทุจุนุง ุฒูŠ ู…ุง ู‚ู„ู†ุง
177
00:13:23,730 --> 00:13:27,530
ุงุญู†ุง ู…ุง ุจู†ุนุฑู ู†ุญู„ู‡ุง ุจูˆุงุณุทุฉ ุฃูˆ ุจุชู†ุญู„ุด ุจูˆุงุณุทุฉ ุงู„
178
00:13:27,530 --> 00:13:31,230
matrices ูˆุจุชูƒูˆู† ุญุงู„ุฉ ุฃุตู„ุง ุณู‡ู„ุฉ ุงู„ุญู„ ุจุงู„ุทุฑู‚ ุงู„ุนุงุฏูŠุฉ
179
00:13:31,230 --> 00:13:38,050
ุงู„ุขู† ูŠุง ุฌู…ุงุนุฉ ุจุฏู†ุง ู†ุญูƒูŠ ุนู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ system of
180
00:13:38,050 --> 00:13:42,610
three equations in three variables ูŠุนู†ูŠ ุนุจุงุฑุฉ ุนู†
181
00:13:42,610 --> 00:13:50,430
ู†ุธุงู… ู…ู† ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุฃู†ูŠุฉ ุนุฏุฏ ุงู„ู…ุนุงุฏู„ุงุช ุชู„ุงุชุฉ ูˆุนุฏุฏ
182
00:13:50,430 --> 00:13:55,910
ุงู„ู…ุฌุงู‡ูŠู„ ุชู„ุงุชุฉุŒ ุจุฏู†ุง ู†ูˆุฏุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุญู„ ุนู† ุทุฑูŠู‚ ุงู„ู„ูŠ
183
00:13:55,910 --> 00:13:59,610
ู‡ูˆ ู…ูŠู† ุงู„ matricesุŒ ูˆู‡ู†ุง ุจุชุตูŠุฑ ุฎู„ูŠู†ุง ู†ู‚ูˆู„ ุฃู‡ู…ูŠุฉ ุงู„
184
00:13:59,610 --> 00:14:04,730
matrices ููŠ ุงู„ุญู„ุŒ ูƒู„ ู…ุง ูƒุซุฑุช ุนุฏุฏ ุงู„ู…ุฌุงู‡ูŠู„ ูˆูƒู„ ู…ุง
185
00:14:04,730 --> 00:14:08,890
ูƒุซุฑุช ุนุฏุฏ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุนุงุฏู„ุงุช ุงู„ู…ู‚ุงุจู„ุฉ ุจูŠุตูŠุฑ ุงู„ุนู…ู„ูŠุฉ
186
00:14:08,890 --> 00:14:14,730
ุงู„ู„ูŠ ุงุชุนู„ู…ู†ุงู‡ุง ููŠ ุงู„ุงุนุฏุงุฏูŠุฉ ุตุนุจุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู† ู†ุญู„ู‡ุง
187
00:14:14,730 --> 00:14:18,850
ุงู„ุชู„ุงุชุฉ ู…ุน ุจุนุถ ุจูŠุตูŠุฑ ุงู„ู„ูŠ ู‡ูˆ ู…ูˆุถูˆุน ุงู„ุญู„ ุจูˆุงุณุทุฉ
188
00:14:18,850 --> 00:14:24,870
ุงู„ู„ูŠ ู‡ูˆ ุงู„ุงู† ุฒูŠ ู…ุง ู‚ู„ู†ุง ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐู‡ ุตุงุฑุช ุนู†ุฏูŠ
189
00:14:24,870 --> 00:14:28,610
ุชู„ุช ู…ุนุงุฏู„ุงุช ููŠ ุชู„ุช ู…ุฌู‡ูŠู„ุŒ ุฎู„ูŠู†ุง ู†ุดูˆู ูƒูŠู ุจุฏู‡ ู†ุญู„ู‡ุง
190
00:14:30,040 --> 00:14:35,180
ู†ูุณ ุงู„ุญู„ ุจุงู„ู†ุณุจุฉ ู„ู„ู…ุฌู‡ูˆู„ูŠู† ุจุงู„ุธุจุทุŒ ุจู†ูŠุฌูŠ ุจู†ุญุฏุฏ
191
00:14:35,180 --> 00:14:39,040
ู…ุตููˆูุฉ ุงู„ุนูˆุงู…ู„ุŒ ู…ุตููˆูุฉ ุงู„ุนูˆุงู…ู„ ุงุณู…ู‡ุง ุงูŠู‡ุŸ ุงูŠุด
192
00:14:39,040 --> 00:14:42,860
ู‡ุชูƒูˆู†ุŸ ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† ูˆุงุญุฏุŒ ู‡ูŠ ูˆุงุญุฏ ุณุงู„ุจ
193
00:14:42,860 --> 00:14:47,180
ุงุชู†ูŠู† ูˆุงุญุฏุŒ ุงู„ุชุงู†ูŠุฉ ุงุชู†ูŠู† ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏุŒ ุงุชู†ูŠู† ูˆุงุญุฏ
194
00:14:47,180 --> 00:14:50,640
ุณุงู„ุจ ูˆุงุญุฏุŒ ุงู„ู„ูŠ ุจุนุฏู‡ุง ุชู„ุงุชุฉ ุณุงู„ุจ ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ
195
00:14:50,640 --> 00:14:54,100
ุณุงู„ุจ ูˆุงุญุฏ ุงูŠุด ุงุชู†ูŠู†ุŒ ู‡ุฐู‡ ู…ุตููˆูุฉ ุงู„ุนูˆุงู…ู„ุŒ ู†ูŠุฌูŠ
196
00:14:54,100 --> 00:14:58,990
ู„ู…ุตููˆูุฉ ุงู„ู…ุฌุงู‡ูŠู„ ุงู„ู„ูŠ ู‚ู„ู†ุง ุจู†ุฑุณู… ุนู…ูˆุฏุŒ ู‡ุฐู‡ ุงู„ู…ุฌู‡ูˆู„
197
00:14:58,990 --> 00:15:02,190
ุงู„ุฃูˆู„ ุทุจุนุง ูƒู†ุง ุจู†ูƒูˆู† ุงุญู†ุง ู…ุฑุชุจูŠู† ุงูŠุด ุงู„ู…ุนุงุฏู„ุงุช
198
00:15:02,190 --> 00:15:05,330
ุจุงู„ุธุจุทุŒ ู‡ุฐุง ุงู„ู…ุฌู‡ูˆู„ ุงู„ุฃูˆู„ ุงู„ู…ุฌู‡ูˆู„ ุงู„ุชุงู†ูŠ ุงู„ู…ุฌู‡ูˆู„
199
00:15:05,330 --> 00:15:08,190
ุงู„ุชุงู„ุชุŒ ุงู„ู…ุฌู‡ูˆู„ ุงู„ุฃูˆู„ ุงู„ู…ุฌู‡ูˆู„ ุงู„ุชุงู†ูŠ ุงู„ู…ุฌู‡ูˆู„ ุงู„ุชุงู„ุช
200
00:15:08,190 --> 00:15:10,990
ุงู„ู…ุฌู‡ูˆู„ ุงู„ุฃูˆู„ ุงู„ู…ุฌู‡ูˆู„ ุงู„ุชุงู†ูŠ ุงู„ู…ุฌู‡ูˆู„ ุงู„ุชุงู„ุช ูˆู‡ู†ุง
201
00:15:10,990 --> 00:15:14,030
ุงู„ุญุฏูˆุฏ ุงู„ู…ุทู„ู‚ุฉ ุจุนุฏ ู…ุง ู†ุฑุชุจู‡ู…ุŒ ุฏูŠุฑูˆุง ุจุงู„ูƒู… ุฅุฐุง ุฃูˆู„
202
00:15:14,030 --> 00:15:19,470
ุดุบู„ุฉ ุจู†ุนู…ู„ู‡ุง ู‡ูŠ ุชุฑุชูŠุจ ุงู„ู…ุนุงุฏู„ุงุช ุญุณุจ ู…ูŠู† ุงู„ู…ุฌู‡ูˆู„
203
00:15:19,470 --> 00:15:22,590
ุงู„ู…ุฌู‡ูˆู„ ุงู„ุฃูˆู„ ุงู„ู…ุฌู‡ูˆู„ ุงู„ุชุงู†ูŠ ุงู„ู…ุฌู‡ูˆู„ ุงู„ุชุงู„ุช ูˆุนู„ู‰
204
00:15:22,590 --> 00:15:25,570
ุงู„ุฌู‡ุฉ ุงู„ุชุงู†ูŠุฉ ู„ุญุฏ ุงู„ู…ุทู„ู‚ ูˆู†ูุณูŠ ุงู„ุฃุดูŠ ููŠ ุงู„ุชุงู†ูŠ ูˆ
205
00:15:25,570 --> 00:15:28,450
ู†ูุณูŠ ุงู„ุฃุดูŠ ููŠ ุงู„ุชุงู„ุชุฉ ูˆุฅู„ุง ุจูŠูƒูˆู† ูƒู„ ุดุบู„ู†ุง ู…ุด
206
00:15:28,450 --> 00:15:33,790
ู…ุธุจูˆุทุŒ ุทูŠุจ ู‡ุงูŠ ุจุนุฏ ู…ุฑุชุจู†ุงู‡ุง ู†ุญุทูŠู†ุง ุงู„ู…ุตูˆูุฉ ุงู„ุนูˆุงู…ู„
207
00:15:33,790 --> 00:15:38,230
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุฎูŠุฑุฉ ุชู„ุงุชุฉ ุณู„ุจ ูˆุงุญุฏ ุงุชู†ูŠู† ู‡ุฐู‡ ุฒูŠ ู…ุง
208
00:15:38,230 --> 00:15:42,550
ู‚ูˆู„ู†ุง ุงูŠุด ู…ุงู„ู‡ุง ู…ุตูˆูุฉ ุงู„ู…ุฌุงู‡ูŠู„ ุจู†ูุณ ุงู„ุชุฑุชูŠุจ ุงู„ุฃูู‚ูŠ
209
00:15:42,550 --> 00:15:46,190
X ูˆุงุญุฏ X ุงุชู†ูŠู† X ุชู„ุงุชุฉ ุจู†ุฎู„ูŠ ุงูŠุด ุจุณ ุนู„ู‰ ุตูˆุฑุฉ ุงูŠุด
210
00:15:46,190 --> 00:15:49,560
ุนู…ูˆุฏุŒ ูˆุจู†ุฌูŠ ุนู„ู‰ ุงู„ุนู…ูˆุฏ ุงู„ู„ูŠ ุนู„ู‰ ุฌุจุงู„ู‡ ุจุงู„ุธุจุท ุจู†ูุณ
211
00:15:49,560 --> 00:15:53,160
ุงู„ุชุฑุชูŠุจ ุชู„ุงุชุฉ ูˆุฎู…ุณุฉ ูˆุฅูŠุงุด ูˆุงุทู…ุนุงุดุŒ ุตุงุฑุช ุงู„ู…ุนุงุฏู„ุฉ
212
00:15:53,160 --> 00:15:57,780
ุงู„ุขู† ุฌุงู‡ุฒุฉ ุนู„ู‰ ุตูˆุฑุฉ Ax ุจุชุณุงูˆูŠ ุฅูŠุงุด BุŒ ู‡ุฐู‡ A ูˆู‡ุฐู‡ X
213
00:15:57,780 --> 00:16:02,720
ูˆู‡ุฐู‡ BุŒ ุฅุฐู† ุงู„ุญู„ ูˆุฃู†ุง ู…ุบู…ุถ ุนูŠู†ูŠุง ุจุชุทู„ุน ุนู„ู‰ ุงู„ A ุฅุฐุง
214
00:16:02,720 --> 00:16:06,360
ูƒุงู†ุช ุงู„ AุŒ A ุงู„ู„ูŠ ู‡ูŠ inverse ุนู„ู‰ ุทูˆู„ ุจูŠุตูŠุฑ ุงู„ X
215
00:16:06,360 --> 00:16:11,780
ุจุชุณุงูˆูŠ A inverse ููŠ BุŒ ู‡ูˆ ุงู„ุญู„ุŒ X ุจุชุณุงูˆูŠ A inverse ููŠ
216
00:16:11,780 --> 00:16:16,360
BุŒ ุจุถู„ ุนู„ูŠ ุจุณ ุฃู† ุฃูˆุฌุฏ ุงู„ A inverse ุฒูŠ ู…ุง ุฃูˆุฌุฏู†ุงู‡ุง
217
00:16:16,360 --> 00:16:22,300
ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ููŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ุณุงุจู‚ุฉ ูˆุจู†ุถุฑุจู‡ุง ููŠ B
218
00:16:22,300 --> 00:16:27,380
ุจุชุทู„ุน ู„ูŠ ุงู„ู„ูŠ ู‡ูŠ ู…ุตููˆูุฉ ู…ู† ุงู„ุฃุนุฏุงุฏ ุนุฌุจุงู„ ู…ุตูˆูุฉ
219
00:16:27,380 --> 00:16:30,500
ุงู„ู…ุฌุงู‡ูŠู„ ุงู„ู„ูŠ ุจูŠูƒูˆู† ุฒูŠ ู…ุง ุนู…ู„ู†ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุจุงู„ุธุจุท
220
00:16:30,500 --> 00:16:35,430
ุจุชุทู„ุน ุงู„ู„ูŠ ู‡ูˆ ุงู„ุญู‚ุŒ ุฅุฐุง ุฒูŠ ู…ุง ู‚ู„ู†ุง X ู‡ุชุทู„ุน ุจุชุณุงูˆูŠ A
221
00:16:35,430 --> 00:16:39,390
inverse ููŠ BุŒ ูุงู„ A inverse ู‡ูŠ ุงู„ inverse ู„ู‡ุฐู‡ ูˆุงู„
222
00:16:39,390 --> 00:16:44,270
B ู‡ูŠู‡ุง B ุงู„ู„ูŠ ู‡ูŠ ุชู„ุงุชุฉ ุฃูˆ ุฎู…ุณุฉ ุฃูˆ ุงุชู†ุงุด ู…ุธุจูˆุท
223
00:16:44,270 --> 00:16:47,370
ูุจูŠุตูŠุฑ ุนู†ุฏ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุชู„ุงุชุฉ ุฃูˆ ุฎู…ุณุฉ ุฃูˆ ุงุชู†ุงุด ูˆ
224
00:16:47,370 --> 00:16:50,850
ุจู†ุถุฑุจ ุงู„ A inverse ููŠู‡ุง ุงู„ู„ูŠ ุจุชุทู„ุน ุงู„ X ุงู„ู„ูŠ ู‡ูŠ ุงู„
225
00:16:50,850 --> 00:16:54,990
X ูˆุงุญุฏ ูˆุงู„ X ุงุชู†ูŠู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ X ุชู„ุงุชุฉ ู„ู†ุดูˆู ูƒูŠู
226
00:16:54,990 --> 00:16:58,980
ุงู„ู„ูŠ ู‡ูˆ ุจุฏู†ุง ู†ุทู„ุนู‡ุŒ ุฅุฐุง ุฒูŠ ู…ุง ุงุชุนู„ู…ู†ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ
227
00:16:58,980 --> 00:17:01,380
ุจู†ูˆุฌุฏ ุงู„ู€ A-InverseุŒ ุงู„ู€ A-Inverse ุจู†ูˆุฌุฏ ุงู„ู€
228
00:17:01,380 --> 00:17:05,060
determinant ู„ู„ู€ A ุจุงู„ู„ูŠ ุฌูŠู„ู‡ ุนุจุงุฑุฉ ุนู† ุนุดุฑุฉ ุจูƒูˆู†
229
00:17:05,060 --> 00:17:08,760
ูˆุงุญุฏ ุนู„ู‰ ุนุดุฑุฉ ููŠ ุงู„ู€ Adjoint ุจู†ูƒูˆู† ุฃูˆุฌุฏู†ุง ุงู„ู€
230
00:17:08,760 --> 00:17:12,420
Adjoint ูˆุฌู‡ุฒู†ุง ุฒูŠ ู…ุง ุงุชุนู„ู…ุชูˆุง ูƒูŠู ุชูˆุฌุฏูˆู‡ุŒ ุงู„ุขู† ุทู„ุน
231
00:17:12,420 --> 00:17:15,690
ุนู†ุฏูŠ ุงู„ู€ A-Inverse ุจุชุทู„ุน ุงู„ X ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ูŠู†
232
00:17:15,690 --> 00:17:18,550
ุงู„ XุŒ X ูˆุงุญุฏ X ุงุชู†ูŠู† X ุชู„ุงุชุฉุŒ ุฃูŠุด ุจุชุณุงูˆูŠ ุฒูŠ ู…ุง ู‚ู„ู†ุง
233
00:17:18,550 --> 00:17:23,490
A inverse ููŠ BุŒ ู‡ูŠ ุงู„ A inverse ูˆู‡ูŠ ู…ูŠู† ุงู„ู…ุตููˆูุฉ B
234
00:17:23,490 --> 00:17:27,070
ุงู„ู„ูŠ ู‡ูŠ ู…ุตููˆูุฉ ุงู„ุญุฏูˆุฏ ุงู„ู…ุทู„ู‚ุฉ ุจู†ุถุฑุจ ู‡ุงุฏูŠ ุงู„ุขู† ููŠ
235
00:17:27,070 --> 00:17:31,170
ู‡ุงุฏูŠุŒ ุจุทู„ุน ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุชู„ุงุชูŠู† ุนุดุฑุฉ ุนุดุฑูŠู† ูˆู†ุถุฑุจ ููŠ
236
00:17:31,170 --> 00:17:34,130
ูˆุงุญุฏุฉ ุนู„ู‰ ุงู„ุนุดุฑ ุงู„ู„ูŠ ุจุฑุง ู‡ุฐุงุŒ ุจุทู„ุน ุนู†ุฏูŠ ุชู„ุงุชุฉ ูˆุงุญุฏ
237
00:17:34,130 --> 00:17:39,300
ุงุชู†ูŠู† ูุจูƒูˆู† ุนู†ุฏูŠ X ูˆุงุญุฏ ุจูŠุณุงูˆูŠ ุชู„ุงุชุฉุŒ X2 ุจูŠุณุงูˆูŠ ูˆุงุญุฏ
238
00:17:39,300 --> 00:17:44,220
ูˆX3 ุจูŠุณุงูˆูŠ ุงูŠุด ุจูŠุณุงูˆูŠ ุงุชู†ูŠู†ุŒ ุฅุฐุง ูŠุง ุดุจุงุจ ูˆูŠุง ุจู†ุงุช
239
00:17:44,220 --> 00:17:48,980
ุนู†ุฏูŠ ู…ุงุฏุงู…ุฉ ุงู„ A inverse ู…ูˆุฌูˆุฏุฉ ุฅุฐุง ุงู„ุญู„ ุจูŠูƒูˆู†
240
00:17:48,980 --> 00:17:54,540
ูˆุญูŠุฏ ูˆู‡ูŠ ุงู„ุญู„ ุทู„ุน ุนู†ุฏูŠ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ X1 ุซู„ุงุซุฉ ูˆX2
241
00:17:54,540 --> 00:18:00,920
ูˆุงุญุฏ ูˆX3 ุงุชู†ูŠู†ุŒ ู‡ุฐู‡ ู‡ูŠ ุญู„ูˆู„ ุงู„ู…ุนุงุฏู„ุงุช ุฃูˆ ุงู„ system
242
00:18:00,920 --> 00:18:05,200
of equations ุงู„ู„ูŠ ุนุฏุฏู‡ู… ุฌุฏูŠุด ูŠุง ุฌู…ุงุนุฉ ุงู„ู„ูŠ ุนุฏุฏู‡ู…
243
00:18:05,200 --> 00:18:10,930
ุชู„ุช ู…ุนุงุฏู„ุงุช ุจุชู„ุช ู…ุฌู‡ูŠู„ุŒ ุงู„ุขู† ูŠุง ุฌู…ุงุนุฉ ุฎู„ุตู†ุง ุงู„ู…ุญุงุถุฑุฉ
244
00:18:10,930 --> 00:18:16,530
ุงู„ุซุงู„ุซุฉ ู‡ูŠ ู…ุญุงุถุฑุฉ ุจุณูŠุทุฉ ูˆุงุถุญุฉุŒ ู…ุทู„ูˆุจ ู…ู†ูƒู… ุชุญู„ูˆุง ุงู„ู„ูŠ
245
00:18:16,530 --> 00:18:18,810
ู‡ูˆ ุนู†ุฏูŠ solve the following equations using
246
00:18:18,810 --> 00:18:27,310
inverse matrixุŒ ุจุฏูŠ ุชุญู„ูˆุง A ูˆD ุจุณุŒ A ูˆD ุงุฌุจูˆู„ูŠุงู‡ู…
247
00:18:27,310 --> 00:18:32,170
ุงู„ู„ูŠ ู‡ูˆ ู…ุญู„ูˆู„ุงุช ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุฒูŠ ู…ุง ุจู†ุนู…ู„ ููŠ ูƒู„
248
00:18:32,170 --> 00:18:36,810
ูˆุงุฌุจุŒ ูˆุงู„ุณู„ุงู… ุนู„ูŠูƒู… ูˆุฑุญู…ุฉ ุงู„ู„ู‡ ูˆุจุฑูƒุงุชู‡ ูˆุฅู„ู‰ ู„ู‚ุงุก
249
00:18:36,810 --> 00:18:37,350
ุขุฎุฑ