abdullah's picture
Add files using upload-large-folder tool
3a258c2 verified
1
00:00:00,000 --> 00:00:04,180
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ุญู…ุฏ ู„ู„ู‡ ุฑุจ ุงู„ุนุงู„ู…ูŠู†
2
00:00:04,180 --> 00:00:07,720
ูˆุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุนู„ู‰ ุณูŠุฏ ุงู„ู…ุฑุณู„ูŠู† ุณูŠุฏู†ุง ู…ุญู…ุฏ ุนู„ู‰
3
00:00:07,720 --> 00:00:14,600
ุขู„ู‡ ูˆุตุญุจู‡ ุฃุฌู…ุนูŠู† ู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ุฑุงุจุนุฉ ููŠ ู…ุณุงู‚
4
00:00:14,600 --> 00:00:18,960
ู‚ูŠุงุถูŠุงุช ู…ู†ูุตู„ุฉ ู„ุทู„ุงุจ ูˆุทุงู„ุจุงุช ุงู„ุฌุงู…ุนุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ
5
00:00:18,960 --> 00:00:28,290
ูƒู„ูŠุฉ ุงู„ IT ู‚ุณู… ุงู„ุญูˆุณุจุฉ ุงู„ู…ุชู†ู‚ู„ุฉ ุงู„ู…ุญุงุถุฑุฉ ุงู„ูŠูˆู… ู‡ูŠ
6
00:00:28,290 --> 00:00:34,090
ุงู„ู…ุญุงุถุฑุฉ ุงู„ุฃูˆู„ู‰ ุฃูŠุถุง ููŠ chapter 4 ูˆู‡ูˆ ุงู„ู…ุนู†ูˆู† ุจ
7
00:00:34,090 --> 00:00:39,210
number theory and cryptography ุงู„ู„ูŠ ู‡ูŠ ุจู†ู‚ุตุฏ ููŠู‡ุง
8
00:00:39,210 --> 00:00:44,010
ู†ุธุฑูŠุฉ ุงู„ุฃุนุฏุงุฏ ูˆุงู„ุชุดููŠุฑ ูˆุงู„ุชุดููŠุฑ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุชุทุจูŠู‚
9
00:00:44,010 --> 00:00:50,230
ุนู„ู‰ ู†ุธุฑูŠุฉ ุงู„ุฃุนุฏุงุฏ. ุงู„ section ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ู†ุชุญุฏุซ ุนู†ู‡
10
00:00:50,230 --> 00:00:53,910
ุงู„ูŠูˆู… ุงู„ู„ูŠ ู‡ูˆ divisibility and modular arithmetic
11
00:00:54,520 --> 00:01:02,080
ุงู„ู„ูŠ ู‡ูˆ ุดูˆ ู…ุนู†ุงู‡ ุงู„ู‚ุณู…ุฉ ุฃูˆ ู‚ุงุจู„ูŠุฉ ุงู„ู‚ุณู…ุฉ ูˆุญู†ุดูˆู
12
00:01:02,080 --> 00:01:05,920
ุฏุงู„ุชูŠู† ูˆุงุญุฏุฉ ุฏุงู„ุฉ ุงุณู…ู‡ุง ุงู„ู…ุฏ ูˆูˆุงุญุฏุฉ ุฏุงู„ุฉ ุงุณู…ู‡ุง
13
00:01:05,920 --> 00:01:12,840
div ูˆู†ุดูˆู ุฅูŠุด ุงู„ู„ูŠ ุจู†ู‚ุตุฏ ููŠู‡ู…. ุงู„ุขู† ู†ุญูƒูŠ ุฃูˆู„ ุดูŠุก ุนู†
14
00:01:12,840 --> 00:01:18,380
ุงู„ division. ุงู„ุขู† ุงู„ division ุงู„ู„ูŠ ู‡ูŠ ุงู„ู‚ุณู…ุฉ ู†ุดูˆู
15
00:01:18,380 --> 00:01:24,020
ุดูˆ ู…ุนู†ุงู‡ ุงู„ a divides bุŸ ุฅูŠุด ู…ุนู†ุงู‡ ุฃู†ู‡ ุนุฏุฏ ูŠู‚ุณู…
16
00:01:24,020 --> 00:01:30,720
ุนุฏุฏ ุขุฎุฑ ุงุณู…ู‡ bุŸ ุทุจุนุง ุญุฏูŠุซู†ุง ูƒู„ู‡ ุจูŠุตุจ ููŠ ุงู„ู„ูŠ ู‡ูˆ ููŠ
17
00:01:30,720 --> 00:01:33,860
ุงู„ integers ูŠุนู†ูŠ ุงุญู†ุง ูƒู„ ุงู„ุฃุนุฏุงุฏ ุงู„ู„ูŠ ุจู†ุชู†ุงูˆู„ู‡ุง
18
00:01:33,860 --> 00:01:39,190
ุงู„ูŠูˆู… ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุฃุนุฏุงุฏ ุตุญูŠุญุฉ. ุงู„ุขู† ุจู†ู‚ูˆู„ if a and b
19
00:01:39,190 --> 00:01:42,590
are integers ูŠุนู†ูŠ ู„ูˆ ูƒุงู† ุนู†ุฏูŠ a ูˆ b ุนุจุงุฑุฉ ุนู† ุฃุนุฏุงุฏ
20
00:01:42,590 --> 00:01:46,870
ุตุญูŠุญุฉ with a ู„ุง ุชุณุงูˆูŠ ุตูุฑ. ู…ุฏุงู… ู‚ุงู„ with a ู„ุง ุชุณุงูˆูŠ
21
00:01:46,870 --> 00:01:53,230
ุตูุฑ ุดูƒู„ู†ุง ู‡ู†ู‚ุณู… ุนู„ู‰ a ู„ุฃู† ุงู„ู‚ุณู…ุฉ ุนู„ู‰ a ู…ุฑููˆุถุฉ ูุนุดุงู†
22
00:01:53,230 --> 00:01:58,120
ู‡ูŠูƒ ู…ูุชุฑุถูŠู† ุฃู† a ู„ุง ุชุณุงูˆูŠ ุตูุฑ. ุงู„ุขู† ุจูŠู‚ูˆู„ then a
23
00:01:58,120 --> 00:02:03,140
divides b ูŠุนู†ูŠ ุจูŠู‚ูˆู„ ุฃู† a ุชู‚ุณู… b. ุดูˆ ู…ุนู†ู‰ a ุชู‚ุณู… bุŸ
24
00:02:03,140 --> 00:02:07,700
ุงู„ู„ูŠ ู‡ูˆ if there exists an integer c such that ุงู„
25
00:02:07,700 --> 00:02:13,440
b ุจุชุณุงูˆูŠ ุงู„ a ููŠ c. ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุจูŠู‚ูˆู„ a divides b.
26
00:02:13,730 --> 00:02:18,310
ูŠุนู†ูŠ ุฅูƒุชุฑู†ุง ู†ูƒุชุจ b ุนู„ู‰ ุตูˆุฑุฉ a ููŠ integer ุขุฎุฑ ุฃูˆ
27
00:02:18,310 --> 00:02:23,090
ููŠ ุนุฏุฏ ุตุญูŠุญ ุขุฎุฑ. ุฒูŠ ู…ุง ู†ู‚ูˆู„ ุณุชุฉ ุจุชุณุงูˆูŠ ุงุซู†ูŠู† ููŠ ุซู„ุงุซุฉ.
28
00:02:23,090 --> 00:02:29,150
ูุจุชูƒูˆู† ุงู„ุงุซู†ูŠู† ุชู‚ุณู… ู…ู† ุงู„ุณุชุฉ. ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ a
29
00:02:29,150 --> 00:02:35,630
divides b ุงู„ู„ูŠ ู‡ูˆ a is a factor of b ูŠุนู†ูŠ a ุนุงู…ู„
30
00:02:35,630 --> 00:02:41,660
ู…ู† ุนูˆุงู…ู„ b ุฃูˆ divisor of b ุฃูˆ ู‚ุงุณู… ู…ู† ู‚ูˆุงุณู… ุงู„ู€ b.
31
00:02:41,660 --> 00:02:46,160
ุฅุฐุง ู„ู…ุง ู†ู‚ูˆู„ a divides b ุจู†ู‚ุตุฏ ุฃู†ู‡ a ุนุงู…ู„ ู…ู† ุนูˆุงู…ู„
32
00:02:46,160 --> 00:02:52,900
b ูˆุจู†ู‚ุตุฏ a ู‚ุงุณู… ู…ู† ู‚ูˆุงุณู… ุงู„ู€ b ุฃูˆ ุจู†ู‚ุตุฏ b ุนุจุงุฑุฉ ุนู†
33
00:02:53,170 --> 00:02:58,210
ู…ู† ู…ุถุงุนูุงุช ุงู„ู€ a. ูŠุนู†ูŠ b is multiple of a. ูƒู„
34
00:02:58,210 --> 00:03:04,230
ุงู„ุชุนุจูŠุฑ ุงู„ุซู„ุงุซุฉ ุฏูˆู„ a ู‚ุงุณู… ู…ู† ู‚ุงุณู… ุงู„ู€ b ุฃูˆ a ุนุงู…ู„
35
00:03:04,230 --> 00:03:09,010
ู…ู† ุนูˆุงู…ู„ ุงู„ู€ b ุฃูˆ b ู…ู† ู…ุถุงุนูุงุช ุงู„ู€ a ูƒู„ู‡ุง ุงู„ู…ู‚ุตูˆุฏ
36
00:03:09,010 --> 00:03:16,380
ููŠู‡ุง ุฃู† a divides b. ู…ุง ู‡ูŠ ุงู„ู€ notation ุชุจุนุชู‡ุงุŸ ู†ู‚ูˆู„
37
00:03:16,380 --> 00:03:20,660
a divides b ูˆู‡ูŠ a ูˆู‡ูŠ ุนุตุฑู‡ ุจูŠู†ู‡ู… b. ุดูƒู„ ุงู„ุนุตุฑู‡ ู‡ูŠ
38
00:03:20,660 --> 00:03:26,720
ุดุจู‡ ุนู…ูˆุฏูŠุฉ ูŠุนู†ูŠ a divides b denotes that a divides
39
00:03:26,720 --> 00:03:32,420
b ุฃูˆ a ุชู‚ุณู… b. ุงู„ุขู† ู‚ู„ู†ุง ุฃู† a ุชู‚ุณู… b ู…ุนู†ุงู‡ ุฃู† ุงู„
40
00:03:32,420 --> 00:03:35,740
a ุนุงู…ู„ ู…ู† ุนุงู…ู„ b. ูŠุนู†ูŠ ู„ูˆ ุฌูŠู†ุง ู‚ุณู…ู†ุง ุงู„ b ุนู„ู‰ ุงู„ a
41
00:03:35,740 --> 00:03:40,190
ู‡ุชุทู„ุน integer. ูŠุนู†ูŠ ุงู„ุขู† ู„ู…ุง ู†ู‚ูˆู„ a ุชู‚ุณู… b ุจู†ุนู†ูŠ ุฃู†ู‡
42
00:03:40,190 --> 00:03:45,650
ุนู„ู‰ ุทูˆู„ ุงู„ุนุฏุฏ b ุนู„ู‰ ุงู„ุนุฏุฏ a. ูุฏู‡ ู…ุนู†ุงู‡ ูŠุนู†ูŠ ุจูŠู‚ูˆู„ ู„ูƒ
43
00:03:45,650 --> 00:03:49,890
b ุนู„ู‰ ุงู„ุนุฏุฏ a ู‡ูŠุทู„ุน ุฅูŠุด ู…ุงู„ูˆุŸ ุงู†ุชุฌุฑ ุฒูŠ ู…ุง ู‡ู†ุง ู‡ุงูŠ ู…ุด
44
00:03:49,890 --> 00:03:53,970
ู‡ุงุฏ ู…ุนู†ุงู‡ a ุชู‚ุณู… b. ูŠุนู†ูŠ ุงู„ุขู† b ุนู„ู‰ a ู‡ุชุทู„ุน ุงู„ c
45
00:03:53,970 --> 00:03:58,330
ูŠุนู†ูŠ integer. ุฅุฐุง ู…ู† ุงู„ุขู† ูˆุทุงู„ุน ู…ุฌุฑุฏ ู†ู‚ูˆู„ a ุชู‚ุณู… b
46
00:03:58,330 --> 00:04:02,110
ู…ุนู†ุงู‡ ุงู„ b ุนู„ู‰ ุงู„ a ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุนุฏุฏ ุตุญูŠุญ. ุทุจ ู„ูˆ
47
00:04:02,110 --> 00:04:05,850
ุจุฏู†ุง ู†ู‚ูˆู„ a does not divide b ู†ุฑู…ุฒ ุจุงู„ุฑู…ุฒูŠุฉ ุฏู‡ a
48
00:04:05,850 --> 00:04:10,030
ูˆู‡ูŠ ุงู„ุดุญุทุฉ ุงู„ุฃูˆู„ู‰ ูˆู‡ูŠ ูุฌู‡ู‡ุง ุดุญุทุฉ ุซุงู†ูŠุฉ. ูŠุนู†ูŠ a does
49
00:04:10,030 --> 00:04:15,810
not divide b ูŠุนู†ูŠ a ู„ุง ุชู‚ุณู… ุงู„ b. ู†ุงุฎุฐ ุฃู…ุซู„ุฉ ุนุฏุฏูŠุฉ
50
00:04:15,810 --> 00:04:19,830
ุงู„ุขู† ุงู„ู…ุซุงู„ ุงู„ุฃูˆู„ determine whether ุงู„ุซู„ุงุซุฉ ุจุชู‚ุณู…
51
00:04:19,830 --> 00:04:23,940
ุงู„ุณุจุนุฉ ูˆ whether ุงู„ุซู„ุงุซุฉ ุจุชู‚ุณู… 11. ู„ุฅู† ุงุญู†ุง
52
00:04:23,940 --> 00:04:26,800
ุนู„ู‰ ุทูˆู„ ุงู„ุญุฏ ู…ุง ู†ุดูˆู ุนู„ู‰ ุทูˆู„ ุงู„ุซู„ุงุซุฉ ู…ุง ุจุชู‚ุณู…ุด ุงู„ุณุจุนุฉ
53
00:04:26,800 --> 00:04:31,640
ู„ูŠุดุŸ ู„ุฃู† ุงู„ุณุจุนุฉ ุนู„ู‰ ุงู„ุซู„ุงุซุฉ ู…ุด ุนุฏุฏ ุตุญูŠุญ. ุฅุฐุง ุงู„ุซู„ุงุซุฉ
54
00:04:31,640 --> 00:04:35,780
does not divide ุจูŠู‡. ุฅุฐุง ุฃูƒูŠุฏ ุงู„ solution ู‡ู†ู‚ูˆู„ู‡
55
00:04:35,780 --> 00:04:40,020
ุงู„ุซู„ุงุซุฉ ู„ุง ุชู‚ุณู… ุงู„ุณุจุนุฉ because ุงู„ู„ูŠ ู‡ูˆ ุงู„ุณุจุนุฉ ุนู„ู‰
56
00:04:40,020 --> 00:04:44,520
ุงู„ุซู„ุงุซุฉ ู„ูŠุณุช ุนุฏุฏ ุตุญูŠุญ. ู„ุฃู† ุซู„ุงุซุฉ ุจุชู‚ุณู… 12. ูƒู„ูƒู… ู‚ู„ุชู…
57
00:04:44,520 --> 00:04:47,660
ู‡ู„ ุฌูŠุช 12 ุนู„ู‰ ุซู„ุงุซุฉุŸ ุฃุฑุจุนุฉ. ูŠุนู†ูŠ ุงู„ุซู„ุงุซุฉ ู„ุงุฒู… ุชู‚ุณู… ู…ู†
58
00:04:47,660 --> 00:04:52,080
12. ุฅุฐุง ุฃูƒูŠุฏ ุซู„ุงุซุฉ ุจุชู‚ุณู… 12 ู„ุฃู† 12 ุนู„ู‰ ุซู„ุงุซุฉ ู‡ูŠ ุนุจุงุฑุฉ
59
00:04:52,080 --> 00:04:56,600
ุนู† ุฅูŠุดุŸ ุทู„ุนุช ุงู„ุฃุฑุจุนุฉ. ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ 12 ุจุชุณุงูˆูŠ 3 ููŠ 4.
60
00:04:56,600 --> 00:05:01,720
ุฒูŠ ู…ุง ุนู…ู„ู†ุง ููŠ ุงู„ a ุงู„ b ุจุชุณุงูˆูŠ a ููŠ c. ุฅุฐุง ุงู„ุซู„ุงุซุฉ
61
00:05:01,720 --> 00:05:06,460
ุชู‚ุณู… ู…ู† 12. ุฅุฐุง ุงู„ูƒู„ุงู… ุณู‡ู„. ุทูŠุจ ู†ูŠุฌูŠ ู„ุฎูˆุงุต ุงู„
62
00:05:06,460 --> 00:05:11,200
divisibility ุฃูˆ ุฎูˆุงุต ู‚ุงุจู„ูŠุฉ ุงู„ a ุฃูˆ ุฎูˆุงุต ุงู„ู‚ุณู…ุฉ.
63
00:05:11,200 --> 00:05:16,530
ู†ุดูˆู. ุงู„ู„ูŠ ู‚ุงู„ ู„ูˆ ูƒุงู† ุนู†ุฏ a ูˆb ูˆc ุนุจุงุฑุฉ ุนู† integers
64
00:05:16,530 --> 00:05:21,330
ุฃุนุฏุงุฏ ุตุญูŠุญุฉ ูˆุงู„ู€ a ู„ุง ุชุณุงูˆูŠ ุตูุฑ ู„ุฃู† ุดูƒู„ ุงู„ู„ูŠ ู‡ู†ู‚ุณู…
65
00:05:21,330 --> 00:05:24,470
ุนู„ู‰ ุงู„ู€ a ุนุดุงู† ูŠุฌูŠ ุงู„ู€ a ู„ุง ุชุณุงูˆูŠ ุงู„ุตูุฑ. ุงู„ุขู† ุจู‚ูˆู„
66
00:05:24,470 --> 00:05:30,130
ู„ูŠ ู„ูˆ a ุจุชุฌุณู… ุงู„ู€ b ูˆุงู„ู€ a ุจุชุฌุณู… ุงู„ c ุฃูƒูŠุฏ ุงู„ a
67
00:05:30,130 --> 00:05:34,850
ู‡ุชุฌุณู… ุงู„ b ุฒุงุฆุฏ ุงู„ c. ูƒู„ุงู… ู…ู†ุทู‚ูŠ. ุฎุฏ ู…ุซู„ุง ุงุซู†ูŠู†
68
00:05:34,850 --> 00:05:39,910
ุจุชุฌุณู… ุงู„ุณุชุฉ ูˆุงุซู†ูŠู† ุจุชุฌุณู… ุงู„ุนุดุฑุฉ. ุฅุฐุง ุงุซู†ูŠู† ุจุชุฌุณู…
69
00:05:39,910 --> 00:05:43,110
ุงู„ุณุชุฉ ุฒุงุฆุฏ ุงู„ุนุดุฑุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุณุชุฉ ุนุดุฑ. ุฃูƒูŠุฏ ุงุซู†ูŠู† ุจุชุฌุณู…
70
00:05:43,110 --> 00:05:47,210
ุงู„ุณุชุฉ ุนุดุฑ. ุฅุฐุง ุฏุงุฆู…ุง ุงู„ a ุจุชุฌุณู… ุงู„ b ูˆ ุงู„ a ุจุชุฌุณู… ุงู„
71
00:05:47,210 --> 00:05:53,110
c. ู‡ุฐูˆู„ ุจุฎุฒู† ุงู„ู…ุนู„ูˆู…ุฉ ุจุชุนุทูŠู†ุง ุฃู† ุงู„ a ุจุชุฌุณู… ุงู„ b
72
00:05:53,110 --> 00:05:58,700
ุฒุงุฆุฏ ุงู„ c. ู‡ู†ุฑูˆุญ ู„ุจุนุฏ ู…ู† ู‡ูŠูƒ ุจุนุฏ ุดูˆูŠุฉ. ุงู„ุขู† a ุจุชุฌุณู… ุงู„
73
00:05:58,700 --> 00:06:04,280
b. ุฃูƒูŠุฏ ุงู„ a ู‡ุชุฌุณู… ุงู„ b ููŠ ุฎู…ุณุฉ ูˆุงู„ b ููŠ ุณุชุฉ ูˆุงู„
74
00:06:04,280 --> 00:06:08,180
b ููŠ ุณุจุนุฉ ูˆุงู„ b ููŠ ุซู…ุงู†ูŠุฉ. ูŠุนู†ูŠ ุฃูƒูŠุฏ ุงู„ a ุจุชุฌุณู… ุงู„
75
00:06:08,180 --> 00:06:13,780
b ููŠ c ู„ูƒู„ integer c. 100 ู…ุซุงู„ ู†ุณุชุทูŠุน ุฃู† ู†ู‚ูˆู„ู‡ุง. ูŠุนู†ูŠ
76
00:06:13,780 --> 00:06:18,460
ุงุซู†ูŠู† ุจุชู‚ุณู… ุงู„ุณุชุฉ ุฃูƒูŠุฏ ุงุซู†ูŠู† ุจุชู‚ุณู… ุงู„ุณุชุฉ ููŠ ุซู„ุงุซุฉ
77
00:06:18,460 --> 00:06:21,540
ุงู„ู„ูŠ ู‡ูŠ 18. ุงุซู†ูŠู† ุจุชู‚ุณู… ุงู„ุณุชุฉ ููŠ ุฎู…ุณุฉ ููŠ 30.
78
00:06:21,540 --> 00:06:25,840
ุงุซู†ูŠู† ุจุชู‚ุณู… ุงู„ุณุชุฉ ููŠ ู…ู„ูŠูˆู†. ุฅุฐุง ุงุซู†ูŠู† ู‡ุชู‚ุณู… ุงู„ b ููŠ
79
00:06:25,840 --> 00:06:34,640
c ุงู„ู„ูŠ ู‡ูˆ ููŠ ุญุงู„ ุงุซู†ูŠู† ุจุชู‚ุณู… ุงู„ b. ุงู„ุขู† ุงู„ุฎุงุตูŠุฉ ู‡ุฐู‡
80
00:06:34,640 --> 00:06:38,380
ุงู„ุซุงู„ุซุฉ ุงู„ู„ูŠ ุจู†ุณู…ูŠู‡ุง ุฎุงุตูŠุฉ ุงู„ุชุนุฏูŠ. ุงู„ a ุจุชุฌุณู… ุงู„ b
81
00:06:38,380 --> 00:06:42,240
ูˆ ุงู„ b ุจุชุฌุณู… ุงู„ c. ู…ุน ุจุนุถ ู‡ุฏูˆู„ ู„ุงุฒู… ูŠุนุทู„ู†ุง ุงู„ a
82
00:06:42,240 --> 00:06:47,460
ุจุชุฌุณู… ุงู„ c. ู‡ุฐุง ุงู„ูƒู„ุงู… ุณู‡ู„ ุจุฑุถู‡ ู„ุฅู† ุงู„ a ุจุชุฌุณู… ุงู„
83
00:06:47,460 --> 00:06:52,660
... ุฎู„ู†ุง ู†ู‚ูˆู„ ุงู„ 2 ุจุชุฌุณู… ุงู„ 6 ูˆุงู„ 6 ุจุชุฌุณู… ุงู„ 24.
84
00:06:52,660 --> 00:06:59,040
ุฅุฐุง ุฃูƒูŠุฏ ุงู„ 2 ุจุชุฌุณู… ุงู„ 24. ุงู„ุซู„ุงุซุฉ ุจุชุฌุณู… ุงู„ุณุชุฉ
85
00:06:59,040 --> 00:07:03,240
ูˆุงู„ุณุชุฉ ุจุชุฌุณู… ุงู„ 18. ุฅุฐุง ุงู„ุซู„ุงุซุฉ ุจุชุฌุณู… ู…ู†
86
00:07:03,240 --> 00:07:09,960
ุงู„ 18. ุฅุฐุง ุฎุงุตูŠุฉ ุงู„ุชุนุฏูŠ ู…ุชุญู‚ู‚ุฉ ุฃูŠุถุง. ู„ุฃู† ู†ุชูŠุฌุฉ
87
00:07:09,960 --> 00:07:14,840
ู„ู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ููˆู‚ ุงู„ู„ูŠ ู‡ูˆ ุทุจุนุง ู‡ุฐู‡ ูƒุงู† ุงู„ุจุฑู‡ุงู†
88
00:07:14,840 --> 00:07:19,220
ุงู„ู…ุทู„ูˆุจ ู„ูƒู† ุงุญู†ุง ู„ุณุจุจ ุงู„ุธุฑูˆู ุงู„ุขู† ุฃุนุทูŠู†ุงูƒู… ุฅูŠุงู‡ุง
89
00:07:19,220 --> 00:07:22,820
ุจุฏูˆู† ุจุฑู‡ุงู† ูˆู‡ู†ุง ุญูƒูŠู†ุง ุฃู…ุซู„ุฉ ุนุฏุฏูŠุฉ ุนู„ูŠู‡ุง. ุงู„ู…ู‡ู… ู†ูู‡ู…
90
00:07:22,820 --> 00:07:27,160
ุฅูŠุด ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฎุงุตูŠุฉ ุฏูŠ. ู†ูŠุฌูŠ ู„ู„ Corollary ุฃูˆ ุงู„ู†ุชูŠุฌุฉ
91
00:07:27,160 --> 00:07:31,420
ู„ู„ theorem ุงู„ู„ูŠ ุนู†ุฏู†ุง. ุจู‚ูˆู„ ู„ูˆ ูƒุงู† a ูˆ b ูˆ c ุนุจุงุฑุฉ
92
00:07:31,420 --> 00:07:35,820
ุนู† ุฃุนุฏุงุฏ ุตุญูŠุญุฉ ูˆุงู„ a ู„ุง ุชุณุงูˆูŠ c ูŠุนู†ูŠ if a and b
93
00:07:35,820 --> 00:07:40,120
and c are integers ูˆุงู„ a ู„ุง ุชุณุงูˆูŠ ุตูุฑ such that
94
00:07:40,120 --> 00:07:44,300
ุงู„ a divides ุงู„ b ูˆุงู„ a divides ุงู„ c ูŠุนู†ูŠ ุงู„ a
95
00:07:44,300 --> 00:07:48,990
ุจุชู‚ุณู… ุงู„ b ูˆุงู„ a ุจุชู‚ุณู… ุงู„ c. ุฅุฐุง ุงู„ู€ a ู‡ุชู‚ุณู… ู…ุด ุจุณ
96
00:07:48,990 --> 00:07:52,690
ุงู„ู€ b ุฒุงุฆุฏ ุงู„ู€ c ู„ุฃ ู‡ุชู‚ุณู… ุฃูŠ linear combination
97
00:07:52,690 --> 00:07:57,610
ุจูŠู†ู‡ู…. ูŠุนู†ูŠ ู‡ู†ุฏู…ุฌ ู‡ุฐู‡ ูˆู‡ุฐู‡ ู…ุน ุจุนุถ ูˆู†ุญุตู„ ุฃู† ุงู„ู€ a
98
00:07:57,610 --> 00:08:04,090
ุจุชู‚ุณู… ุงู„ู€ b m ุฒุงุฆุฏ ุงู„ู€ c n ู„ูƒู„ m ูˆ n. ุฅูŠุด ุงู„ linear
99
00:08:04,090 --> 00:08:07,790
combination ู‡ุฐุงุŸ ุจู†ุณู…ูŠู‡ ุงู„ b m ุฒุงุฆุฏ ุงู„ c n ุนุจุงุฑุฉ ุนู†
100
00:08:07,790 --> 00:08:12,010
linear combination ุจูŠู† ุงู„ู€ b ูˆู…ูŠู†ุŸ ูˆุงู„ู€ c. ุฅุฐุง
101
00:08:12,010 --> 00:08:15,550
ุจู†ู‚ูˆู„ ู…ุง ูŠู„ูŠ ูŠุง ุฌู…ุงุนุฉ ุฅู†ู‡ ู„ูˆ ุงู„ู€ a ุจุชู‚ุณู… ุงู„ู€ b ูˆ
102
00:08:15,550 --> 00:08:19,810
ุงู„ู€ a ุจุชู‚ุณู… ุงู„ู€ c ุญูŠูƒูˆู† ุนู†ุฏ ุงู„ู€ a ุจุชู‚ุณู… ุฃูŠ linear
103
00:08:19,810 --> 00:08:23,970
combination b m ุฒุงุฆุฏ ู…ูŠู†ุŸ c m where m and n
104
00:08:23,970 --> 00:08:28,670
integers. ูŠุนู†ูŠ ู†ุงุฎุฐ ู…ุซุงู„ ุนู†ุฏ ุงู„ู€ 3 ุจุชู‚ุณู… 12 ูˆุงู„ู€ 3
105
00:08:28,670 --> 00:08:34,570
ุจุชู‚ุณู… ุงู„ู€ 15. ุฃูƒูŠุฏ ุงู„ู€ 3 ุจุชู‚ุณู… 12 ููŠ m ุฒุงุฆุฏ 15 ููŠ n
106
00:08:34,570 --> 00:08:39,520
ู„ูƒู„ ุงู„ integers m ูˆ n. ุฃู†ุช ุฌุฑุจ ุญุท ุฃูŠ integers ุจูŠุฌูŠ
107
00:08:39,520 --> 00:08:43,540
ุนู„ู‰ ุจุงู„ูƒ m ูˆ n ู‡ุชู„ุงู‚ูŠ ุงู„ุซู„ุงุซุฉ ุจุชุฌุณู… 12 m ุฒุงุฆุฏ 15
108
00:08:43,540 --> 00:08:44,540
m. ู†ุงุฎุฐ ู…ุซู„ุง
109
00:08:54,500 --> 00:08:57,240
ุงู„ุซู„ุงุซุฉ ุจุชุฌุณู… 78. ุฃูƒูŠุฏ ู„ุฃู† ุงู„ุซู…ุงู†ูŠุฉ
110
00:08:57,240 --> 00:09:01,540
ูˆ7 ูˆ15 ูˆุฌุฑุจ ุฃุนุฏุงุฏ ุฒูŠ ู…ุง ุจุฏูƒ ู‡ุชู„ุงู‚ูŠ ู…ุฏุงู…
111
00:09:01,540 --> 00:09:04,360
ุงู„ุซู„ุงุซุฉ ุจุชุฌุณู… 12 ูˆุงู„ุซู„ุงุซุฉ ุจุชุฌุณู… 15
112
00:09:04,360 --> 00:09:07,200
ุงู„ุซู„ุงุซุฉ ู‡ุชุฌุณู… ุฃูŠ linear combination ุจูŠู† 12
113
00:09:07,200 --> 00:09:10,700
ูˆ15. ุฅูŠุด linear combination ูŠุนู†ูŠุŸ 12 ููŠ m
114
00:09:10,700 --> 00:09:17,220
ุฒุงุฆุฏ 15 ููŠ m ู„ูƒู„ integers m. ุทูŠุจ ุงู„ุขู† ู†ูŠุฌูŠ ู„
115
00:09:17,220 --> 00:09:21,340
division algorithm ุฃูˆ ุงู„ู„ูŠ ุจู†ุณู…ูŠู‡ุง ุฎูˆุงุฑุฒู…ูŠุฉ ุงู„ู‚ุณู…ุฉ.
116
00:09:21,340 --> 00:09:25,600
ุฎูˆุงุฑุฒู…ูŠุฉ ุงู„ู‚ุณู…ุฉ ู…ุด ุบุฑูŠุจุฉ ุนู„ูŠู†ุง ุจู†ุนุฑูู‡ุง ุจู†ุนุฑูู‡ุง ู…ู†
117
00:09:25,600 --> 00:09:30,600
ูˆ ุงุญู†ุง ุตุบุงุฑ. ุงู„ุขู† ู„ูˆ ู‚ู„ุช ู„ูƒ ู‚ุณู… ู„ูŠ ุงู„ุนุดุฑุฉ ุนู„ู‰ ุงู„ุฎู…ุณุฉ
118
00:09:30,600 --> 00:09:34,080
ู‡ุชู‚ูˆู„ ู„ูŠ ุงู„ุนุดุฑุฉ ุนู„ู‰ ุงู„ุฎู…ุณุฉ ุจูŠุณุงูˆูŠ ุงุซู†ูŠู†. ุจู‚ูˆู„ ู„ูƒ ููŠ ู…ุชุจู‚ูŠ
119
00:09:34,080 --> 00:09:38,580
ู‚ุณู… ู‡ุชู‚ูˆู„ ู„ูŠ ู„ุง. ูŠุนู†ูŠ ูˆูƒุฃู†ู‡ ุงู„ุนุดุฑุฉ ู„ู…ุง ู‚ุณู…ู†ุงู‡ุง ุนู„ู‰ ุฎู…ุณุฉ
120
00:09:38,580 --> 00:09:42,240
ุทู„ุนุช ู†ุงุชุฌ ู‚ุณู…ุฉ ุงุซู†ูŠู† ูˆู„ุง ูŠูˆุฌุฏ ู…ุชุจู‚ูŠ ู‚ุณู…ุฉ ูŠุนู†ูŠ
121
00:09:42,240 --> 00:09:47,080
ู…ุชุจู‚ูŠ ุงู„ู‚ุณู…ุฉ ุตูุฑ. ู„ูƒู† ู„ูˆ ู‚ู„ุช ู„ูƒ ู‚ุณู… 11 ุนู„ู‰ ุฎู…ุณุฉ ุนู„ู‰
122
00:09:47,080 --> 00:09:51,000
ุฎู…ุณุฉ ู‡ุชู‚ูˆู„ 11 ุนู„ู‰ ุฎู…ุณุฉ ุจูŠุณุงูˆูŠ ุงุซู†ูŠู† ูˆุจูŠุฒูŠุฏ ูˆุงุญุฏ.
123
00:09:51,000 --> 00:09:56,880
ู‡ุฐุง ุงู„ูˆุงุญุฏ ู‡ูˆ ู…ุชุจู‚ูŠ ุงู„ู‚ุณู…ุฉ ูˆุงู„ุงุซู†ูŠู† ู‡ูŠ ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ.
124
00:09:56,880 --> 00:09:59,880
ู‡ุฐุง ุงู„ู„ูŠ ุจุชู‚ูˆู„ู‡ ุจุงู„ุธุจุท ุงู„ division algorithm. when
125
00:09:59,880 --> 00:10:03,220
an integer is divided by a positive integer there
126
00:10:03,220 --> 00:10:06,900
is a quotient and remainder ูŠุนู†ูŠ ููŠ ุฐุงุชู‡ุง ู‚ุณู…ุฉ ูˆููŠ
127
00:10:06,900 --> 00:10:12,560
ู…ุชุจู‚ูŠ ู‚ุณู…ุฉ ู„ู…ุง ู†ู‚ุณู… ุงู„ู„ูŠ ู‡ูˆ ุงู„ุนุฏุฏ ุนู„ู‰ positive number
128
00:10:12,560 --> 00:10:17,980
ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ู…ู‚ุณูˆู… ุนู„ูŠู‡ this is traditionally called
129
00:10:17,980 --> 00:10:22,780
the division algorithm ุฃูˆ ุฎูˆุงุฑุฒู…ูŠุฉ ุงู„ู‚ุณู…ุฉ ูˆุฎู„ู‘ูŠู†ุง
130
00:10:22,780 --> 00:10:27,620
ู†ุดูˆู ุฅูŠุด ุฎูˆุงุฑุฒู…ูŠุฉ ุงู„ู‚ุณู…ุฉ ุฃูˆ ู†ุธุฑูŠุฉ ุงู„ุฎูˆุงุฑุฒู…ูŠุฉ
131
00:10:27,620 --> 00:10:31,320
ุงู„ู‚ุณู…ุฉ ุจุชู‚ูˆู„ ุจู‚ู‰ ูŠุนู†ูŠ ุตู„ูˆุง ุนู„ู‰ ุงู„ู†ุจูŠ ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ
132
00:10:31,320 --> 00:10:35,400
ูˆุงู„ุณู„ุงู… if a is an integer and d is a positive
133
00:10:35,400 --> 00:10:38,940
integer ูŠุนู†ูŠ a ุฃูŠ ุงู†ุชุฌุฑ ุณุงู„ู… ู…ูˆุฌุจุฉ ุจุงู„ุฅุจุฏุงูƒูŠุฉ ุญุชู‰
134
00:10:38,940 --> 00:10:42,560
ู„ูˆ ูƒุงู† ุตูุฑ ู…ุด ูุงุฑุบุฉ ู‡ู‚ู„ู†ุงู‡ ูˆ ุงู„ d positive integer
135
00:10:42,560 --> 00:10:47,340
ุฃูƒุจุฑ ู…ู† ุตูุฑ ู„ู…ุง ู†ู‚ุณู… ุงู„ a ุนู„ู‰ ุงู„ d ู‡ูŠุทู„ุน ู†ุงุชุฌ ู‚ุณู…ุฉ
136
00:10:47,340 --> 00:10:54,550
ุจุฏูŠ ุฃุณู…ูŠู‡ Q ูˆุงู„ู…ุชุจู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ ุจุฏูŠ ุฃุณู…ูŠู‡ R ุจุนุฏ ุฐู„ูƒ
137
00:10:54,550 --> 00:10:58,790
ูŠูˆุฌุฏ
138
00:10:58,790 --> 00:11:05,370
ู†ุงุชุฌ ู‚ุณู…ุฉ ูˆุงุญุฏ Q ูˆู…ุชุจู‚ูŠ ูˆุงุญุฏ R ุจุญูŠุซ ุฃู† R ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุตูุฑ
139
00:11:05,370 --> 00:11:13,050
ูˆุตุบุฑ ู…ู† D ุฏุงุฆู…ุงู‹ ุนู†ุฏู…ุง ุชู‚ุณู… ุงู„ A ุนู„ู‰ ุงู„ D ูŠุนู†ูŠ
140
00:11:13,050 --> 00:11:17,750
11 ุนู„ู‰ ุฎู…ุณุฉ ูˆ ุชู‚ูˆู„ 11 ุนู„ู‰ ุฎู…ุณุฉ ุจูŠุทู„ุน ุงุซู†ูŠู† ูˆ ุจุถุงู„
141
00:11:17,750 --> 00:11:22,290
ูˆุงุญุฏ ุงู„ูˆุงุญุฏ ู‡ุฐุง ุณุจู†ุงู‡ ู„ูŠุด ุณุจู†ุงู‡ ู„ุฃู†ู‡ ุฃุตู„ุงู‹ ู‡ูˆ ุฃูƒุจุฑ ุฃูˆ
142
00:11:22,290 --> 00:11:25,650
ูŠุณุงูˆูŠ ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุงู„ู…ู‚ุณูˆู… ุนู„ูŠู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฎู…ุณุฉ
143
00:11:25,650 --> 00:11:29,450
ูุฏุงุฆู…ุงู‹ ุงู„ remainder ุจูŠูƒูˆู† ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุตูุฑ ูˆ ุฃุตุบุฑ
144
00:11:29,450 --> 00:11:35,160
ู…ู† ุงู„ู…ู‚ุณูˆู… ุนู„ูŠู‡ ุงู„ D ุฅุฐุงู‹ ู„ู…ุง ู†ู‚ุนุฏ ู†ู‚ุณู… ุงู„ A ุนู„ู‰ ุงู„
145
00:11:35,160 --> 00:11:40,920
D ุจูŠุทู„ุน ู„ู†ุง ู†ุงุชุฌ ู‚ุณู…ุฉ ุงุณู…ู‡ Q ูˆููŠู‡ remainder ุงุณู…ู‡ R
146
00:11:40,920 --> 00:11:45,700
ุนุดุงู† ู‡ูŠูƒ ุจู†ู‚ูˆู„ A ุจุชุณุงูˆูŠ D ููŠ Q ุฒุงุฆุฏ R ุฒูŠ ู…ุง ู‚ูˆู„ู†ุง
147
00:11:45,700 --> 00:11:53,020
ู„ 11 ุจุณุงูˆูŠ ุงู„ 5 ููŠ 2 ุจ 10 ุฒุงุฆุฏ ุงู„ 1 ุงู„ 1 ู‡ูˆ ุงู„
148
00:11:53,020 --> 00:11:58,060
remainder ูˆุงู„ 2 ู‡ูˆ ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ ู‡ูˆ ุงู„ุฎู…ุณุฉ ุงู„ู„ูŠ
149
00:11:58,060 --> 00:12:04,040
ู‚ุณู…ู†ุง ุนู„ูŠู‡ุง ุฅุฐุงู‹ ุงู„ุขู† ุงู„ู€ A ุจูŠุชุณุงูˆู‰ DQ ุฒุงุฆุฏ ุงู„ู€ R ุญูŠุซ
150
00:12:04,040 --> 00:12:10,160
ุงู„ู€ A ู‡ูˆ ุงู„ู…ู‚ุณูˆู… ูˆุงู„ู€ D ุงู„ู…ู‚ุณูˆู… ุนู„ูŠู‡ ูˆุงู„ู€ Q ู†ุงุชุฌ
151
00:12:10,160 --> 00:12:15,140
ุงู„ู‚ุณู…ุฉ ูˆุงู„ู€ R ู‡ูˆ ุงู„ู…ุชุจู‚ูŠ D is called the divisor
152
00:12:15,870 --> 00:12:19,670
ุงู„ุขู† ุงู„ู…ู‚ุณูˆู… ุนู„ูŠู‡ A is called the dividend ุงู„ู„ูŠ ู‡ูˆ
153
00:12:19,670 --> 00:12:24,690
ุงู„ู…ู‚ุณูˆู… ูˆ Q is called the quotient ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ ูˆ R
154
00:12:24,690 --> 00:12:29,370
is called the remainder ู…ู† ู‡ุฐุง ุงู„ุญุฏูŠุซ ุงู„ุขู† ุจุฏู†ุง
155
00:12:29,370 --> 00:12:34,580
ู†ุณุชู‚ูŠ ู…ุน ุจุนุถ ุฏุงู„ุชูŠู† ู†ุนุฑูู† ูƒู…ุง ูŠู„ูŠ definitions of
156
00:12:34,580 --> 00:12:38,300
functions ูˆุงุญุฏุฉ ุงุณู…ู‡ุง div ูˆุงุญุฏุฉ ุงุณู…ู‡ุง mod ุจุฏู†ุง
157
00:12:38,300 --> 00:12:42,980
ู†ุตุทู„ุญ ู…ุน ุจุนุถ ุดูˆ ู…ุนู†ุงู‡ ุฃู† ุงุญู†ุง ุจู†ู‚ูˆู„ ุงูŠู‡ div ุฏูŠ
158
00:12:42,980 --> 00:12:47,360
ุงู„ู„ูŠ ุจู†ู‚ุตุฏ ููŠู‡ุง ุฃู†ู‡ ู„ู…ุง ุฌูŠู†ุง ู‚ุณู…ู†ุง ุงู„ a ุนู„ู‰ ุงู„ d
159
00:12:48,000 --> 00:12:52,640
ุทู„ุน ุนู†ุฏูŠ ู†ุงุชุฌ ู‚ุณู…ุฉ ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ ู‡ุฐุง ุงู„ู„ูŠ ุจุชุณู…ูŠู‡ a
160
00:12:52,640 --> 00:12:59,060
ุถุงุถ d ุจู‚ุตุฏ ููŠู‡ ู†ุงุชุฌ ู‚ุณู…ุฉ a ุนู„ู‰ d ู‡ุฐุง ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ
161
00:12:59,060 --> 00:13:06,200
ุทูŠุจ ุฃู‡ู… ุงู„ d ุฅูŠุด ุจู‚ุตุฏ ููŠู‡ ู‡ูˆ ุงู„ู…ุชุจู‚ูŠ ู…ู† ู†ุงุชุฌ ู‚ุณู…ุฉ a
162
00:13:06,200 --> 00:13:11,460
ุนู„ู‰ d ุฅุฐุง a ุถุงุถ d ู…ู‚ุตูˆุฏ ููŠู‡ ู„ู…ุง ุฃู‚ุณู… a ุนู„ู‰ d
163
00:13:11,460 --> 00:13:15,650
ุจูŠุทู„ุน ุงู„ู„ูŠ ู‡ูŠ ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ ู„ู…ุง ุฃู‚ุณู… ุงู„ู€ a ุนู„ู‰ d
164
00:13:15,650 --> 00:13:19,170
ุจูŠุทู„ุน ุนู†ุฏูŠ remainder ูุจู‚ุตุฏ ุงู„ a mod ุงู„ d ู‡ูˆ ุนุจุงุฑุฉ
165
00:13:19,170 --> 00:13:22,710
ุนู† ู…ูŠู† ุงู„ู…ุชุจู‚ูŠ ุฃูˆ ุงู„ remainder ุงุชูู‚ู†ุง ุนู„ูŠู†ุง ุฏูˆู„
166
00:13:22,710 --> 00:13:29,150
ุงู„ุฏุงู„ุชูŠู† ูŠู„ู„ุง ุฎู„ูŠู†ุง ู†ุดูˆู ุฃู…ุซู„ุฉ ุนุฏุฏูŠุฉ ุทูŠุจ ุงุญู†ุง ู†ุดูˆู
167
00:13:29,150 --> 00:13:35,190
ุฃู…ุซู„ุฉ ุนุฏุฏูŠุฉ ุงู„ู…ุซุงู„ ุงู„ุนุฏุฏูŠ ู„ู„ division algorithm ู‡ูˆ ู…ุง
168
00:13:35,190 --> 00:13:38,610
ูŠุนู†ูŠ what are the quotient and remainder when 101
169
00:13:38,610 --> 00:13:45,250
is divided by 11 ุจู†ุดูˆู ุฅูŠุด ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ
170
00:13:45,250 --> 00:13:50,410
ูˆู…ุชุจู‚ูŠ ุงู„ู‚ุณู…ุฉ ู„ู…ุง ู†ู‚ุณู… 101 ุนู„ู‰ 11 ุฃูƒูŠุฏ ูƒู„ูƒู… ูƒุงู†
171
00:13:50,410 --> 00:13:56,870
101 ุนู„ู‰ 11 ููŠ 99 ูˆ ุจูŠุธู‡ุฑ ุจูŠู†ู‡ู… ู‚ุฏ ุฅูŠุด ุจุฒูŠุงุฏุฉ 2 ูุงูƒูŠุฏ
172
00:13:56,870 --> 00:14:02,600
ุงู„ู„ูŠ ู‡ูˆ ู‡ูŠูƒูˆู† ุนู†ุฏูŠ 101 ุจูŠุณุงูˆูŠ 11 ุงู„ู„ูŠ ู‡ูˆ ุถุฑุจ ุชุณุนุฉ
173
00:14:02,600 --> 00:14:08,040
ุฒุงุฆุฏ ุงุซู†ูŠู† ุชุณุนุฉ ู‡ุฐุง ู‡ูˆ ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ ูˆุงู„ุงุซู†ูŠู† ู‡ูˆ
174
00:14:08,040 --> 00:14:12,480
ู…ุชุจู‚ูŠ ุงู„ู‚ุณู…ุฉ ุนุดุงู† ู‡ูŠูƒ ุจู†ูƒุชุจู‡ู… ุจุงู„ุทุฑูŠู‚ุฉ ุงู„ู„ูŠ ุงุชูู‚ู†ุง
175
00:14:12,480 --> 00:14:16,860
ุนู„ูŠู‡ุง ู‚ุจู„ ุดูˆูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏูŠ
176
00:14:16,860 --> 00:14:24,760
ุงู„ู…ุชุจู‚ูŠ ุงู„ู‚ุณู…ุฉ ุงู„ู„ูŠ ู‡ูˆ 2 ูุจู†ูƒุชุจ 101 mod 11 ุจู…ุง ุฃู† ููŠ
177
00:14:24,760 --> 00:14:30,560
ู…ุชุจู‚ูŠ ุงู„ู‚ุณู…ุฉ ู„ู…ุง ู†ู‚ุณู… 101 ู„ 11 ุจูŠุทู„ุน 2 ูˆุจู†ูƒุชุจ 101
178
00:14:30,560 --> 00:14:34,740
mod 11 ู…ุนู†ุงุชู‡ ุงู„ุฏุงู„ุฉ ู‡ุฐู‡ ุจุชุนู†ูŠ ุฃู†ู‡ ู„ู…ุง ู†ู‚ุณู… 101
179
00:14:34,740 --> 00:14:40,720
ู„ 11 ุจูŠูƒูˆู† ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ 100 ุงู„ู„ูŠ ู‡ูˆ 9 ุฒูŠ ู…ุง ุดูู†ุง
180
00:14:40,720 --> 00:14:42,740
ุงู„ู„ูŠ ุนุงู…ู„ูŠู†ู‡ ุงุญู†ุง ู‡ู†ุง ููŠ ุงู„ division
181
00:14:46,330 --> 00:14:52,950
ุงู„ุณุคุงู„ ุงู„ุซุงู†ูŠ ู‡ูˆ what are the quotient and
182
00:14:52,950 --> 00:14:59,090
remainder when -11 is divided by 3 ู†ุงู‚ุต 11 ู†ุงู‚ุต 11 ู†ุงู‚ุต
183
00:14:59,090 --> 00:15:05,190
11 ู†ุงู‚ุต 11 ู†ุงู‚ุต
184
00:15:05,190 --> 00:15:07,770
11 ู†ุงู‚ุต 11 ู†ุงู‚ุต 11 ู†ุงู‚ุต 11 ู†ุงู‚ุต 11 ู†ุงู‚ุต 11 ู†ุงู‚ุต 11 ู†ุงู‚ุต
185
00:15:07,770 --> 00:15:12,600
11 ู†ุงู‚ุต 11 ู†ุงู‚ุต 11 ู†ุงู‚ุต 11 ู†ุงู‚ุต 11 ู†ุงู‚ุต 11 ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ
186
00:15:12,600 --> 00:15:16,720
ุจูŠุตูŠุฑ ู†ุงู‚ุต 11 ุจูŠุณุงูˆูŠ ุซู„ุงุซุฉ ููŠ ู†ุงู‚ุต ุฃุฑุจุนุฉ ุฒุงุฆุฏ ูˆุงุญุฏ
187
00:15:16,720 --> 00:15:19,900
ู„ู…ุง ู†ู‚ุณู… ุงู„ู†ุงู‚ุต ู…ุงุญุฏุด ูŠู‚ูˆู„ ู†ุงู‚ุต ุซู„ุงุซุฉ ู„ุฃู†ู‡ ุจูŠุตูŠุฑ
188
00:15:19,900 --> 00:15:23,020
ุซู„ุงุซุฉ ููŠ ู†ุงู‚ุต ุซู„ุงุซุฉ ุจูŠุณุงูˆูŠ ู†ุงู‚ุต ุชุณุนุฉ ู†ุงู‚ุต ุชุณุนุฉ
189
00:15:23,020 --> 00:15:26,520
ุจูŠุตูŠุฑ ู†ุงู‚ุต ุฃุญุฏ ุนุดุฑ ุจูŠุณุงูˆูŠ ู†ุงู‚ุต ุชุณุนุฉ ู†ุงู‚ุต ุงุซู†ูŠู† ูˆ ุงู„
190
00:15:26,520 --> 00:15:29,920
remainder ู„ุงุฒู… ุงู„ู…ุชุจู‚ูŠ ูŠูƒูˆู† ุฅูŠู‡ ุดู…ุงู„ู‡ ุฃูƒุจุฑ ู…ู† ุตูุฑ
191
00:15:29,920 --> 00:15:33,420
ูˆ ุฃุตุบุฑ ู…ู† ุซู„ุงุซุฉ ู„ุฃู† ุงุญู†ุง ู„ู…ุง ู†ู‚ุฏุฑ ู†ู‚ุณู… ุฃูŠ ุนุฏุฏ ุนู„ู‰
192
00:15:33,420 --> 00:15:40,830
ุงู„ remainder ุจูŠุทู„ุน ุฃู†ู‡ ุนุฏุฏ ุตุญูŠุญ ู„ูˆ ุฒุงุฏ ุนู† ุงู„ู„ูŠ ู‡ูˆ
193
00:15:40,830 --> 00:15:44,490
.. ู„ูˆ ุงู„ remainder ุทู„ุน ุจุงู„ุณุงู„ุจ ู„ุฃ ุงุญู†ุง ู…ุง ุจู†ู‚ุจู„ุด
194
00:15:44,490 --> 00:15:48,130
ุจู†ูˆุญุฏ ุงู„ูƒู„ุงู… ูƒู„ู‡ ู…ุน ุจุนุถ ูƒู„ู†ุง ู†ู‚ุณู… ุฒูŠ ุจุนุถ ูˆ ุทู„ุนู†ุง
195
00:15:48,130 --> 00:15:51,810
remainder ุฒูŠ ุจุนุถ ูˆ ู†ุงุชุฌ ู‚ุณู…ู†ุง ุฒูŠ ุจุนุถ ุนุดุงู† ู‡ูŠูƒ
196
00:15:51,810 --> 00:15:55,650
ุจู†ุทู„ุจ ุงู„ remainder ูŠูƒูˆู† ุจูŠู† ุงู„ุตูุฑ ูˆ ุจูŠู† ุงู„ุซู„ุงุซุฉ ุฒูŠ
197
00:15:55,650 --> 00:16:00,230
ู…ุง ูƒู†ุง ู†ุนู…ู„ ุฒู…ุงู† ููŠ ู‚ุณู…ุฉ ุงู„ุฃุนุฏุงุฏ ุงู„ุตุญูŠุญุฉ ุนู„ู‰ ุจุนุถ
198
00:16:00,230 --> 00:16:04,090
ุงู„ุขู† ู‡ุฐุง ุจูŠุตูŠุฑ ู†ุงู‚ุต 11 ุจูŠุณุงูˆูŠ ุซู„ุงุซุฉ ููŠ ู†ุงู‚ุต 4 ุฒุงุฆุฏ ู…ู†
199
00:16:04,090 --> 00:16:08,980
1 ุงู„ุขู† ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ูˆุงุญุฏ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ remainder
200
00:16:08,980 --> 00:16:13,880
ุนุดุงู† ู‡ูŠูƒ ุจู†ู‚ูˆู„ ุงู„ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุจูŠุณุงูˆูŠ ู†ุงู‚ุต ุฃุญุฏ ุนุดุฑ mod
201
00:16:13,880 --> 00:16:19,620
ุซู„ุงุซุฉ ู†ู‚ูˆู„ ุฅู† ุฏุงู„ุฉ ุงู„ู…ุฏ ู‡ุฐู‡ ุชุนู†ูŠ ู‚ุณู…ุฉ ู†ุงู‚ุต ุฃุญุฏ ุนุดุฑ ุน
202
00:16:19,620 --> 00:16:24,380
ุซู„ุงุซุฉ ุจูŠุทู„ุน ู…ุชุจู‚ูŠ ุงู„ู‚ุณู…ุฉ ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ูŠุนู†ูŠ ู‡ุฐู‡ ุชุฏู„
203
00:16:24,380 --> 00:16:30,390
ุนู„ู‰ ู…ุชุจู‚ูŠ ุงู„ู‚ุณู…ุฉ ุงู„ุขู† ุงู„ู„ูŠ ู‡ูˆ ู†ุงู‚ุต 11 ุถุงุถ 3 ุชุนู†ูŠ
204
00:16:30,390 --> 00:16:34,610
ุงู„ู„ูŠ ู‡ูˆ ู†ุงุชุฌ ู‚ุณู…ุฉ ู†ุงู‚ุต 11 ุนู„ู‰ 3 ุงู„ู„ูŠ ู‡ูˆ ุฅูŠุด ุทู„ุน
205
00:16:34,610 --> 00:16:40,030
ุนู†ุฏูŠ ู†ุงู‚ุต 4 ูˆ ู‡ูŠูƒ ุจู†ูˆุฌุฏ ุงู„ู„ูŠ ู‡ูˆ ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ ูˆ
206
00:16:40,030 --> 00:16:47,990
ุจู†ูˆุฌุฏ ู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ ู…ุชุจู‚ูŠ ุงู„ู‚ุณู…ุฉ ุงู„ุขู† ุฅู† ุฏุฎู„ู†ุง ุนู„ู‰
207
00:16:47,990 --> 00:16:52,510
ุญุงุฌุฉ ุงุณู…ู‡ุง ุงู„ congruence relation ุฃูˆ ุงู„ู„ูŠ ู‡ูŠ ุนู„ุงู‚ุฉ
208
00:16:52,510 --> 00:16:56,690
ุงู„ุชุทุงุจู‚ ุงู„ุขู† ุฅูŠุด ุงู„ู„ูŠ ุจู†ู‚ุตุฏ ููŠู‡ุง ุนู„ุงู‚ุฉ ุงู„ุชุทุงุจู‚ุŸ
209
00:16:56,690 --> 00:17:00,110
ุฎู„ูŠู†ุง ู†ุดูˆู ุฅูŠุด ุงู„ู„ูŠ ู‡ูˆ ุชุนุฑูŠู ุนู„ุงู‚ุฉ ุงู„ุชุทุงุจู‚ ุฏูŠุŒ ุฅูŠุด
210
00:17:00,110 --> 00:17:03,670
ู…ุนู†ุงู‡ ุงู„ู€congruenceุŸ ู„ูˆ ูƒุงู† ุนู†ุฏูŠ A ูˆB ุนุจุงุฑุฉ ุนู†
211
00:17:03,670 --> 00:17:07,050
ุฃุนุฏุงุฏ ุตุญูŠุญุฉ integers and M is a positive integer
212
00:17:07,050 --> 00:17:12,420
ูˆุงู„ู€ M ุฅูŠุด ู…ุงู„ู‡ุŸ ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ ุจู†ู‚ูˆู„ ุฃู† a is
213
00:17:12,420 --> 00:17:17,180
congruent to b modulo m ูŠุนู†ูŠ a ุชุทุงุจู‚ b modulo m
214
00:17:17,180 --> 00:17:23,200
ูŠุนู†ูŠ a ุชุทุงุจู‚ b ุงู„ู„ูŠ ู‡ูˆ ุจุงู„ู†ุณุจุฉ ู„ู„ู…ู‚ูŠุงุณ m ุฅุฐุง ุญู‚ู‚ุช
215
00:17:23,200 --> 00:17:29,060
ู…ุงู„ูŠ ุงู„ m ุชู‚ุณู… ุงู„ b ู†ุงู‚ุต a ุฃูˆ ุชู‚ุณู… ุงู„ a ู†ุงู‚ุต b
216
00:17:29,060 --> 00:17:33,420
ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุจู†ู‚ูˆู„ a ุชุทุงุจู‚ ุงู„ b modulo m ูˆุจู†ุฑู…ุฒ
217
00:17:33,420 --> 00:17:37,790
ู„ู‡ุง ุจุงู„ุฑู…ุฒ ุงู„ู„ูŠ ุนู†ุฏูŠ a is congruent to B modulo M
218
00:17:37,790 --> 00:17:46,650
ู†ุนู†ูŠ ุจู‡ุง ุฃู† M ุชู‚ุณู… ุงู„ู„ูŠ ู‡ูˆ ุงู„ A ู†ุงู‚ุต B ุชู‚ุณู… ุงู„ A
219
00:17:46,650 --> 00:17:52,030
ู†ุงู‚ุต B ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† A ุชุทุงุจู‚ ุงู„ B modulo M ุงู„ุขู†
220
00:17:52,030 --> 00:17:57,510
ู‡ุฐู‡ ุนู„ู‰ ุจุนุถู‡ุง ุจู†ุณู…ูŠู‡ุง is a congruence ุฃูˆ ุจู†ุณู…ูŠู‡ุง
221
00:17:57,510 --> 00:18:03,870
ุชุทุงุจู‚ุฉ ูˆ ุงู„ M ู‡ูˆ ุงู„ modulus ุฃูˆ ู‡ูˆ ู…ู‚ูŠุงุณ ุงู„ุชุทุงุจู‚
222
00:18:03,870 --> 00:18:08,180
ุจู†ุณู…ูŠู‡ ุงู„ุขู† ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
223
00:18:08,180 --> 00:18:08,440
ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
224
00:18:08,440 --> 00:18:09,560
ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
225
00:18:09,560 --> 00:18:10,360
ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
226
00:18:10,360 --> 00:18:10,480
ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
227
00:18:10,480 --> 00:18:12,300
ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
228
00:18:12,300 --> 00:18:12,320
ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
229
00:18:12,320 --> 00:18:13,660
ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
230
00:18:13,660 --> 00:18:14,520
ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
231
00:18:14,520 --> 00:18:16,420
ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
232
00:18:16,420 --> 00:18:17,660
ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
233
00:18:17,660 --> 00:18:24,600
ูŠูƒูˆู† ุงู„ู…ุชุทุงุจู‚ุชูŠู† ุฅุฐุง ูƒุงู† ุงู„ a ูˆ ุงู„ b
234
00:18:24,600 --> 00:18:28,740
ุงู„ู„ูŠ ู‡ูŠ ู†ูุณ ุงู„ remainder ู„ูˆ ู‚ุณู…ู†ุงู‡ุง ุนู„ู‰ ุงู„ m ูŠุนู†ูŠ
235
00:18:28,740 --> 00:18:33,260
ู„ูˆ ู‚ุณู…ู†ุง ุงู„ b ุนู„ู‰ ุงู„ m ู‡ู†ู„ุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ
236
00:18:33,260 --> 00:18:39,660
b ุนู„ู‰ m R1 ูˆ ู†ุงุชุฌ ู‚ุณู…ุฉ a ุนู„ู‰ m R2 ููŠ ุญุงู„ุฉ ู…ุง ูŠูƒูˆู†
237
00:18:39,660 --> 00:18:44,980
ุงู„ู…ุชุทุงุจู‚ุชูŠู† ู„ุงุฒู… ุงู„ R1 ุฅูŠุด ูŠุณุงูˆูŠ R2 ุนุดุงู† ู‡ูŠูƒ two
238
00:18:44,980 --> 00:18:49,390
integers are congruent modulo m if and only if they
239
00:18:49,390 --> 00:18:53,690
have the same remainder when divided by m
240
00:18:53,690 --> 00:18:59,810
ู„ูˆ ูƒุงู†ุช ุงู„ a ู„ุง ุชุทุงุจู‚ ุงู„ b ุจู†ุฑู…ุฒ ุงู„ a ู„ุง ุชุทุงุจู‚ ุงู„ b
241
00:18:59,810 --> 00:19:03,430
modulo m ูˆู‡ุฐุง ู…ุงุฐุง ุจุชุญุฏุซุŸ ุจุชุญุฏุซ ู„ู…ุง ู†ู„ุงู‚ูŠ ุงู„ m ู„ุง
242
00:19:03,430 --> 00:19:08,430
ุชู‚ุณู… ุงู„ a ู†ุงู‚ุต b ุฃูˆ ู„ู…ุง ู†ู„ุงู‚ูŠ ุงู„ remainder ู„ู„ b
243
00:19:08,430 --> 00:19:13,250
ู„ู…ุง ู†ู‚ุณู…ู‡ุง ุนู„ู‰ m ูŠุฎุชู„ู ุนู† ุงู„ remainder ู„ู„ a ู„ู…ุง
244
00:19:13,250 --> 00:19:18,910
ู†ู‚ุณู…ู‡ุง ุนู„ู‰ m ุทูŠุจ ุฎู„ูŠู†ุง ู†ุดูˆู ุงุญู†ุง ู…ุซุงู„ ุฃูˆ
245
00:19:18,910 --> 00:19:23,510
ุฃู…ุซู„ุฉ ุนุฏุฏูŠุฉ ู†ุดูˆู ุงู„ู…ุซุงู„ ุงู„ุนุฏุฏูŠ ุจูŠู‚ูˆู„ determine
246
00:19:23,510 --> 00:19:27,670
whether ุงู„ 17 is congruent to 5 ูˆู„ุง ู„ุฃ ุฃูˆ ุจุนุฏูŠู†
247
00:19:27,670 --> 00:19:31,630
modulo 6 ุทุจุนุงู‹ and whether ุงู„ 24 and ุงู„ 14 are
248
00:19:31,630 --> 00:19:35,030
congruent modulo 6 ุงู„ุขู† ุจุฏู‡ ูŠุดูˆู ุงู„ุณุจุนุฉ ุนุดุฑ ูˆุงู„ุฎู…ุณุฉ
249
00:19:35,030 --> 00:19:39,830
ู‡ู„ ุงู„ู…ุชุทุงุจู‚ุชูŠู† modulo 6 ู‚ู„ู†ุง ุฃุญุฏ ุฃู…ุฑูŠู† ุงุจู†ูŠ ุฌูŠ
250
00:19:39,830 --> 00:19:44,810
ุจู†ู‚ูˆู„ ุงู„ุณุจุนุฉ ุนุดุฑ ู†ุงู‚ุต ุฎู…ุณุฉ ุจูŠุทู„ุน ุงุซู†ุง ุนุดุฑ ุงู„ุณุชุฉ ุจุชู‚ุณู…
251
00:19:44,810 --> 00:19:49,390
ุฅุฐู† ุฅุฐุง ุงู„ุณุจุนุฉ ุนุดุฑ ุจุชู‚ุณู… ุงู„ุฎู…ุณุฉ modulo 6 ุงู„ุขู† ุทุฑูŠู‚ุฉ
252
00:19:49,390 --> 00:19:53,910
ุฃุฎุฑู‰ ุงู„ู„ูŠ ู‡ูŠ ุฃู†ู‡ ุจู†ุฌูŠุจ ู†ุฌุณู… ุงู„ุณุจุนุฉ ุนุดุฑ ุนู„ู‰ ุงู„ุณุชุฉ
253
00:19:53,910 --> 00:19:58,410
ุงู„ู…ุชุจู‚ูŠ ุฌุฏู‘ูŠุด ุฎู…ุณุฉ ู‡ูˆ ู†ูุณ ุงู„ู…ุชุจู‚ูŠ ู„ู…ุง ุงู„ุฎู…ุณุฉ ู†ุฌุณู…ู‡ุง
254
00:19:58,410 --> 00:20:01,250
ุนู„ู‰ ุงู„ุณุชุฉ ู„ุฃู† ุงู„ู…ุชุจู‚ูŠ ุจูŠุทู„ุน ุฎู…ุณุฉ ูˆู†ุชุฌ ุงู„ู‚ุณู… ุตูุฑ
255
00:20:01,250 --> 00:20:07,160
ุทุจูŠุนูŠ ุฅุฐู† ุงู„ุขู† ุงู„ุณุจุนุฉ ุนุดุฑ ุชุทุงุจู‚ ุฎู…ุณุฉ modulo ุณุชุฉ ู„ุฃู† ุฃุญุฏ
256
00:20:07,160 --> 00:20:12,540
ุณุจุจูŠู† ูŠุง ุฅู…ุง ุงู„ุณุชุฉ ุจุชู‚ุณู… ุญุงุตู„ ุทุฑุญูŠู† ูŠุง ุฅู…ุง ู‡ุฐุง ู„ู…ุง
257
00:20:12,540 --> 00:20:16,180
ู†ู‚ุณู… ุนู„ู‰ ู‡ุฐุง ูˆู‡ุฐุง ู„ู…ุง ู†ู‚ุณู… ุนู„ู‰ ู‡ุฐุง ุจูŠุนุทูŠ ู†ูุณ
258
00:20:16,180 --> 00:20:21,520
ุงู„ู†ุชูŠุฌุฉ ู†ูุณ ุงู„ู„ูŠ ู‡ูˆ ุงู„ remainder ุทูŠุจ ุงู„ุขู† ูŠุฌูŠ ู†ุญูƒู…
259
00:20:21,520 --> 00:20:24,240
ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ุฑุงุจุนุฉ ูˆุงู„ุนุดุฑูŠู† ูˆุงู„ุฑุงุจุนุฉ ุนุดุฑ ู‡ู„ congruent
260
00:20:24,240 --> 00:20:27,100
modulo ุณุชุฉ ูˆู„ุง ู„ุฃุŸ ุฃูƒูŠุฏ ูƒู„ูƒู… ู‚ุงู„ูˆุง ุงู„ุฑุงุจุนุฉ ูˆุงู„ุนุดุฑูˆู† ู†ู‚ุต
261
00:20:27,100 --> 00:20:30,900
ุงู„ุฑุงุจุนุฉ ุนุดุฑ ุจุชุณุงูˆูŠ ุนุดุฑุฉ ุงู„ุณุชุฉ ุจุชู‚ุณู…ุด ุงู„ุนุดุฑุฉ ุฅุฐู†
262
00:20:30,900 --> 00:20:35,580
ุงู„ุฑุงุจุนุฉ ูˆุงู„ุนุดุฑูˆู† ู„ุง ุชุทุงุจู‚ ุงู„ุฑุงุจุนุฉ ุนุดุฑ modulo ุณุชุฉ ุฃูˆ
263
00:20:35,580 --> 00:20:40,080
ู…ู‚ูŠุงุณ ุณุชุฉ ุงู„ุขู† ู„ูˆ ุฃุญุฏ ู‚ุงู„ ู„ุง ู…ุง ู‡ูˆ ุฃู†ุง ุจุชุทู„ุน ู„ู‡ุง
264
00:20:40,080 --> 00:20:44,080
ู†ุธุฑุฉ ุฃุฎุฑู‰ ุงู„ุฑุงุจุนุฉ ูˆุงู„ุนุดุฑูˆู† ู„ูˆ ุฌุณู…ู†ุงู‡ุง ุนู„ู‰ ุงู„ุณุชุฉ ุจุชุทู„ุน
265
00:20:44,080 --> 00:20:47,560
ุงู„ remainder ุตูุฑ ู„ุฃู†ู‡ ุชู‚ุจู„ ุงู„ู‚ุณู…ุฉ ุนู„ูŠู‡ุง ู„ูƒู† ุงู„ุฑุงุจุนุฉ
266
00:20:47,560 --> 00:20:49,920
ุนุดุฑ ู„ู…ุง ู†ุฌุณู…ู‡ุง ุนู„ู‰ ุงู„ุณุชุฉ ุจุชุทู„ุน ุนู†ุฏูŠ remainder
267
00:20:49,920 --> 00:20:52,260
ุงุซู†ูŠู† ุฅุฐู† ุงู„ remainder ู‡ู†ุง ูˆุงู„ remainder ู‡ู†ุง
268
00:20:52,260 --> 00:20:56,320
ู…ุฎุชู„ูุงุช ุฅุฐู† they are not Congruent ุฃุญุฏ ุงู„ุฃู…ุฑูŠู† ุงู„ู„ูŠ
269
00:20:56,320 --> 00:21:02,220
ุจุชุดุชุบู„ูˆู‡ ู‡ูˆ ุตุญูŠุญ ู†ุฏู‰ ุงู„ุขู† ู†ุดูˆู ุฃุฎุฐู†ุง ุดุบู„ุชูŠู† ุงู„ุขู†
270
00:21:02,220 --> 00:21:07,310
ุฃุฎุฐู†ุง ุงู„ู„ูŠ ู‡ูˆ ุฅูŠู‡ุŸ ุชุทุงุจู‚ ุงู„ู€ P modulo M ุงู„ู„ูŠ ู‡ูˆ ูˆ
271
00:21:07,310 --> 00:21:11,230
ุงู„ู€ a mod m ุจุชุณุงูˆูŠ b ุจุฏู†ุง ู†ุดูˆู ุงู„ุนู„ุงู‚ุฉ the
272
00:21:11,230 --> 00:21:14,450
relation between ุฃูˆ the relationship between mod m
273
00:21:14,450 --> 00:21:20,130
and mod m notations ูŠุนู†ูŠ ู‡ุฐู‡ ุงู„ู„ูŠ ุจุงู„ุบุงู…ู‚ ู‡ุฐู‡ ุงู„ู„ูŠ
274
00:21:20,130 --> 00:21:25,350
ุจู†ู‚ุตุฏ ููŠู‡ุง ุฏุงู„ุฉ a mod m ุงู„ู„ูŠ ู‡ูŠ ู†ู‚ุตุฏู†ุง ููŠู‡ุง ุฏุงู„ุฉ
275
00:21:25,350 --> 00:21:30,350
ู„ู…ุง ุนุฑูู†ุง ู‡ูŠ ูˆุงู„ dive ุงู„ุขู† a ุชุทุงุจู‚ b mod m ุงู„ู„ูŠ
276
00:21:30,350 --> 00:21:35,560
ู‡ูŠ ุนู„ุงู‚ุฉ ุจูŠู† ุงู„ู„ูŠ ู‡ูŠ integers a ูˆ b ู‚ู„ู†ุง ุฅูŠุด ู‡ุฐุง
277
00:21:35,560 --> 00:21:40,100
ุจุชุนู†ูŠุŸ ุจุชุนู†ูŠ ุฃู† a ุชุทุงุจู‚ b modulo m ุงู„ู„ูŠ ู‡ูŠ ู…ุนู†ุงุชู‡ุง
278
00:21:40,100 --> 00:21:45,480
ุฃู† m ุจุชุฌุณู… ุงู„ a minus b ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ ู‚ู„ู†ุง ู…ุนู†ุงุชู‡ุง
279
00:21:45,480 --> 00:21:52,300
ุฃู† ุงู„ู…ุชุจู‚ูŠ ุงู„ู‚ุณู…ุฉ ู…ู† a ุนู„ู‰ m ู‡ูˆ ู†ูุณ ู…ุชุจู‚ูŠ ุงู„ู‚ุณู…ุฉ
280
00:21:52,300 --> 00:21:57,650
ู…ู† b ุนู„ู‰ m ุจูŠู†ู…ุง ู‡ุฐู‡ ูŠุง ุฌู…ุงุนุฉ ุงู„ู„ูŠ ุจุชุนู†ูŠ a mod m
281
00:21:57,650 --> 00:22:04,790
ุฃู†ู‡ ู„ู…ุง ู†ุฌุณู… ุงู„ a ุนู„ู‰ m ู…ุชุจู‚ูŠ ุงู„ู‚ุณู…ุฉ ุจุณุงูˆูŠ b ู…ุงุดูŠ
282
00:22:04,790 --> 00:22:09,870
ุฅุฐู† ู„ู…ุง ู†ู‚ูˆู„ a mod m ุจุณุงูˆูŠ b ูŠุนู†ูŠ ู…ุชุจู‚ูŠ ู‚ุณู…ุฉ a ุนู„ู‰
283
00:22:09,870 --> 00:22:15,430
m ุจุณุงูˆูŠ b ุฃู…ุง ู‡ู†ุง a ุชุทุงุจู‚ b mod m ุฃู†ู‡ ู…ุชุจู‚ูŠ ุงู„ู‚ุณู…ุฉ
284
00:22:15,430 --> 00:22:23,690
a ุนู„ู‰ m ู‡ูˆ ู†ูุณู‡ ู…ุชุจู‚ูŠ ุงู„ู‚ุณู…ุฉ b ู„ู…ุง ู†ู‚ุณู…ู‡ ุนู„ู‰ m ุงู„ุขู†
285
00:22:23,690 --> 00:22:27,050
ู‡ุฐุง ุงู„ูƒู„ุงู… ุญูƒูŠุชู‡ ุฃู†ุง it ูˆุทุจู‚ me the relation on
286
00:22:27,050 --> 00:22:30,110
the six integers ู‡ุฐู‡ ุนู„ุงู‚ุฉ ุนู„ู‰ ุงู„ุณุชุฉ integers ุจูŠู†ู…ุง
287
00:22:30,110 --> 00:22:33,370
ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ุฏุงู„ุฉ ุงุชูุงู‚ู†ุง ุนู„ูŠู‡ุง ุงู„ู„ูŠ ู‡ูŠ the
288
00:22:33,370 --> 00:22:37,230
notation denotes the function ุฃูˆ a function
289
00:22:37,230 --> 00:22:40,870
ุงู„ุนู„ุงู‚ุฉ ุจูŠู† ุงู„ุชู†ุชูŠู† ุงู„ุขู† ู‡ู†ุดูˆู that the
290
00:22:40,870 --> 00:22:44,550
relationship between these two is made clear in
291
00:22:44,550 --> 00:22:47,950
this theorem ู‡ุชูƒูˆู† ูˆุงุถุญุฉ ู…ู† ุฎู„ุงู„ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ
292
00:22:47,950 --> 00:22:51,230
ุฃู…ุงู…ู†ุง ุดูˆููˆุง ูŠุง ุฌู…ุงุนุฉ ุตู„ู‰ ุงู„ู„ู‡ ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู…
293
00:22:51,600 --> 00:22:56,700
ู„ูˆ ูƒุงู† ุนู†ุฏูŠ a ูˆ b integers ูˆ m positive integers
294
00:22:56,700 --> 00:23:03,700
ุงุญู†ุง ุงู„ a ุชุทุงุจู‚ b modulo m ู‡ูŠ ุชูƒุงูุฆ ุชู…ุงู…ุง ูŠุนู†ูŠ if
295
00:23:03,700 --> 00:23:09,620
and only if ู‡ุฐู‡ ุนู„ู‰ ุจุนุถู‡ุง ู‡ุฐู‡ ุชูƒุงูุฆ ุชู…ุงู…ุง ุฃู† ู†ู‚ูˆู„
296
00:23:09,620 --> 00:23:17,760
a mod m ุจุณุงูˆูŠ b mod m ู„ุฃู† ุจูŠ mod ุงู… ุฅูŠุด ุจุชุนู†ูŠุŸ ุฃู† ู…ุชุจู‚ูŠ
297
00:23:17,760 --> 00:23:22,600
ู‚ุณู…ุฉ ุงู„ b ุนู„ู‰ m ูŠุณุงูˆูŠ ู…ุชุจู‚ูŠ ู‚ุณู…ุฉ ุงู„ a ุนู„ู‰ m ู„ุฃู†
298
00:23:22,600 --> 00:23:25,800
ู‡ุฐู‡ ุจุชุนู†ูŠ ู…ุชุจู‚ูŠ ู‚ุณู…ุฉ ุงู„ a ุนู„ู‰ m ูˆู‡ุฐู‡ ุจุชุนู†ูŠ ู…ุชุจู‚ูŠ
299
00:23:25,800 --> 00:23:29,860
ู‚ุณู…ุฉ ุงู„ b ุนู„ู‰ m ู‡ุฐู‡ ู…ุนู†ุงุชู‡ุง ู…ุณุงูˆุงุฉ ูŠุนู†ูŠ ู…ุชุจู‚ูŠ
300
00:23:29,860 --> 00:23:33,760
ู‚ุณู…ุฉ ู‡ุฐู‡ ุนู„ู‰ ู‡ุฐู‡ ุจุณุงูˆูŠ ู…ุชุจู‚ูŠ ู‚ุณู…ุฉ ู‡ุฐู‡ ุนู„ู‰ ู‡ุฐู‡ ู‡ูˆ
301
00:23:33,760 --> 00:23:38,910
ุจุงู„ุถุจุท ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ A ุชุทุงุจู‚ B mod M ูŠุนู†ูŠ ู…ุชุทุงุจู‚ ู‚ุณู…ุฉ
302
00:23:38,910 --> 00:23:44,750
A ุนู„ู‰ M ุงู„ู„ูŠ ู‡ูˆ ู†ูุณู‡ ู…ุชุทุงุจู‚ ู‚ุณู…ุฉ B ุนู„ู‰ M ูˆูƒุฃู†ู‡ ู‡ุฐุง
303
00:23:44,750 --> 00:23:51,070
ุงู„ุชุนุจูŠุฑ ู‡ูˆ ู‡ุฐุง ุงู„ุชุนุจูŠุฑ ูˆู„ูƒู† ุจุตูˆุฑุฉ ุฃุฎุฑู‰ ู…ุงุดูŠ ุงู„ุญุงู„ุŸ
304
00:23:51,070 --> 00:23:58,070
ุทูŠุจ ุงู„ุขู† ุฅุฐุง ู‡ุฐุง ุจูƒุงูุฉ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐู‡ ุงู„ูƒู„ู…ุชูŠู† ุจุฎุฒู†
305
00:23:58,070 --> 00:24:02,820
ู‡ุฐูˆู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุฃูˆ ูƒุงูุงุชู‡ ุฎู„ูŠู†ุง ู†ุดูˆู ู…ุซุงู„ ุงู„ุขู† ุงู„ู€
306
00:24:02,820 --> 00:24:09,780
31 ูˆ 351 ู…ุชุทุงุจู‚ุชูŠู† ู„ูŠุดุŸ ู„ุฃู† 351 ู†ุงู‚ุต 31 ุชุทู„ุน 320
307
00:24:09,780 --> 00:24:14,340
ุงู„ุนุดุฑุฉ ุจุชุฌุณู…ู‡ุง ุฅุฐู† ูุนู„ุงู‹ ู…ุชุทุงุจู‚ุชูŠู† ุจุงู„ู†ุณุจุฉ ู„ู„ู…ู‚ูŠุงุณ
308
00:24:14,340 --> 00:24:20,600
ุนุดุฑุฉ ุงู„ุขู† ุทูŠุจ ุงู„ุขู† ุฅู†ูŠ ุฌูŠุช ู†ุดูˆู ุงู„ู„ูŠ ู‡ูˆ ุงู„ .. ุงู„ ..
309
00:24:20,600 --> 00:24:25,380
ุงู„ .. ู†ุธุฑุฉ ุฃุฎุฑู‰ ู„ู‡ุฐู‡ ุฃู† ู‡ุฐุง ูˆู‡ุฐูˆู„ ุงู„ู„ูŠ ู‡ูŠ ู†ูุณ ุงู„
310
00:24:25,380 --> 00:24:30,320
remainder ู„ู…ุง ู†ุฌุณู…ู‡ุง ู„ู„ุนุดุฑุฉ ู‡ุฐุง ู‡ูˆ ุงู„ุขู† 31 ู„ู…ุง
311
00:24:30,320 --> 00:24:35,160
ุชุฌุณู…ู‡ุง ุนู„ู‰ ุนุดุฑุฉ ุจูŠุทู„ุน ู…ุชุจู‚ูŠ ูˆุงุญุฏ 351 ู„ู…ุง ุชุฌุณู…ู‡ุง
312
00:24:35,160 --> 00:24:39,580
ุนู„ู‰ ุนุดุฑุฉ ุจูŠุทู„ุน ู…ุชุจู‚ูŠ ูˆุงุญุฏ ุฅุฐู† ู‡ุฐุง ุจูŠุณุงูˆูŠ ู‡ุฐุง ูŠุนู†ูŠ
313
00:24:39,580 --> 00:24:44,640
ุงู„ู„ูŠ ู‡ูŠ ุงู„ุชุทุงุจู‚ุงุช ูˆุจุงู„ู…ู†ุงุณุจุฉ ุงู„ุชุทุงุจู‚ุงุช ุงู„ู„ูŠ ู‡ูˆ
314
00:24:44,640 --> 00:24:49,300
ู…ูˆุถูˆุน ุงู„ congruences ู‡ุฐู‡ ู‡ูŠ ุฃุตู„ุงู‹ ู„ูˆุฏุงุฏุชู†ุง ุฃูˆ
315
00:24:49,300 --> 00:24:54,900
ุฎู„ูŠู†ุง ู†ู‚ูˆู„ ุงู„ู„ูŠ ุจุชุนู„ู…ู†ุง ูƒูŠู ุฃูˆ ู‚ุฏุงู… ู‡ู†ุนุฑู ุฃู†ุธู…ุฉ
316
00:24:54,900 --> 00:24:59,020
ุงู„ุนุฏ ู…ู† ุฎู„ุงู„ู‡ุง ู†ุธุงู… ุงู„ุนุฏ ุงู„ุซุงู†ูŠ ู†ุธุงู… ุงู„ุนุฏ ุงู„ุซู„ุงุซูŠ
317
00:24:59,020 --> 00:25:03,200
ุงู„ุฑุจุงุนูŠ ุงู„ุฎู…ุงุณูŠ ุงู„ุนุดุงุฑูŠ ุงู„ู„ูŠ ุจู†ุชุนุงู…ู„ ููŠู‡ ุฃูˆ ุงู„ุณุช ุนุดุฑูŠ
318
00:25:03,200 --> 00:25:07,580
ุฃูˆ ุงู„ุซู…ุงู†ูŠุฉ ุงู„ู„ูŠ ุจุฏู†ุง ุฅูŠุงู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ุธุงู… ุงู„ุนุฏ ุงู„ู„ูŠ
319
00:25:07,580 --> 00:25:11,800
ู‡ูˆ ุงู„ู„ูŠ ุจุชุจุน ู…ู† ุงู„ู…ู‚ูŠุงุณ ูŠุนู†ูŠ ู…ู‚ูŠุงุณ ุนุดุฑุฉ ุจู†ุตูŠุฑ ู…ุฌูˆู„
320
00:25:11,800 --> 00:25:15,240
ุนู† ู†ุธุงู… ุงู„ุนุฏ ุงู„ุนุดุงุฑูŠ ู…ู‚ูŠุงุณ ุงุซู†ูŠู† ุจู†ุตูŠุฑ ู…ุฌูˆู„ ุนู†
321
00:25:15,240 --> 00:25:19,440
ู†ุธุงู… ุงู„ุนุฏ ุงู„ุงุซู†ูŠู† ูˆู‡ูƒุฐุง ูˆุฅู† ุดุงุก ุงู„ู„ู‡ ู‡ู†ุฌูŠู‡ ู‚ุฏุงู…
322
00:25:19,780 --> 00:25:24,780
ุงู„ุขู† ุจูŠูƒูˆู† ู‡ูŠูƒ ุงุญู†ุง ุฎู„ุตู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุจุฏู†ุง ุฅูŠุงู‡ ููŠ
323
00:25:24,780 --> 00:25:28,540
ู‡ุฐุง ุงู„ section ูˆุนู†ุฏูŠ ุงู„ homework ุงู„ุชุงู„ูŠ ุจุฏู†ุง ุฅูŠุงู‡
324
00:25:28,540 --> 00:25:32,580
ุชุฌูŠุจูˆู„ูŠู‡ ุจุจุนุชู„ูƒู… ุนู† ูˆุงุชุณ ุจุธุจุท ุฅูŠุด ุงู„ู„ูŠ ุจุฏู†ุง ุฅูŠุงู‡ ุงู„ุขู†
325
00:25:32,580 --> 00:25:36,920
ุงู„ุณุคุงู„ ุงู„ุฃูˆู„ ุจูŠู‚ูˆู„ ู„ูŠ 31 ุชุทุงุจู‚ ู…ุงุฐุง modulo ุณุจุนุฉ ู‡ู„
326
00:25:36,920 --> 00:25:40,140
ุจุงู„ุทุงุจู‚ ุงู„ุฎุงู…ุณุฉุŒ ุจุงู„ุทุงุจู‚ ุงู„ 211ุŸ ูŠู…ูƒู† ุงู„ุทุงุจู‚
327
00:25:40,140 --> 00:25:42,720
ูˆุงุญุฏุฉุŒ ุงุซู†ุชูŠู†ุŒ ุซู„ุงุซุŒ ูƒู„ ูˆุงุญุฏุฉ ู…ู† ู‡ู†ุงูƒ ุชุดูˆู ู…ูŠู†
328
00:25:42,720 --> 00:25:46,420
ุจุงู„ุทุงุจู‚ ุงู„ 31 modulo ุงู„ุณุจุนุฉ ูˆุชุญุท ุงู„ู„ูŠ ุชุญุชู‡ุง ุฎุท
329
00:25:46,420 --> 00:25:51,430
ูˆุชู‚ูˆู„ ู„ูŠ ู„ูŠุด ุจุงู„ุทุงุจู‚ู‡ุง ูˆุงู„ุซุงู†ูŠ ู„ู…ุงุฐุง ุจุงู„ุทุจู‚ ุนุดุฑุฉุŸ
330
00:25:51,430 --> 00:25:55,430
find ุงู„ู„ูŠ ู‡ูˆ ุนุดุฑุฉ ุถุงูŠู ุซู„ุงุซุฉ ุนุดุฑ ุถุงูŠู ุซู„ุงุซุฉ ู‚ุฏ ุฅูŠุด
331
00:25:55,430 --> 00:25:59,890
ู‚ูŠู…ุชู‡ 101 ุถุงูŠู ุซู„ุงุซุฉ ูˆุนุดุฑูŠู† ุจุฑุถู‡ ู†ูุณ ุงู„ุดูŠุก ูˆุจุนุฏูŠู†
332
00:25:59,890 --> 00:26:04,170
ุฃูˆุฌุฏ ุนุดุฑุฉ modulo ุซู„ุงุซุฉ ุงู„ุขุฎุฑ ู‡ุฐูˆู„ ุฅูŠุฌุงุฏ ุฒูŠ ู…ุง ุดุฑุญู†ุง
333
00:26:04,170 --> 00:26:07,530
ู‚ุจู„ ุดูˆูŠุฉ ุงู„ุขู† question ุงู„ุซุงู„ุซ which of the
334
00:26:07,530 --> 00:26:09,710
following divides the positive integer aุŸ ูŠุนู†ูŠ
335
00:26:09,710 --> 00:26:15,070
ุนู†ุฏูŠ ููŠ positive integer a ู…ูŠู† ู…ู† ู‡ุฐูˆู„ divides
336
00:26:15,070 --> 00:26:19,950
which of the following divides the positive
337
00:26:19,950 --> 00:26:25,510
integer a ุฅูŠู‡ ุฃูˆ ุฎู„ูŠู†ุง ู†ู‚ูˆู„ which of the following
338
00:26:25,510 --> 00:26:52,400
ุฃูˆ a divides which of the following a divides
339
00:26:52,400 --> 00:26:57,500
which of the following ูŠุนู†ูŠ ู…ุด ู‡ู†ุง ุงู„ู„ูŠ ุจุฏู†ุง ู†ูˆุฌุฏ
340
00:26:57,500 --> 00:27:02,920
ู…ู†ู‡ ู‡ู„ ุงู„ a ุจุชุฌุณู… ู‡ุฐูˆู„ ูˆู„ุง ู„ุฃุŸ a ุจุชุฌุณู… ู…ูŠู† ู…ู†ู‡ู… ุจุฏูƒ
341
00:27:02,920 --> 00:27:07,360
ุชุญุฏุฏู‡ุง ูˆู‡ูŠูƒ ุจูƒูˆู† ุฎู„ุตู†ุง ุงู„ section ุงู„ุฃูˆู„ ูˆุฅู„ู‰
342
00:27:07,360 --> 00:27:11,840
ู„ู‚ุงุก ุขุฎุฑ ูˆุงู„ุณู„ุงู… ุนู„ูŠูƒู… ูˆุฑุญู…ุฉ ุงู„ู„ู‡ ูˆุจุฑูƒุงุชู‡