abdullah's picture
Add files using upload-large-folder tool
c8f3414 verified
1
00:00:00,000 --> 00:00:01,260
ู…ูˆุณูŠู‚ู‰
2
00:00:19,490 --> 00:00:23,670
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ุนูˆุฏ ุงู„ุขู† ู„ุฅูƒู…ุงู„ ู…ุง ุงุจุชุฏุฃู†ุง
3
00:00:23,670 --> 00:00:28,950
ููŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉ ูˆู‡ูˆ section 5-7 ุงู„ุฐูŠ ูŠุชุญุฏุซ ุนู†
4
00:00:28,950 --> 00:00:32,350
ุงู„ู€undetermined coefficients ุงู„ู„ูŠ ู‡ูŠ ุทุฑูŠู‚ุฉ
5
00:00:32,350 --> 00:00:38,110
ุงู„ู…ุนุงู…ู„ุงุช ุงู„ู…ุฌู‡ูˆู„ุฉ ู„ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุจู†ุญู„ ุจู‡ุฐู‡
6
00:00:38,110 --> 00:00:42,370
ุงู„ุทุฑูŠู‚ุฉ ุฅุฐุง ุชุญู‚ู‚ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุฃู…ุฑุงู† ุงู„ุฃู…ุฑ ุงู„ุฃูˆู„
7
00:00:42,370 --> 00:00:48,210
ูƒุงู†ุช ุงู„ู…ุนุงู…ู„ุงุช ูƒู„ู‡ุง ุซูˆุงุจุช ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ุฃู…ุฑ
8
00:00:48,210 --> 00:00:53,450
ุงู„ุซุงู†ูŠ ุดูƒู„ ุงู„ู€ F of X ูŠุจู‚ู‰ ุนู„ู‰ ุดูƒู„ ู…ุนูŠู† ู…ุง ู‡ูˆ ู‡ุฐุง
9
00:00:53,450 --> 00:00:57,810
ุงู„ุดูƒู„ุŸ ุฃุญุฏ ุซู„ุงุซุฉ ุฃู…ูˆุฑ ุงู„ุฃู…ุฑ ุงู„ุฃูˆู„ ุฃู† ูŠูƒูˆู† polynomial
10
00:00:57,810 --> 00:01:01,930
ุงู„ุฃู…ุฑ ุงู„ุซุงู†ูŠ polynomial ููŠ exponential ุงู„ุฃู…ุฑ
11
00:01:01,930 --> 00:01:07,170
ุงู„ุซุงู„ุซ polynomial ููŠ exponential ููŠ sin x ุฃูˆ cos x
12
00:01:07,170 --> 00:01:12,390
ุฃูˆ ู…ุฌู…ูˆุนู‡ู…ุง ุฃูˆ ุงู„ูุฑู‚ ููŠู…ุง ุจูŠู†ู‡ู…ุง ูˆุนุทูŠู†ุง ุนู„ู‰ ุฐู„ูƒ ููŠ
13
00:01:12,390 --> 00:01:17,270
ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ู…ุซุงู„ูŠู† ูˆู‡ุฐุง ู‡ูˆ ุงู„ู…ุซุงู„ ุฑู‚ู… ุซู„ุงุซุฉ ูŠุจู‚ู‰
14
00:01:17,270 --> 00:01:21,270
ุจุฏู†ุง ู†ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุฐูƒุฑู†ุง
15
00:01:21,270 --> 00:01:24,830
ููŠ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุจู†ุฌุฒุฆู‡ุง ุฅู„ู‰ ุฌุฒุฆูŠู† ุจู†ุงุฎุฏ ุงู„ู€
16
00:01:24,830 --> 00:01:28,730
homogeneous ูˆู…ู† ุซู… ุงู„ู€ non homogeneous differential
17
00:01:28,730 --> 00:01:34,790
equation ูŠุจู‚ู‰ ุจุฏุงุฌูŠ ุฃู‚ูˆู„ู‡ ุงูุชุฑุถ ุฃู† Y ุชุณุงูˆูŠ E ุฃุณ RX
18
00:01:34,790 --> 00:01:45,450
ุจูŠู‡ solution of the homogeneous differential
19
00:01:45,450 --> 00:01:51,890
equation ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชุงู„ูŠุฉ Y W Prime ุฒุงุฆุฏ Y
20
00:01:51,890 --> 00:01:57,450
ูŠุณุงูˆูŠ Zero then the characteristic equation
21
00:02:12,070 --> 00:02:18,010
ุงู„ุญู„ ุงู„ู…ุชุฌุงู†ุณ ูŠุจู‚ู‰
22
00:02:22,280 --> 00:02:32,080
The Homogeneous Differential Equation is ูŠุณุงูˆูŠ
23
00:02:32,080 --> 00:02:40,580
ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ
24
00:02:40,580 --> 00:02:44,700
ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ
25
00:02:44,700 --> 00:02:45,880
ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ
26
00:02:45,880 --> 00:02:47,560
ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ
27
00:02:47,560 --> 00:02:47,620
ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ
28
00:02:47,620 --> 00:02:51,060
ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ
29
00:02:51,060 --> 00:02:56,550
ูŠุจู‚ู‰ ุฃุฑูˆุญ ุฃุฏูˆุฑ ุนู„ู‰ particular solution ู„ุญู„
30
00:02:56,550 --> 00:03:01,730
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ู‡ูŠ non homogeneous ูุจุงุฌูŠ ุจู‚ูˆู„ู‡ the
31
00:03:01,730 --> 00:03:07,970
particular solution
32
00:03:07,970 --> 00:03:17,010
of the Differential equation start ูˆุจุฑูˆุญ ุงู„ู„ูŠ ููˆู‚
33
00:03:17,010 --> 00:03:24,150
ุงู„ุฃุณุงุณูŠุฉ ู‡ุฐู‡ ุจุณู…ูŠู‡ุง star (S) ู…ุฏูŠู„ู‡ ุงู„ุฑู…ุฒ YP ูˆุจุฏูŠ
34
00:03:24,150 --> 00:03:31,510
ุจู‚ูˆู„ ูƒุชุงู„ูŠ X to the power S V ุจุฃุฌูŠ ุนู„ู‰ ุดูƒู„ ุงู„ู„ูŠ ู‡ูˆ
35
00:03:31,510 --> 00:03:35,650
ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุฑู‚ู… ููŠ sign ูŠุนู†ูŠ polynomial
36
00:03:35,650 --> 00:03:39,790
ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุตูุฑูŠุฉ ู…ุถุฑูˆุจุฉ ููŠ sign ุฅุฐุง ุจุฏูŠ ุฃูƒุชุจ
37
00:03:39,790 --> 00:03:43,630
polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุตูุฑูŠุฉ ููŠ sign ุฒุงุฆุฏ
38
00:03:43,630 --> 00:03:49,090
polynomial ููŠ cosine ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† a
39
00:03:49,090 --> 00:03:55,610
ููŠ cosine ุงู„ู€ x ุฒุงุฆุฏ b ููŠ sine ุงู„ู€ x ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
40
00:03:55,610 --> 00:04:04,280
ุนู†ุฏู†ุง ู‡ุฐุง ุนู†ุฏู…ุง ุฃุจุญุซ ุนู† ู‚ูŠู…ุฉ S ู‡ู„ ู‡ูŠ 0 ุฃูˆ 1 ุฃูˆ 2 ุฃูˆ
41
00:04:04,280 --> 00:04:06,980
3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ
42
00:04:06,980 --> 00:04:10,500
3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ
43
00:04:10,500 --> 00:04:10,560
3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ
44
00:04:10,560 --> 00:04:10,600
3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ
45
00:04:10,600 --> 00:04:11,400
3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ
46
00:04:11,400 --> 00:04:11,720
3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ
47
00:04:11,720 --> 00:04:21,600
3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ
48
00:04:24,720 --> 00:04:28,780
ุจูˆุงุญุฏ ูˆุดูˆู ู„ูˆ ุญุทูŠุชู‡ุง ุจูˆุงุญุฏ ุจูŠุธู„ ููŠู‡ ุชุดุงุจู‡ ูˆู„ุง ุจูŠูƒูˆู†
49
00:04:28,780 --> 00:04:34,980
ุงู†ุชู‡ู‰ ู‡ุฐุง ุงู„ุชุดุงุจู‡ ุฅุฐุง ู„ูˆ ุญุทูŠุช S ุจูˆุงุญุฏ ุจูŠุตูŠุฑ AX Cos
50
00:04:34,980 --> 00:04:41,400
ูˆู‡ู†ุง BX Sin ู‡ู„ ููŠ ุฃูŠ term ู‡ู†ุง ูŠุดุจู‡ ุฃูŠ term ู‡ู†ุง
51
00:04:41,400 --> 00:04:48,920
ุทุจุนุง ู„ุฃ ูŠุจู‚ู‰ ู‡ู†ุง here ู‡ู†ุง ุงู„ู€ S ุชุณุงูˆูŠ ูˆุงุญุฏ ู„ู…ุง ุญุท ุงู„ู€
52
00:04:48,920 --> 00:04:53,740
S ุชุณุงูˆูŠ ูˆุงุญุฏ ุจูŠูƒูˆู† ุฃุฒู„ู†ุง ุงู„ุดุจู‡ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุชู…ุงู…ุง ู…ุง
53
00:04:53,740 --> 00:04:56,880
ุจูŠู† ุงู„ู€ complementary solution ูˆ ุงู„ู€ particular
54
00:04:56,880 --> 00:05:02,600
solution ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ูŠุตุจุญ YP ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ
55
00:05:02,600 --> 00:05:12,510
AX ููŠ cosine X ุฒุงุฆุฏ BX ููŠ sine X ุงู„ุขู† ุจุฏู†ุง ู†ุญุฏุฏ
56
00:05:12,510 --> 00:05:19,010
ู‚ูŠู…ุชูŠู† ุซูˆุงุจุช ุงู„ู€ A ูˆ ุงู„ู€ B ู„ุฐู„ูƒ ุจุฏูŠ ุงุดุชู‚ ู…ุฑุฉ ูˆ ุงุซู†ูŠู†
57
00:05:19,010 --> 00:05:26,590
ูˆ ุฃุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฎุฏ Y P Prime
58
00:05:26,930 --> 00:05:34,310
ู‡ุฐู‡ ุงู„ู…ุดุชู‚ุฉ ุญุตู„ ุถุฑุจ ุฏุงู„ุชูŠู† ูŠุจู‚ู‰ a ููŠ cos x ู†ุงู‚ุต ax
59
00:05:34,310 --> 00:05:41,070
ููŠ sin x ุฒุงุฆุฏ ูƒู…ุงู† ู‡ุฐู‡ ุญุตู„ ุถุฑุจ ุฏุงู„ุชูŠู† ูŠุจู‚ู‰ b ููŠ
60
00:05:41,070 --> 00:05:50,100
sin x ุฒุงุฆุฏ bx ููŠ cos x ูŠุจู‚ู‰ ุงุดุชู‚ู†ุง ูƒู„ู‡ ู…ู† X ูˆ Cos X
61
00:05:50,100 --> 00:05:56,040
ูˆ X ูˆ Sin X ูƒุญุงุตู„ ุถุฑุจ ุฏุงู„ุชูŠู† ู‡ุฐุง ุญุตู„ู†ุง ุนู„ู‰ Y' ุทุจุนุง
62
00:05:56,040 --> 00:06:00,020
ู…ุง ููŠุด ูˆู„ุง term ุฒูŠ ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ ุจูŠุฎู„ูŠ ูƒู„ ุดูŠุก ุฒูŠ ู…ุง
63
00:06:00,020 --> 00:06:06,500
ู‡ูˆ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฌูŠุจ YPW' ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุดุชู‚ ู‡ุฐู‡ ุจุงู„ุณุงู„ุจ
64
00:06:06,500 --> 00:06:16,830
A Sin X ูˆู‡ุฐู‡ ุงู„ุณุงู„ุจ A Sin X ุจุนุฏ ุฐู„ูƒ ุงู„ุณุงู„ุจ ax ููŠ
65
00:06:16,830 --> 00:06:23,190
cos x ุงุดุชู‚ุช ู‡ุฐู‡ ุญุตู„ ุถุฑุจ ุฏุงู„ุชูŠู† ุจู†ุงู†ูŠุฌ ุงู„ู„ูŠ ุจุนุฏู‡ุง
66
00:06:23,190 --> 00:06:29,610
ูŠุจู‚ู‰ ุฒุงุฆุฏ b ููŠ cos x ุฎู„ุตู†ุง ู…ู†ู‡ุง ุจุฏุฃุช ุฃุดุชู‚ ู‡ุฐู‡ ุญุตู„
67
00:06:29,610 --> 00:06:38,190
ุถุฑุจ ุฏุงู„ุชูŠู† ูŠุจู‚ู‰ ุฒุงุฆุฏ b ููŠ cos x ู†ุงู‚ุต bx ููŠ sin x
68
00:06:38,620 --> 00:06:42,780
ูŠุจู‚ู‰ ุงุดุชู‚ู†ุงู‡ ุญุตู„ ุถุฑุจ ุฏุงู„ุชูŠู† ู‡ู†ุง ููŠ ุจุนุถ ุงู„ุนู†ุงุตุฑ
69
00:06:42,780 --> 00:06:50,640
ู…ุชุดุงุจู‡ุฉ ู‡ูŠ ุนู†ุฏ ู‡ู†ุง ุณุงู„ุจ ุงุซู†ูŠู† a ููŠ sine ุงู„ู€ X ูˆุนู†ุฏูŠ
70
00:06:50,640 --> 00:06:56,880
ูƒู…ุงู† ุฒุงุฆุฏ ุงุซู†ูŠู† b ููŠ cosine ุงู„ู€ X ู‡ุฏูˆู„ ุงุซู†ูŠู† ู…ุน ุจุนุถ
71
00:06:56,880 --> 00:07:03,720
ูˆู‡ุฏูˆู„ ุงุซู†ูŠู† ู…ุน ุจุนุถ ุจุงู‚ูŠ ุนู†ุฏูŠ ู†ุงู‚ุต ax ููŠ cosine ุงู„ู€
72
00:07:03,720 --> 00:07:10,180
X ูˆู†ุงู‚ุต bx ููŠ sine ุงู„ู€ X ุจุนุฏ ุฐู„ูƒ ุงุฎุฐ ุงู„ู…ุนู„ูˆู…ุงุช ุงู„ู„ูŠ
73
00:07:10,180 --> 00:07:15,040
ุญุตู„ุช ุนู„ูŠู‡ุง ูˆ ุฃุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ star ูŠุจู‚ู‰ ู‡ู†ุง
74
00:07:15,040 --> 00:07:23,320
substitute in
75
00:07:23,320 --> 00:07:33,740
the differential equation star we get ุจู†ุญุตู„ ุนู„ู‰ ู…ุง
76
00:07:33,740 --> 00:07:34,200
ูŠุฃุชูŠ
77
00:07:40,110 --> 00:07:43,630
ูŠุฌุจ ุฃู† ุงุฒุงู„ุฉ ูˆูŠ ุฏุงุจู„ูŠ ุจุฑุงูŠู… ูˆุงุญุท ู‚ูŠู…ุชู‡ุง ูˆูŠ ุฏุงุจู„ูŠ
78
00:07:43,630 --> 00:07:48,950
ุจุฑุงูŠู… ู‡ูŠ ุญุตู„ู†ุง ุนู„ูŠู‡ุง ูŠุจู‚ู‰ ู†ุงู‚ุต ุงุซู†ูŠู† ุงู ุตูŠู†
79
00:07:48,950 --> 00:07:55,980
ุงู„ุฒุงูˆูŠุฉ ุซุชุง ุตูŠู† ุงู„ุฒุงูˆูŠุฉ X ุชู…ุงู…ุŸ ุงู„ู„ูŠ ุจุนุฏู‡ุง ุฒุงุฆุฏ
80
00:07:55,980 --> 00:08:04,340
ุงุซู†ูŠู† B ููŠ cosine ุงู„ู€ X ุงู„ู„ูŠ ุจุนุฏู‡ุง ู†ุงู‚ุต ุงู„ู€ AX ููŠ
81
00:08:04,340 --> 00:08:11,080
cosine ุงู„ู€ X ู†ุงู‚ุต ุงู„ู€ BX ููŠ sine ุงู„ู€ X ู‡ุฐุง ูƒู„ู‡ ุงู„ู„ูŠ
82
00:08:11,080 --> 00:08:17,400
ุฃุฎุฏุชู‡ ู…ูŠู†ุŸ YW prime ุถุงูŠู‚ ู„ู†ุง ู…ูŠู†ุŸ Y ูˆูŠู† Y ู‡ุงูŠู‡ุงุŸ
83
00:08:17,400 --> 00:08:24,560
ุจุฏู‡ ุฃุฌู…ุนู‡ู… ู‡ุฏูˆู„ ูŠุจู‚ู‰ ุฒุงุฆุฏู‡ู‡ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ax ููŠ cos
84
00:08:24,560 --> 00:08:33,520
x ูˆุจุนุฏ ู‡ูŠ ูƒุฏู‡ ุฒุงุฆุฏ bx ููŠ sin x ูƒู„ู‡ ุจูŠุณุงูˆูŠ ุงู„ุทุฑู
85
00:08:33,520 --> 00:08:40,300
ุงู„ู„ูŠ ูŠุชุจุน ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ู‡ูˆ 4 ููŠ sin x ุจู†ุฌูŠ ู†ุฌู…ุน ุนู†
86
00:08:40,300 --> 00:08:47,940
ax cos ุจุงู„ุณุงู„ุจ ูˆ ax cos ุจุงู„ู…ูˆุฌุจ ุนู†ุง bx sin ุจุงู„ุณุงู„ุจ
87
00:08:47,940 --> 00:08:53,220
ูˆ bx ุจูŠู…ูŠู† ุจุงู„ู…ูˆุฌุจ ูŠุจู‚ู‰ ุตูุฉ ุงู„ู…ุนุงุฏู„ุฉ ุนู„ู‰ ุงู„ุดูƒู„
88
00:08:53,220 --> 00:09:00,740
ุงู„ุชุงู„ูŠ ู†ุงู‚ุต ุงุซู†ูŠู† a sin x ุฒุงุฆุฏูŠ ุงุซู†ูŠู† b cos x ูƒู„ู‡
89
00:09:00,740 --> 00:09:07,540
ุจุฏู‡ ูŠุณุงูˆูŠ ุฃุฑุจุน sin x ุจุนุฏ ุฐู„ูƒ ู†ู‚ุฑุฑ ุงู„ู…ุนุงู…ู„ุงุช ููŠ
90
00:09:07,540 --> 00:09:13,340
ุงู„ุทุฑููŠู† ุฅุฐุง ู„ูˆ ู‚ุฑุฑู†ุง ุงู„ู…ุนุงู…ู„ุงุช ููŠ ุงู„ุทุฑููŠู† ุจุณู†ุง ู†ู‚ุต
91
00:09:13,340 --> 00:09:19,580
ุงุซู†ูŠู† a ุจุฏูŠ ุฃุณุงูˆูŠ ู‚ุฏุงุดุŸ ุฃุฑุจุน ูˆุนู†ุฏูƒ ุงุซู†ูŠู† b ุจุฏูŠ ุนู†ุฏูŠ
92
00:09:19,580 --> 00:09:26,520
cosine ู‡ู†ุง ู…ุง ุนู†ุฏู†ุงุด ูŠุจู‚ู‰ ุจูŠู‡ Zero ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€ a
93
00:09:26,520 --> 00:09:33,330
ุชุณุงูˆูŠ ุณุงู„ุจ ุงุซู†ูŠู† ูˆ ุงู„ู€ b ุชุณุงูˆูŠ Zero ูŠุจู‚ู‰ ุฃุตุจุญ ุดูƒู„ ุงู„ู€
94
00:09:33,330 --> 00:09:46,570
YP ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ูŠุจู‚ู‰
95
00:09:46,570 --> 00:09:50,570
ุฃุตุจุญ ู‡ุฐุง ุดูƒู„ ุงู„ู€ YP
96
00:10:01,840 --> 00:10:11,150
Y ูŠุณุงูˆูŠ YC ุฒุงุฆุฏ YP ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ูŠุตุจุญ y ูŠุณุงูˆูŠ yc ู‡ูŠ
97
00:10:11,150 --> 00:10:20,070
ุงู„ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ูŠุจู‚ู‰ c1 cos x ุฒุงุฆุฏ c2 ููŠ sin x ูˆุฒุงุฆุฏ
98
00:10:20,070 --> 00:10:28,010
yp ู†ุงู‚ุต 2x ููŠ cos x ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุญู„ ุงู„ู†ู‡ุงุฆูŠ ุชุจุน ู…ู†ุŸ
99
00:10:28,010 --> 00:10:32,990
ุชุจุน ุงู„ู…ุนุงุฏู„ุฉ ู„ุงุญุธูŠ ูˆู„ุง term ู…ู† ุงู„ุซู„ุงุซ termุงุช ุฒูŠ
100
00:10:32,990 --> 00:10:38,240
ุงู„ุซุงู†ูŠ ู…ุง ููŠุด ุชุดุงุจู‡ ุจูŠู† ุฃูŠ term ูˆุงู„ู€ term ุงู„ุซุงู†ูŠ
101
00:10:38,240 --> 00:10:46,440
ุงู„ู…ุซุงู„ ุฑู‚ู… ุฃุฑุจุนุฉ ูŠุจู‚ู‰ example ุฃุฑุจุนุฉ
102
00:10:46,440 --> 00:10:50,720
ุจู‚ูˆู„
103
00:10:50,720 --> 00:10:56,260
ุฏูŠ term a suitable
104
00:10:56,260 --> 00:11:03,480
form ุดูƒู„
105
00:11:03,480 --> 00:11:09,990
ู…ู†ุงุณุจ For the
106
00:11:09,990 --> 00:11:19,330
particular solution
107
00:11:19,330 --> 00:11:23,490
of the
108
00:11:23,960 --> 00:11:32,520
Differential equation ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ YW' ู†ุงู‚ุต
109
00:11:32,520 --> 00:11:49,540
4Y' ุฒุงุฆุฏ 4Y ูŠุณุงูˆูŠ 2X ุชุฑุจูŠุน ุฒุงุฆุฏ 4X E ุฃุณ 2X ุฒุงุฆุฏ X
110
00:11:49,540 --> 00:11:55,100
ููŠ Sin 2X ูˆู‡ุฐู‡ ุจุฏูŠ ุงุณู…ูŠู‡ุง ุงู„ู…ุนุงุฏู„ุฉ ู‡ูŠ ู…ู†
111
00:11:55,100 --> 00:12:00,960
ุงู„ู€ star ูˆุจูŠู† ุฌุณูŠู† don't
112
00:12:00,960 --> 00:12:07,800
don't evaluate the
113
00:12:07,800 --> 00:12:08,620
constants
114
00:12:38,460 --> 00:12:43,640
ู‚ุงู„ุจ ุงู„ูƒูˆูŠู†ุฉ ุชุงู†ูŠู†ู‚ุฑุฃ ุงู„ุณุคุงู„ ู…ุฑุฉ ุซุงู†ูŠุฉ ูˆู†ุดูˆู ุดูˆ
115
00:12:43,640 --> 00:12:51,120
ุงู„ู…ุทู„ูˆุจ ุจูŠู‚ูˆู„ ู„ูŠ ุญุฏุฏ ุญู„ ููŠ ุดูƒู„ ู…ู†ุงุณุจ ู„ู„ู€ particular
116
00:12:51,120 --> 00:12:54,400
solution y, z ุชุจุน ุงู„ู€ differential equation ู‡ุฐุง
117
00:12:54,400 --> 00:12:57,020
ูŠุจู‚ู‰ ุงู„ู†ุงุณ ุจุชุญุฏุฏ ุดูƒู„ ุงู„ู€ particular solution
118
00:12:57,020 --> 00:13:00,840
ูˆูŠู‚ูˆู„ ู„ูŠ ู…ุง ุชุญุณุจุด ุงู„ุซูˆุงุจุช ุงุถุงูŠุน ุดูˆุงุฌุฏูƒ ูˆุฃู†ุช ุจุชุฌูŠุจ
119
00:13:00,840 --> 00:13:04,120
ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ูˆุงู„ุซุงู†ูŠุฉ ูˆุชุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ูˆุชุฌูŠุจ
120
00:13:04,120 --> 00:13:07,940
ู„ูŠู‡ ู‚ุฏ ุงูŠุด ู‚ูŠู…ุฉ a ูˆ b ุฃูˆ a ูˆ b ูˆ c ูˆู…ุง ุฅู„ุง ุจุชุฏูŠุด ู‚ูŠู…ุฉ
121
00:13:07,940 --> 00:13:11,650
ุซูˆุงุจุช ุจุณ ู‡ุชู„ูŠ ุดูƒู„ ุงู„ู€ main ุงู„ู€ Particular solution ู„ูŠุณ
122
00:13:11,650 --> 00:13:15,790
ู„ุงุฒู… ูŠูƒูˆู† ู‚ูŠู…ุชู‡ ุซุงุจุชุฉ ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ูŠุจู‚ู‰ ูŠุญุชุงุฌ
123
00:13:15,790 --> 00:13:20,350
ู„ู„ู…ุนุงุฏู„ุฉ ูŠุญุชุงุฌ ุฃู† ูŠุฃุฎุฐ ุงู„ู€ Homogeneous differential
124
00:13:20,350 --> 00:13:24,550
equation ูŠุจู‚ู‰ ูŠุจุฏุฃ ูƒู…ุง ุจุฏุฃุช ููŠ ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ู‚ุจู„ู‡
125
00:13:24,550 --> 00:13:29,290
let Y ุชุณุงูˆูŠ E ุฃุณ RX ุจุฅูŠู‡ุŸ
126
00:13:41,220 --> 00:13:50,680
ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ the characteristic Equation is R
127
00:13:50,680 --> 00:13:56,060
ุชุฑุจูŠุน ู†ุงู‚ุต ุฃุฑุจุนุฉ R ุฒุงุฆุฏ ุฃุฑุจุนุฉ ูŠุณุงูˆูŠ Zero ุฃูˆ ุฃู†
128
00:13:56,060 --> 00:14:02,560
ุดุฆุชู… ูู‚ูˆู„ูˆุง R ู†ุงู‚ุต ุงุซู†ูŠู† ู„ูƒู„ ุชุฑุจูŠุน ุชุณุงูˆูŠ Zero ุฃูˆ
129
00:14:02,560 --> 00:14:09,370
ุงู„ู€ R ุชุณุงูˆูŠ ุงุซู†ูŠู† ูˆุงู„ุญู„ ู‡ุฐุง ู…ูƒุจุฑ ูƒู… ู…ุฑุฉุŸ ูŠุจู‚ู‰ ู…ุฑุชูŠู†
130
00:14:09,370 --> 00:14:12,850
ูŠุจู‚ู‰ of multiplicity two
131
00:14:19,800 --> 00:14:25,640
2 ูŠุนู†ูŠ ุงู„ุญู„ ู…ูƒุฑุฑ ู…ุฑุชูŠู† ุจู†ุงุก ุนู„ูŠู‡ ุจุฑูˆุญ ุจู‚ูˆู„ู‡ ู‡ู†ุง
132
00:14:25,640 --> 00:14:32,220
ูŠุจู‚ู‰ solution yc ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ุญู„ real ูˆู…ูƒุฑุฑ ู…ุฑุชูŠู†
133
00:14:32,220 --> 00:14:38,680
ูŠุจู‚ู‰ c1 ุฒุงุฆุฏ c2x e ุฃุณ r
134
00:14:44,740 --> 00:14:49,820
ุจู†ุจุฑูˆุฒ ู‡ุฐุง ุงู„ุญู„ ูˆุจู†ุณูŠุจู‡ ูˆุจู†ุฑูˆุญ ู†ุฑุฌุน ู„ู‡ ุจุนุฏ ู‚ู„ูŠู„
135
00:14:49,820 --> 00:14:52,800
ุงู„ุขู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู„ู€ non homogeneous differential
136
00:14:52,800 --> 00:14:56,280
equation ุงู„ู„ูŠ ุงู„ู€ star ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจุฏู†ุง ู†ุชุทู„ุน ุนู„ู‰
137
00:14:56,280 --> 00:15:00,240
ุดูƒู„ ุงู„ู€ F of X ุงู„ู„ูŠ ู‡ูˆ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ู‡ู„ ู‡ูŠ
138
00:15:00,240 --> 00:15:05,740
polynomial ูู‚ุทุŸ ุฃูˆ polynomial ููŠ exponential ุฃูˆ
139
00:15:05,740 --> 00:15:09,360
polynomial ููŠ sin ุฃูˆ cos ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ุญู…ุฏ ู„ู„ู‡ ุฌุงูŠุจุฉ
140
00:15:09,360 --> 00:15:13,720
ุงู„ุซู„ุงุซ ุญุงู„ุงุช ูƒู„ู‡ู… ุจุณุคุงู„ ุงู†ูˆุงุนูŠ ู‡ูŠ polynomial ู…ู†
141
00:15:13,720 --> 00:15:17,180
ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู†ูŠุฉ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ
142
00:15:17,180 --> 00:15:21,820
exponential polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ sin ุฅุฐุง
143
00:15:21,820 --> 00:15:27,630
ุฅูŠุด ู‡ุฃุนู…ู„ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏูŠุŸ ู‡ุฃุฌุฒู‚ู‡ุง ุฅู„ู‰ ุซู„ุงุซ
144
00:15:27,630 --> 00:15:31,690
ู…ุนุงุฏู„ุงุช ุชู…ุงู…ุŸ ูˆ ุฃุญู„ ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู… ูˆ ุฃุฌูŠุจ ุงู„ู€
145
00:15:31,690 --> 00:15:35,390
particular solution ุชุจุนู‡ุง ูˆุฃุฌู…ุน ุงู„ุญู„ูˆู„ ุงู„ุซู„ุงุซุฉ
146
00:15:35,390 --> 00:15:38,810
ุจูŠุนุทูŠู†ูŠ ุงู„ู€ particular solution ู„ู…ูŠู†ุŸ ู„ู„ู…ุนุงุฏู„ุฉ
147
00:15:38,810 --> 00:15:43,970
ุทุจู‚ุง ู„ู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุฃุนุทุงู†ูŠู‡ุง ู„ูƒู… ููŠ ุฃูˆู„ section ููŠ
148
00:15:43,970 --> 00:15:46,970
ุงู„ู€ non homogeneous differential equation ู‚ูˆู„ู†ุง ู„ูƒู…
149
00:15:46,970 --> 00:15:53,150
ู‡ุฐุง ุจูŠู„ุฒู…ู†ุง ู„ู…ูŠู†ุŸ ู„ู„ู€ sections ุงู„ู‚ุงุฏู…ุฉ ุชู…ุงู…ุŸ ูŠุจู‚ู‰
150
00:15:53,150 --> 00:16:01,260
ุจุฏุงุฌูŠ ุฃู‚ูˆู„ู‡ ู‡ู†ุง differential equation star is
151
00:16:01,260 --> 00:16:08,360
written as ูŠู…ูƒู†ู†ุง ุฃู† ู†ูƒุชุจู‡ุง ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุงู„ู€ y
152
00:16:08,360 --> 00:16:14,460
double prime ู†ุงู‚ุต ุฃุฑุจุนุฉ y prime ุฒุงุฆุฏ ุฃุฑุจุนุฉ y ูŠุณุงูˆูŠ
153
00:16:14,460 --> 00:16:20,580
ูƒู…ุŸ ูŠุณุงูˆูŠ ุงุซู†ูŠู† x ุชุฑุจูŠุน ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ
154
00:16:20,580 --> 00:16:33,690
ู…ูŠู†ุŸ YW'-4Y' ุฒุงุฆุฏ 4Y ูŠุณุงูˆูŠ 4XE2X
155
00:16:33,690 --> 00:16:45,370
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุซุงู„ุซุฉ YW'-4Y' ุฒุงุฆุฏ 4Y ูŠุณุงูˆูŠ XSIN2X ูŠุณุงูˆูŠ
156
00:16:45,370 --> 00:16:50,350
X ููŠ SIN2X ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
157
00:16:58,280 --> 00:17:03,840
ุทูŠุจุŒ ุงู„ุขู† ูŠุนู†ูŠ ูƒุฃู†ู‡ ุตุงุฑ ุนู†ุฏูŠ ู…ุด ู…ุณุฃู„ุฉ ูˆุงุญุฏุฉุŒ ุซู„ุงุซ
158
00:17:03,840 --> 00:17:07,120
ู…ุณุงุฆู„ุŒ ุจุฏูŠ ุฃุญู„ ูƒู„ ูˆุงุญุฏ ุฃุฌูŠุจ ุงู„ู€ particle solution
159
00:17:07,120 --> 00:17:12,980
ูƒุฃู†ู‡ ู„ุง ุนู„ุงู‚ุฉ ู„ู‡ุง ุจู…ูŠู†ุŸ ุจุงู„ุฃุฎุฑู‰ุŒ ูŠุจู‚ู‰ ู‡ู†ุง ุจุฏูŠ ุฃุฌูŠุจ
160
00:17:12,980 --> 00:17:20,180
ุงู„ู€ YP1 ูŠุจู‚ู‰ YP1 ูŠุณุงูˆูŠ X to the power S ููŠู‡ุŒ ู‡ุฐู‡
161
00:17:20,180 --> 00:17:21,740
polynomial ู…ู† ุงู„ุฏุฑุฌุฉ
162
00:17:34,810 --> 00:17:40,490
ู‡ู„ ุฃูŠ term ู…ู† ู‡ู†ุง ูŠุดุจู‡
163
00:17:40,490 --> 00:17:42,250
ุฃูŠ term ููˆู‚ุŸ
164
00:17:45,280 --> 00:17:52,060
ู…ุถุฑูˆุจุฉ ูŠุนู†ูŠ ู‡ุฐุง C1 E2 X ูˆ C2 X E2 ููŠู‡ุŸ ู…ุง ุนู†ุฏูŠุด
165
00:17:52,060 --> 00:17:56,020
exponential ู‡ู†ุงูƒ ุจู…ุง ููŠุด ูŠุจู‚ู‰ ู‡ู†ุง S ุจู‚ุฏุฑ ุฅูŠู‡ุŸ ุจ
166
00:17:56,020 --> 00:18:03,680
Zero ูŠุจู‚ู‰ here ุงู„ู€ S ุชุณุงูˆูŠ Zero ูŠุจู‚ู‰ ุฃุตุจุญ Y P1 ุจุฏู‡
167
00:18:03,680 --> 00:18:11,780
ูŠุณุงูˆูŠ A0 X ุชุฑุจูŠุน ุฒุงุฆุฏ A1 X ุฒุงุฆุฏ A2 ุณูŠุจูˆู†ุง ู…ู† ู‡ุฐุง
168
00:18:11,780 --> 00:18:20,370
ู†ู†ุชู‚ู„ ุนู„ู‰ ุงู„ู„ูŠ ุจุนุฏู‡ุง ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ ูŠุจู‚ู‰
169
00:18:20,370 --> 00:18:23,230
ุจุฏูŠ ุฃูƒุชุจ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€
170
00:18:23,230 --> 00:18:26,990
exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ
171
00:18:26,990 --> 00:18:32,070
ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial
172
00:18:32,070 --> 00:18:34,410
ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ
173
00:18:34,410 --> 00:18:37,350
polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential
174
00:18:37,350 --> 00:18:37,390
exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ
175
00:18:37,390 --> 00:18:38,650
ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial
176
0
201
00:20:37,040 --> 00:20:47,000
ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ู…ุถุฑูˆุจ ููŠ cos 2x ุฒุงุฆุฏ e<sup>x</sup>
202
00:20:47,000 --> 00:20:53,980
ุฒุงุฆุฏ e<sup>x</sup> ูƒู„ู‡ ู…ุถุฑูˆุจ ููŠ sin 2x ูˆ exponential ู…ุงุนู†ุฏูŠุด
203
00:20:56,240 --> 00:21:03,100
ู‡ู„ ุฃูŠ term ู…ู† ุงู„ู…ุณุชุทูŠู„ ุงู„ู„ูŠ ููˆู‚ ู‡ุฐุง ูŠุดุจู‡ ุฃูŠ term
204
00:21:03,100 --> 00:21:07,720
ู…ู† ุงู„ู…ุณุชุทูŠู„ ุงู„ู„ูŠ ููˆู‚ ู‡ุฐุงุŸ ู„ุฃ ูˆู„ุง ููŠู‡ sign ูˆู„ุง cos
205
00:21:07,720 --> 00:21:08,120
ุณุงูŠู†
206
00:21:13,370 --> 00:21:20,650
ุงู„ู€ S ุจุฏู‡ุง ุชุณุงูˆูŠ 0 ูŠุจู‚ู‰ ุฃุตุจุญ YP3 ุจุฏู‡ุง ุชุณุงูˆูŠ D e<sup>x</sup>
207
00:21:20,650 --> 00:21:32,590
X ุฒุงุฆุฏ D1 ููŠ Cos 2X ุฒุงุฆุฏ E e<sup>x</sup> ุฒุงุฆุฏ E1 ููŠ Sin
208
00:21:32,590 --> 00:21:38,120
2X ูŠุจู‚ู‰ ุงู„ู€ Particular solution ุงู„ู„ูŠ ุจุฏู†ุง ูŠุง ุจู†ุงุช
209
00:21:38,120 --> 00:21:47,060
ูŠุจู‚ู‰ ูŠุณุงูˆูŠ YP1 ุฒุงุฆุฏ YP2 ุฒุงุฆุฏ YP3 ูŠุจู‚ู‰ ุฃุตุจุญ YP
210
00:21:47,060 --> 00:21:55,380
ูŠุณุงูˆูŠ YP1 ู‡ุงูŠ ูˆ ุจู†ุฒู„ู‡ ุฒูŠ ู…ุง ู‡ูˆ A0 X ุชุฑุจูŠุน A1X ุฒุงุฆุฏ
211
00:21:55,380 --> 00:21:57,580
A2 ุฒุงุฆุฏ
212
00:22:19,860 --> 00:22:21,260
YP2 YP3 YP4 YP5 YP6 YP7
213
00:22:29,550 --> 00:22:36,330
ูŠุจู‚ู‰ ู‡ุฐุง ูƒู„ู‡ ูŠุนุชุจุฑ ู…ู† ุงู„ particular solution ุงู„ู„ูŠ
214
00:22:36,330 --> 00:22:41,990
ู…ุทู„ูˆุจ ุนู†ู‡ุง ุญุฏ ููŠูƒูˆุง ู„ู‡ ุฃูŠ ุชุณุงุคู„ ู‡ู†ุง ููŠ ู‡ุฐุง ุงู„ุณุคุงู„ุŸ
215
00:22:41,990 --> 00:22:48,270
ููŠ ุฃูŠ ุชุณุงุคู„ุŸ ุทูŠุจ ุนู„ู‰ ู‡ูŠูƒ ุงู†ุชู‡ู‰ ู‡ุฐุง ุงู„ section ูˆุฅู„ู‰
216
00:22:48,270 --> 00:22:55,590
ูŠูƒูˆู† ุฃุฑู‚ุงู… ุงู„ู…ุณุงุฆู„ ูŠุจู‚ู‰ exercises ุฎู…ุณุฉ ุณุจุนุฉ
217
00:22:55,590 --> 00:23:01,730
ุงู„ู…ุณุงุฆู„ ุงู„ุชุงู„ูŠุฉ ู…ู† ูˆุงุญุฏ ู„ุบุงูŠุฉ ุนุดุฑูŠู† ูˆู…ู† ุฎู…ุณุฉ
218
00:23:01,730 --> 00:23:08,730
ูˆุนุดุฑูŠู† ู„ุบุงูŠุฉ ุซู„ุงุซูŠู† ู…ุฑู†ูŠ
219
00:23:08,730 --> 00:23:13,530
ุฃุฏูŠูƒูŠ ู‚ุฏ ู…ุง ุชู‚ุฏุฑูŠ ุจุชุตูŠุฑ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน ุจุตูŠุฑ ุฌุฏุง
220
00:23:26,290 --> 00:23:49,450
ุงู„ู„ูŠ ููˆู‚ ู‡ุฐุง ุงู†ุชู‡ูŠู†ุง ู…ู†ู‡ ุฃุธู† ุฎู„ุงุตุŸ
221
00:23:49,450 --> 00:23:55,440
ุทูŠุจ ู„ู…ุง ู†ู†ุชู‚ู„ ุฅู„ู‰ ุงู„ section ุงู„ุฃุฎูŠุฑ ู…ู† ู‡ุฐุง ุงู„
222
00:23:55,440 --> 00:24:00,320
chapter ูˆู‡ูŠ ุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ู…ู† ุทุฑู‚ ุญู„ ุงู„ non
223
00:24:00,320 --> 00:24:03,800
homogeneous differential equation ูˆู‡ูŠ ุทุฑูŠู‚ุฉ ุงู„
224
00:24:03,800 --> 00:24:11,280
variation of parameters ุชุบูŠูŠุฑ ุงู„ูˆุณูŠุทุงุช ูŠุจู‚ู‰ 85 ุฃูˆ
225
00:24:11,280 --> 00:24:19,340
58 ุงู„ู„ูŠ ู‡ูˆ variation of
226
00:24:20,530 --> 00:24:29,030
Parameters ู†ุณุชุฎุฏู…
227
00:24:29,030 --> 00:24:39,410
ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ ู†ุณุชุฎุฏู… ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ to find a
228
00:24:39,410 --> 00:24:45,850
particular solution to find a particular
229
00:24:54,020 --> 00:24:58,120
YP ุงู„ุฑู…ุฒ ู„ู„ุฅูŠู‚ุงุน
230
00:25:01,140 --> 00:25:07,280
Differential equation ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ a<sub>0</sub> as a
231
00:25:07,280 --> 00:25:14,040
function of x ุฒุงุฆุฏ ุงู„ a<sub>1</sub> as a function of x ู„ู„
232
00:25:14,040 --> 00:25:21,470
derivative n-1 ุฒุงุฆุฏ ู†ุจู‚ู‰ ู…ุงุดูŠ ู„ุบุงูŠุฉ a<sub>n</sub>
233
00:25:21,470 --> 00:25:27,750
-1 as a function of x y' ุฒุงุฆุฏ a<sub>n</sub> as a
234
00:25:27,750 --> 00:25:33,130
function of x ููŠ ุงู„ y ุจุฏู‡ ูŠุณุงูˆูŠ F(x)
235
00:25:33,130 --> 00:25:36,790
ูˆู‡ุฐู‡ ุงู„ู„ูŠ ูƒู†ุง ุจู†ุทู„ู‚ ุนู„ูŠู‡ุง ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ
236
00:25:36,790 --> 00:25:46,210
star where ุญูŠุซ ุงู„ a<sub>0</sub>(x) ูˆ ุงู„ a<sub>1</sub>(x) ูˆ
237
00:25:46,210 --> 00:25:54,330
ู„ุบุงูŠุฉ ุงู„ a<sub>n</sub>(x) ู‡ุฏูˆู„ ูƒู„ู‡ู… need not need not
238
00:25:54,330 --> 00:26:00,510
constants need
239
00:26:00,510 --> 00:26:09,410
not constants and no restriction ู…ุงุนู†ุฏูŠุด ู‚ูŠูˆุฏ
240
00:26:09,410 --> 00:26:24,010
ู…ุงุนู†ุฏูŠุด
241
00:26:24,010 --> 00:26:24,850
ู‚ูŠูˆุฏ ุนู„ูŠู‡ุง
242
00:26:33,720 --> 00:26:46,600
YC ูŠุจุฏูˆ ูŠุณุงูˆูŠ C<sub>1</sub>Y<sub>1</sub> ุฒุงุฆุฏ C<sub>2</sub>Y<sub>2</sub> ุฒุงุฆุฏ C<sub>n</sub>Y<sub>n</sub> Assume that
243
00:26:46,600 --> 00:26:57,440
is a solution of the homo
244
00:27:10,960 --> 00:27:16,840
ุฒุงุฆุฏ ุฒุงุฆุฏ a<sub>n-1</sub> as a function of x ููŠ ุงู„ y
245
00:27:16,840 --> 00:27:23,680
prime ุฒุงุฆุฏ a<sub>n</sub>(x) y ุจุฏู‡ ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ 0
246
00:27:29,020 --> 00:27:32,880
to get a
247
00:27:32,880 --> 00:27:37,540
particular solution
248
00:27:37,540 --> 00:27:46,180
to get a particular solution yp of the
249
00:27:46,180 --> 00:27:56,140
differential equation star by the method
250
00:27:59,990 --> 00:28:07,590
of variation of
251
00:28:07,590 --> 00:28:20,570
parameters replace
252
00:28:20,570 --> 00:28:32,010
ุงุณุชุจุฏู„ replace the above constants above constants
253
00:28:32,010 --> 00:28:42,250
in
254
00:28:42,250 --> 00:28:48,930
the solution yc
255
00:28:48,930 --> 00:28:52,550
by the functions
256
00:28:55,020 --> 00:29:10,660
The functions C<sub>1</sub>(X) C<sub>2</sub>(X) ูˆ ู„ุบุงูŠุฉ C<sub>n</sub>(X) That
257
00:29:10,660 --> 00:29:11,060
is
258
00:29:15,470 --> 00:29:25,490
YP ูŠุตุจุญ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ C<sub>1</sub>(X)Y<sub>1</sub> C<sub>2</sub>(X)Y<sub>2</sub> ุฒุงุฆุฏ
259
00:29:25,490 --> 00:29:29,470
C<sub>n</sub>(X)Y<sub>n</sub>
260
00:29:35,370 --> 00:29:44,010
ุงู„ู€ C<sub>m</sub> as a function of X ูŠุณูˆูŠ ุชูƒุงู…ู„ ุงู„ูˆุฑู†ุณูƒูŠู† m
261
00:29:44,010 --> 00:29:51,350
as a function of X ููŠ F<sub>1</sub>(X) ุนู„ู‰
262
00:29:51,350 --> 00:29:59,090
ุงู„ูˆุฑู†ุณูƒูŠู† (X) ูƒู„ู‡ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ DX ูˆุงู„ู€ M
263
00:30:02,270 --> 00:30:09,990
ูˆ ู„ุบุงูŠุฉ ุงู„ N ูˆ
264
00:30:09,990 --> 00:30:14,950
ู„ุบุงูŠุฉ
265
00:30:14,950 --> 00:30:21,750
ุงู„ N ูˆ ู„ุบุงูŠุฉ ุงู„ N ูˆ ู„ุบุงูŠุฉ ุงู„ N ูˆ ู„ุบุงูŠุฉ ุงู„ N
266
00:30:28,070 --> 00:30:34,350
is the determinant ุงู„ู…ุญุฏุฏ
267
00:30:34,350 --> 00:30:41,370
obtained from
268
00:30:41,370 --> 00:30:46,810
ุงู„ูˆุงู†ุณูƒูŠู†
269
00:30:46,810 --> 00:30:52,130
of X by replacing
270
00:30:58,290 --> 00:31:15,810
By replacing the m column By the column By
271
00:31:15,810 --> 00:31:26,730
the column Zero Zero ูˆู†ุธู„ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ ุงู„ูˆุงุญุฏ and
272
00:31:30,230 --> 00:31:42,150
ุงู„ู€ F<sub>1</sub>(X) ุชุณุงูˆูŠ ุงู„ู€ F(X) ู…ู‚ุณูˆู…ุฉ ุนู„ู‰ A<sub>0</sub>(X)
273
00:31:42,150 --> 00:31:45,550
Note
274
00:31:45,550 --> 00:31:50,310
When
275
00:31:50,310 --> 00:32:00,490
we use the method when we use the method of
276
00:32:00,490 --> 00:32:05,590
variation
277
00:32:05,590 --> 00:32:15,910
of parameters ุนู†ุฏู…ุง
278
00:32:15,910 --> 00:32:23,110
ู†ุณุชุฎุฏู… ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ variation of parameters the
279
00:32:23,110 --> 00:32:23,850
coefficient
280
00:32:33,870 --> 00:32:45,010
ูŠุฌุจ ุฃู† ูŠูƒูˆู† ูŠูˆู…ูŠ ูŠูˆู…ูŠ
281
00:32:45,010 --> 00:32:47,290
ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ
282
00:32:58,790 --> 00:33:11,670
is of the second order
283
00:33:11,670 --> 00:33:14,970
that
284
00:33:14,970 --> 00:33:18,690
is
285
00:33:20,880 --> 00:33:30,340
ุงู„ู€ A<sub>0</sub>(x) y'' A<sub>1</sub>(x) y' A<sub>2</sub>(x) y
286
00:33:30,340 --> 00:33:35,420
ุจุฏู‡ุง ุชุณุงูˆูŠ f
287
00:33:35,420 --> 00:33:50,710
of x and f y<sub>1</sub> and y<sub>2</sub> are two solutions are two
288
00:33:50,710 --> 00:33:57,990
solutions of
289
00:33:57,990 --> 00:34:12,570
the homogeneous equation A<sub>0</sub>(x) y'' A<sub>1</sub>(x)
290
00:34:12,570 --> 00:34:18,570
y' A<sub>2</sub>(x) y ุจุฏูˆ ูŠุณุงูˆูŠ zero then
291
00:34:23,050 --> 00:34:33,070
ุงู„ู€ C<sub>1</sub>(X) ู‡ูˆ ุชูƒุงู…ู„ ู„ู†ุงู‚ุต Y<sub>2</sub> as a function of X
292
00:34:33,070 --> 00:34:39,550
ููŠ ุงู„ู€ F<sub>1</sub>(X) ุนู„ู‰ W(X) DX
293
00:34:43,770 --> 00:34:51,950
ุงู„ู€ C<sub>2</sub> as a function of X ุจุฏู‡ ูŠุณุงูˆูŠ ุชูƒุงู…ู„ ู„ู…ูŠู†ุŸ
294
00:34:51,950 --> 00:34:58,690
ุจุฏู‡ ูŠุณุงูˆูŠ ุชูƒุงู…ู„ ู„ู„ู€ Y<sub>1</sub> as a function of X ููŠ ุงู„ู€
295
00:34:58,690 --> 00:35:05,170
F<sub>1</sub>(X) ูƒู„ู‡ ุนู„ู‰ ุงู„ู€ W(X) ููŠ ุงู„ู€ DX
296
00:35:05,170 --> 00:35:10,030
example
297
00:35:10,030 --> 00:35:10,490
1
298
00:35:15,200 --> 00:35:26,200
Find the general solution of
299
00:35:26,200 --> 00:35:32,340
the differential equation ู„ู„ู…ุนุงุฏู„ุฉ
300
00:35:32,340 --> 00:35:38,340
ุงู„ุชูุงุถู„ูŠุฉ Y'''-2Y
301
00:35:43,090 --> 00:35:51,990
ู„ู„ู…ุนุงู…ู„ุฉ ุงู„ุชุญูˆูŠ ุนุถู„ูŠุฉ y
302
00:35:51,990 --> 00:36:03,650
''' ุฒุงุฆุฏ y' ุจุฏูŠ ูŠุณุงูˆูŠ x ูŠุณุงูˆูŠ
303
00:36:03,650 --> 00:36:12,610
x ูˆ ู†ุงู‚ุต y ุนู„ู‰ 2 ุฃู‚ู„ ู…ู† x ุฃู‚ู„ ู…ู† y ุนู„ู‰ 2
304
00:37:01,140 --> 00:37:06,600
ุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ู…ู† ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุบูŠุฑ
305
00:37:06,600 --> 00:37:11,260
ุงู„ู…ุชุฌุงู†ุณุฉ ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ ุณู…ู†ู‡ุง ุงู„ variation of
306
00:37:11,260 --> 00:37:14,940
parameters ูŠุจู‚ู‰ ุฃูˆู„ ุทุฑูŠู‚ุฉ ุทุฑูŠู‚ุฉ ุงู„ undetermined
307
00:37:14,940 --> 00:37:18,380
coefficients ูˆุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ุชูŠ ู‡ูŠ ุทุฑูŠู‚ุฉ ุงู„
308
00:37:18,380 --> 00:37:23,200
variation of parameters ุชุบูŠูŠุฑ ุงู„ูˆุณูŠุทุงุช ุชุชู„ุฎุต ู‡ุฐู‡
309
00:37:23,200 --> 00:37:26,740
ุงู„ุทุฑูŠู‚ุฉ ููŠู…ุง ูŠุฃุชูŠ ุทุจุนุง ุงู„ู€ Undetermined
310
00:37:26,740 --> 00:37:30,880
coefficients ู‚ู„ู†ุง ู…ุดุงู† ู†ุดุชุบู„ ุจู‡ุง ุจุฏูŠ ุดุฑุทูŠู† ุฃู†
311
00:37:30,880 --> 00:37:34,860
ุงู„ู…ุนุงู…ู„ุฉ ุซุงุจุชุฉ ูˆ ุงู„ F(x) ุชุจู‚ู‰ ุนู„ู‰ ุดูƒู„ ู…ุนูŠู† ุญุณุจ
312
00:37:34,860 --> 00:37:37,660
ุงู„ุฌุฏูˆู„ ุงู„ู„ูŠ ุงุนุทุงู†ุงูƒูˆุง ูŠุนู†ูŠุŒ ู…ุธุจูˆุทุŸ ู‡ู†ุง ุงู„
313
00:37:37,660 --> 00:37:41,460
variation ุจูŠู‚ูˆู„ูŠ ู„ุฃ ุงู„ู…ุนุงู…ู„ุฉ ุซุงุจุชุฉ ูˆ ุงู„ู„ู‡ ู…ุชุบูŠุฑุฉ
314
00:37:41,460 --> 00:37:45,660
ู…ุงุนู†ุฏูŠุด ู…ุดูƒู„ุฉ ุงู„ F(x) ุงู„ู„ูŠ ููŠ ุงู„ุทุฑู ุงู„ูŠู…ูŠู† ู‡ุฐู‡
315
00:37:45,660 --> 00:37:49,180
ุงู„ F(x) ูƒุงู†ุช ุนู„ู‰ ุดูƒู„ ู…ุนูŠู† ูˆ ุงู„ู„ู‡ ุบูŠุฑ ุนู„ูŠู‡ุง ุดูƒู„
316
00:37:49,180 --> 00:37:53,590
ู…ุนูŠู† ู…ุงุนู†ุฏูŠุด ู…ุดูƒู„ุฉ ูŠุนู†ูŠ ุฃูŠุด ู…ุง ูŠูƒูˆู† ุดูƒู„ ุงู„ F ูŠูƒูˆู† ูˆ
317
00:37:53,590 --> 00:37:56,590
ุงูŠุด ู…ุง ูŠูƒูˆู† ุงู„ู…ุนุงู…ู„ุฉ ุซูˆุงุจุช ุฃูˆ ู…ุชุบูŠุฑุงุช ู…ุงุนู†ุฏูŠุด
318
00:37:56,590 --> 00:38:00,970
ู…ุดูƒู„ุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุดูƒู„ ุงู„ุนุงู… ู„ู„ู…ุนุงุฏู„ุฉ (*) ุญูŠุซ ู‡ุฏูˆู„
319
00:38:00,970 --> 00:38:05,350
ุงู„ุฏูˆุงู„ need not constants ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ูŠูƒูˆู†ูˆุง constants ูŠุนู†ูŠ
320
00:38:05,350 --> 00:38:08,470
ู…ู…ูƒู† ูŠูƒูˆู†ูˆุง constants ูˆู…ู…ูƒู† ูŠูƒูˆู†ูˆุง ู…ุชุบูŠุฑุงุช ู…ุงุนู†ุฏูŠุด
321
00:38:08,470 --> 00:38:12,070
ู…ุดูƒู„ุฉ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ and
322
00:38:13,430 --> 00:38:18,250
and no restrictions
323
00:38:18,250 --> 00:38:23,170
ู…ุงุนู†ุฏูŠุด ู‚ูŠูˆุฏ ุนู„ู‰ ุดูƒู„ ุงู„ F(x) ููŠ ุงู„ Undetermined
324
00:38:23,170 --> 00:38:25,650
ู‚ู„ุช ูŠุงุจูˆู„ูŠู†ูˆู…ูŠุงู„ ูŠุงุจูˆู„ูŠู†ูˆู…ูŠุงู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„
325
00:38:25,650 --> 00:38:28,830
ูŠุงุจูˆู„ูŠู†ูˆู…ูŠุงู„ ููŠ ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ
326
00:38:28,830 --> 00:38:33,850
ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ
327
00:38:33,850 --> 00:38:35,710
ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ
328
00:38:35,710 --> 00:38:36,610
ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ
329
00:38:36,610 --> 00:38:37,770
ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ
330
00:38:37,770 --> 00:38:38,170
ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ
331
00:38:38,170 --> 00:38:40,250
ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ
332
00:38:40,250 --> 00:38:45,310
ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณ ู‡ุฐุง ุงู„ุดุบู„ ุงู„ูˆุญูŠุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุญู„
333
00:38:45,310 --> 00:38:47,610
ุงู„ู€Complementary Solution ุจุฏูŠ ุฃุฏูˆุฑ ุนู„ู‰ ุงู„ู€
334
00:38:47,610 --> 00:38:51,270
Particular Solution ุชุจุน ุงู„ู…ุนุงุฏู„ุฉ ู…ูŠู†ุŸ ุชุจุน ุงู„ู…ุนุงุฏู„ุฉ
335
00:38:51,270 --> 00:38:55,570
(*) ูุจุฌูŠ ุจู‚ูˆู„ ุจุฏูŠ ุฃูุชุฑุถ ุงู„ุญู„ ุจุทุฑูŠู‚ุฉ ุงู„ version of
336
00:38:55,570 --> 00:38:59,870
parameters ู‡ูˆ ู†ูุณ ุงู„ุญู„ ู‡ุฐุง ุจุณ ุจุฏูŠ ุฃุดูŠู„ ุซูˆุงุจุช ูˆ
337
00:38:59,870 --> 00:39:04,230
ุฃุถุน ุจุฏู„ู‡ู… ุฏูˆุงู„ ููŠ X ูŠุจู‚ู‰ (*) ุดูƒู„ ุงู„ Particular
338
00:39:04,230 --> 00:39:09,490
Solution ู‡ูˆ C<sub>1</sub>(X) Y<sub>1</sub> ุฒุงุฆุฏ C<sub>2</sub>(X) Y<sub>2</sub> ุฒุงุฆุฏ ุฒุงุฆุฏ
339
00:39:09,490 --> 00:39:14,560
C<sub>n</sub>(X)Y<sub>n</sub> ุทูŠุจ ู…ูŠู† ู‡ูŠ ุงู„ู€C ู‡ุงุช ูƒูŠู ุจุฏูŠ ุฃุญุณุจู‡ุง
340
00:39:14,560 --> 00:39:19,980
ู‡ุฐู‡ุŸ ุจุนุฏ ุดูˆูŠุฉ ุญุณุงุจุงุช ู„ุฌูŠู†ุง ููŠ ู‚ุงุนุฏุฉ ุจูˆุงุณุทุชู‡ุง ุจุฌูŠุจ
341
00:39:19,980 --> 00:39:25,320
ูƒู„ ุฏุงู„ุฉ ู…ู† ู‡ุฐู‡ ุงู„ุฏูˆุงู„ ู…ูŠู† ู‡ูŠุŸ ู‚ุงุนุฏุฉ C<sub>m</sub>(X) ุทุจุนุง
342
00:39:25,320 --> 00:39:29,500
ุจูˆุงุญุฏ ูˆุงุซู†ูŠู† ู„ุบุงูŠุฉ ุงู„ N ูŠุนู†ูŠ ุจC ูˆุงุญุฏ ูˆC ุงุชู†ูŠู† ูˆC
343
00:39:29,500 --> 00:39:34,890
ุซู„ุงุซุฉ ูƒุฏู‡ ุฅู„ู‰ ุงู„ุขุฎุฑ ูŠุณุงูˆูŠ ุงู„ู€ W(m) F<sub>1</sub>(X) ุนู„ู‰
344
00:39:34,890 --> 00:39:38,530
W(X) DX ู†ุฌูŠ ุนู„ู‰ ุงู„ู€ W(X) ุงู„ู€
345
00:39:38,530 --> 00:39:42,330
W(X) ู‡ุฐุง ุชุงุจุน ู„ู„ุญู„ูˆู„ ุงู„ู„ูŠ ููŠ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰
346
00:39:42,330 --> 00:39:46,190
Y<sub>1</sub> ูˆ Y<sub>2</sub> ูˆ Y<sub>n</sub> ุจุฌูŠุจ ุงู„ู„ูŠ ู‡ู… ุงู„ู€ W(X) ุจูŠูƒูˆู† ู‡ุฐุง
347
00:39:46,190 --> 00:39:50,140
ู‡ูˆ ุงู„ู€ W(X) ุชุงุจุน ู„ุญุตูˆู ุนู„ู‰ ุดุฌุฑุฉ ุจุฏูŠ W(1) ูˆ
348
00:39:50,140 --> 00:39:54,760
W(2) ูˆ W(3) ู„ุบุงูŠุฉ W(n) ู…ูŠู† ู‡ูˆ ู‡ุฐุงุŸ
349
00:39:54,760 --> 00:39:58,720
ู‡ุฐุง ุงู„ W(1) ุจุงุฌูŠ ุนู„ู‰ ุงู„ W(X) ุฏูŠ ุจุดูŠู„
350
00:39:58,720 --> 00:40:02,880
ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูˆ ุจุญุท ุจุฏุงู„ู‡ ุงู„ุนู…ูˆุฏ ู‡ุฐุง ูˆ ุจุญุณุจ ู‚ุฏุงุด
351
00:40:02,880 --> 00:40:07,890
ู‚ูŠู…ุฉ ุงู„ W(X) ุทุจ ุจุฏูŠ W(2) ุจุณูŠุจ ุงู„ W(X) ู‡ุฐุง
352
00:40:07,890 --> 00:40:13,670
ุฒูŠ ู…ุง ู‡ูˆ ูˆ ุจุฌูŠ ุนู„ู‰ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ุจุดูŠู„ู‡ ูƒู„ู‡ ูˆ ุจุญุท
353
00:40:13,670 --> 00:40:16,810
ุจุฏุงู„ู‡ ุงู„ุนู…ูˆุฏ ู‡ุฐุง ูˆ ู‡ูƒุฐุง W(3) W(X)
354
00:40:16,810 --> 00:40:21,210
ู„ุบุงูŠุฉ ุจูƒู…ู„ู‡ู… ูƒู„ู‡ู… ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุฌุจุชู‡ุง ุทุจ ู…ูŠู†
355
00:40:21,210 --> 00:40:25,850
ู‡ูŠ ุงู„ F<sub>1</sub>(X) ู‡ุฐู‡ุŸ ุงู‡ ุงู„ F<sub>1</sub>(X) ู‡ุฐู‡ ู„ู…ุง ุชูŠุฌูŠ ุงู„ู…ุนุงุฏู„ุฉ ุจุฏ
356
00:40:25,850 --> 00:40:30,310
ุงู„ู…ุนุงุฏู„ุฉ ู‡ู†ุง ุงู„ู…ุนุงู…ู„ ุชุจุนูŠ ูŠูƒูˆู† ุฌุฏูŠุดู‡ุฐุง ูŠุนู†ูŠ ุฃู†ู†ูŠ
357
00:40:30,310 --> 00:40:36,110
ุฃู‚ุณู… ุงู„ุทุฑููŠู† ุนู„ู‰ ู…ูŠู† ุนู„ู‰ A<sub>0</sub>(X) ูŠุจู‚ู‰ ุงู„ F<sub>1</sub> ู‡ูŠ
358
00:40:36,110 --> 00:40:42,270
ุนุจุงุฑุฉ ุนู† F(x) ู…ู‚ุณูˆู…ุฉ ุนู„ู‰ ุงู„ A<sub>0</sub>(X) ูŠุจู‚ู‰ ุงู„ F<sub>1</sub>
359
00:40:42,270 --> 00:40:47,270
(X) ู‡ูŠ ุงู„ F(X) ู…ู‚ุณูˆู…ุฉ ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„ A<sub>0</sub>(X)
360
00:40:47,270 --> 00:40:52,490
ุฃุตู„ุง ูˆุงุถุญ ูƒู„ุงู… ู‡ุฐุง ุทูŠุจ ุงู„ุขู† ููŠ ู…ู„ุงุญุธุฉ ุจุฏู†ุง ู†ุดูŠุฑ
361
00:40:52,490 --> 00:40:57,290
ุฅู„ูŠู‡ุง ุงู„ู…ู„ุงุญุธุฉ ูƒุงู†ุช ุงู„ุชุงู„ูŠุฉ ู‚ู„ุชู‡ุง ุจุณ ุจุฏู†ุง ู†ุนูŠุฏู‡ุง ู‡ูŠุง
362
00:40:57,290 --> 00:41:00,590
ุนู†ุฏู…ุง ู†ุณุชุฎุฏู… ุงู„ variation of parameters ู„ุงุฒู… ูŠูƒูˆู†
363
00:41:00,590 --> 00:41:05,610
ุงู„ู…ุนุงู…ู„ ุชุจุน Y'' ู‡ูˆ ู…ูŠู† ูˆ ู†ุณูŠุช ูˆ ุญุทูŠุช ุงู„ F(x)
364
00:41:05,610 --> 00:41:11,110
ู‡ุฐู‡ ุจุฏู„ ู‡ุฐู‡ ุจุตูŠ ูƒู„ุงู…ูƒ ุบู„ุท ุจุตูŠ ุชุญู‚ู‚ุด ูˆ ู…ุง ุชู‚ุฏุฑุด
365
00:41:11,110 --> 00:41:16,250
ุชุชูƒุงู…ู„ูŠ ุชู…ุงู… ูŠุจู‚ู‰ ุชุชุฃูƒุฏูŠ ุนู†ุฏู…ุง ุจุฏูƒ ุชุณุชุฎุฏู… ุงู„ุชูƒุงู…ู„
366
00:41:16,250 --> 00:41:20,390
ุจุชุฎู„ูŠ ุงู„ู…ุนุงู…ู„ ุชุจุน Y to the derivative ุฃู† ู‡ูˆ ูˆุงุญุฏ
367
00:41:20,390 --> 00:41:24,610
ุตุญูŠุญ ุชู…ุงู… ู‡ูŠ ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุจุนุฏูŠู† ููŠู†ุง ู…ู„ุงุญุธุฉ ุซุงู†ูŠุฉ
368
00:41:25,260 --> 00:41:28,720
ุจูŠู‚ูˆู„ ุงู„ equation (*) ู‡ุฐู‡ ู„ูˆ ูƒุงู†ุช ู…ู† ุงู„ุฑุชุจุฉ
369
00:41:28,720 --> 00:41:32,680
ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ุจุฏู„ ุงู„ W(1) ูˆ ู†ุต ูƒู†ุชูˆุง ู…ุญุณุจูŠู†ู‡ ูˆ
370
00:41:32,680 --> 00:41:38,320
ุฎู„ุตูŠู†ู‡ ูˆ ุฌุงู‡ุฒูŠู† ุงูŠุด ุจูŠู‚ูˆู„ ุงู„ C<sub>1</sub>(X) ุจุชุญุทูŠ ู„ู„ุญู„
371
00:41:38,320 --> 00:41:42,940
ุงู„ุซุงู†ูŠ ุจุฅุดุงุฑุฉ ุณุงู„ุจ ููŠ ุงู„ F<sub>1</sub>(X) ุนู„ู‰ ุงู„ W(X)
372
00:41:42,940 --> 00:41:48,260
ุทูŠุจ ูˆ ุงู„ C<sub>2</sub>ุŸ ูˆ ุงู„ C<sub>2</sub> ู‡ูŠ ุงู„ุญู„ ุงู„ุฃูˆู„ ููŠ ุงู„ Y<sub>1</sub>(X)
373
00:41:48,260 --> 00:41:51,850
ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ W(X) ูŠุจู‚ู‰ ูƒู…ุงู† ู„ุงุจุฏ ุชุญุณุจ
374
00:41:51,850 --> 00:41:54,950
ุงู„ W(X) ู„ุฃ ู‡ุฐุง ุฅู† ูƒุงู†ุช ู…ู† ุงู„ุฑุชุจุฉ ุงู„ุซุงู†ูŠุฉุŒ ู…ู†
375
00:41:54,950 --> 00:41:59,930
ุงู„ุฑุชุจุฉ ุงู„ุซุงู„ุซุฉุŒ ุจุฏูŠ ุฃุฑุฌุน ุนุงู„ู…ูŠุง ู„ู„ูƒู„ุงู… ุงู„ุฃูˆู„ุŒ ูˆุงุถุญ
376
00:41:59,930 --> 00:42:03,590
ูƒู„ุงู… ู‡ูŠูƒุŸ ุงู„ุฃู…ู† ุงู„ู„ูŠ ุญุทูˆู‡ ุนู„ู‰ ุฃุฑุถ ูˆุงู‚ุนุฉ ุฌุงู„ูŠ ูŠุญู„
377
00:42:03,590 --> 00:42:08,430
ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุจู‚ูˆู„ู‡ ุชู…ุงู… ูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠ ุฃุจุฏุฃ ุจุญู„ ุงู„
378
00:42:08,430 --> 00:42:12,190
homogeneous differential equation ูƒู…ุง ูƒู†ุง ู…ู† ู‚ุจู„
379
00:42:12,190 -->
401
00:44:50,280 --> 00:44:58,140
ูƒู…ุงู† ู…ุฑุฉ Zero ู†ุงู‚ุต Cos X ู†ุงู‚ุต Sine X ุจุฏูŠ ุฃููƒู‡
402
00:44:58,140 --> 00:45:05,170
ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ูˆุงุญุฏ ููŠู‡ ู‚ุดุท ุจุตูู‡
403
00:45:05,170 --> 00:45:11,630
ุนู…ูˆุฏู‡ ูŠุจู‚ู‰ Sin ุชุฑุจูŠุน ุงู„ X ุฒุงุฆุฏ Cosine ุชุฑุจูŠุน ุงู„ X
404
00:45:11,630 --> 00:45:16,650
ุงู„ู„ูŠ ู‡ูˆ ู‚ุฏุงุด ุงู„ูˆุงุญุฏ ุจุฏูŠ ุฃุฌูŠุจ ุงู„ู€ Ronskian 1 as a
405
00:45:16,650 --> 00:45:20,810
function of X ุจุฏูŠ ุฃุดูŠู„ ุงู„ุนู…ูˆุฏ ู‡ุฐุง ูˆ ุฃุณุชุจุฏู„ู‡
406
00:45:20,810 --> 00:45:31,390
ุจุงู„ุนู…ูˆุฏ 001 ูˆุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ ุฒูŠ ู…ุง ู‡ู… Cos X Sin X -Sin
407
00:45:31,390 --> 00:45:41,050
X Cos X - Cos X - Sin X ูˆูŠุณุงูˆูŠ ุจุฏูŠ ุฃููƒู‡ ุจุฑุถู‡ ุจุงุณุชุฎุฏุงู…
408
00:45:41,050 --> 00:45:46,830
ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ Zero ู†ุงู‚ุต Zero ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ ู‚ุดุท
409
00:45:46,830 --> 00:45:51,250
ุจุตูู‡ ุนู…ูˆุฏู‡ Cosine ุชุฑุจูŠุน ุฒุงุฆุฏ Sine ุชุฑุจูŠุน Cosine
410
00:45:51,250 --> 00:45:57,430
ุชุฑุจูŠุน ุงู„ X ุฒุงุฆุฏ Sine ุชุฑุจูŠุน ุงู„ X ูƒู„ู‡ ุจู‚ุฏุงุด ุจูˆุงุญุฏ
411
00:45:57,910 --> 00:46:02,810
ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุจุฏูŠ ุฃุฌูŠุจ ุงู„ู€ Ronskian 2 as a
412
00:46:02,810 --> 00:46:05,910
function of x ูŠุจู‚ู‰ ุงู„ุนู…ูˆุฏูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ุจุฏูŠ ุฃุฑุฌุน
413
00:46:05,910 --> 00:46:09,970
ูƒู…ุง ูƒุงู† ูŠุง ุจู†ุงุช ุฃูŠ ูˆุงุญุฏ Zero Zero ุงู„ุนู…ูˆุฏูŠ ุงู„ุซุงู†ูŠ
414
00:46:09,970 --> 00:46:13,550
ู‡ูˆ ุงู„ู„ูŠ ุจุฏูŠ ุฃุณุชุจุฏู„ู‡ ุจ Zero Zero ูˆุงุญุฏ ูˆุงู„ุนู…ูˆุฏูŠ
415
00:46:13,550 --> 00:46:20,110
ุงู„ุซุงู„ุซ ูƒู…ุง ูƒุงู† Sine ุงู„ X Cosine ุงู„ X ู†ุงู‚ุต Sine ุงู„
416
00:46:20,110 --> 00:46:25,970
X ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุจุฏูŠ ุฃููƒู‡ ุจุงุณุชุฎุฏุงู…
417
00:46:25,970 --> 00:46:31,590
ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ู‚ุดุท ุจุตูู‡ ูˆุนู…ูˆุฏู‡ Zero ู†ุงู‚ุต
418
00:46:31,590 --> 00:46:36,470
Cosine ุงู„ X ูŠุจู‚ู‰ ู†ุงู‚ุต Cosine ุงู„ X ุฎู„ูŠู†ุง ู†ุฌูŠุจ
419
00:46:36,470 --> 00:46:43,350
ุงู„ู€ Ronskian 3 as a function of X ูŠุณุงูˆูŠ 1 0 0 ุงู„ุนู…ูˆุฏ
420
00:46:43,350 --> 00:46:50,590
ุงู„ุซุงู†ูŠ ูƒู…ุง ู‡ูˆ Cosine ุงู„ X ู†ุงู‚ุต Sine ุงู„ X ูˆู‡ู†ุง ู†ุงู‚ุต
421
00:46:50,590 --> 00:46:58,270
Cosine ุงู„ X ูˆู‡ู†ุง 001 ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุงู‚ู†ุนู†ุงู‡ ุจุฏูŠ ุฃููƒู‡
422
00:46:58,270 --> 00:47:02,590
ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุจู‚ุดุท ุจุตู ูˆุนู…ูˆุฏู‡ ู†ุงู‚ุต
423
00:47:02,590 --> 00:47:11,780
Sin X ุฎู„ุตู†ุง ู…ู†ู‡ุŒ ุณุฃุญุตู„ ุนู„ู‰ ุงู„ู€ C1 as a function of
424
00:47:11,780 --> 00:47:19,880
X ุงู„ุชูƒุงู…ู„ ู…ู† ุฃูŠู†ุŸ ุงู„ุชูƒุงู…ู„ ู„ู„ู€ Ronskian 1 of X ููŠ
425
00:47:19,880 --> 00:47:24,260
ุงู„ู€ F of X ู„ุง ูŠูˆุฌุฏ ููŠู‡ุง ุชุบูŠูŠุฑ ูƒู…ุง ู‡ูŠ ุนู„ู‰ ุงู„ู€
426
00:47:24,260 --> 00:47:30,180
Ronskian of X ูƒู„ู‡ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ DX ูŠุณุงูˆูŠ ุชูƒุงู…ู„ Ronskian
427
00:47:30,180 --> 00:47:35,670
1 ุทู„ุนู†ุงู‡ ุจู‚ุฏุงุด ุจูˆุงุญุฏ ูŠุจู‚ู‰ ู‡ุฐุง ูˆุงุญุฏ ููŠู‡ ุงู„ู€ F of X
428
00:47:35,670 --> 00:47:41,410
ุงู„ู„ูŠ ูŠุจู‚ู‰ ุฏู‡ุดุฉ ุจู†ุงุช Sec ุงู„ X ุงุฒุงูŠ ุนู„ู‰ Sec ุงู„ X ุนู„ู‰
429
00:47:41,410 --> 00:47:47,270
ุงู„ู€ Ronskian of X ุงู„ุฃูˆู„ ุจุฑุถู‡ ูˆุงุญุฏ ูƒู„ู‡ DX ูŠุจู‚ู‰ ุชูƒุงู…ู„
430
00:47:47,270 --> 00:47:53,190
ุงู„ู€ Sec ู„ูŠู† Absolute value ู„ู€ Sec ุงู„ X ุฒุงุฆุฏ Tan ุงู„ X
431
00:47:53,190 --> 00:47:59,710
ุจุฏู†ุง ู†ุฌูŠุจ C2 as a function of X ูŠุจู‚ู‰ ุชูƒุงู…ู„ Ronskian 2
432
00:47:59,710 --> 00:48:06,470
of x ููŠ f of x ุนู„ู‰ Ronskian of x dx ูŠุณุงูˆูŠ ุชูƒุงู…ู„
433
00:48:06,470 --> 00:48:11,790
Ronskian 2 ู‡ูˆ ุจู†ุงู‚ุต Cos x
434
00:48:22,510 --> 00:48:28,490
ูŠุจู‚ู‰ ุชูƒุงู…ู„ ู„ู†ุงู‚ุต DX ูŠุจู‚ู‰ ุจู†ุงู‚ุต X ูˆู„ุง ุชูƒุชุจูŠ
435
00:48:28,490 --> 00:48:33,650
Constants ู„ุฃู† ูƒู„ ุตู„ุงุฉ ูˆูƒุชุงุจ ูŠุนู…ู„ูˆุง ู„ูŠู‡ ุชูƒุฑุงุฑ ูŠุจู‚ู‰
436
00:48:33,650 --> 00:48:38,510
ุณูŠุจูŠู† ู…ู† ุงู„ุชูƒุฑุงุฑ ูŠุจู‚ู‰ ุจูƒุชุจู‡ุง ูู‚ุท ุฒูŠ ู‡ูŠูƒ ุจุฏุฃ ูŠุงุฎุฏ
437
00:48:38,510 --> 00:48:39,590
C3
438
00:48:46,760 --> 00:48:54,240
ูŠุจู‚ู‰ ุจูŠุฏูŠ C3A of X ูŠุจู‚ู‰ ูŠุณุงูˆูŠ ุชูƒุงู…ู„ Ronskian 3 of X
439
00:48:54,240 --> 00:49:00,900
ููŠ F of X ุนู„ู‰ Ronskian of X DX Y ูŠุณุงูˆูŠ ุงู„ู€ Ronskian 3
440
00:49:00,900 --> 00:49:09,010
ู„ู‡ ุณุงู„ุจ Sin X ูˆุงู„ุฏุงู„ุฉ Sec ุงู„ X ูˆุงู„ุฑู…ุฒ ูƒุงู† ูˆุงุญุฏ DX
441
00:49:09,010 --> 00:49:15,810
ูŠุจู‚ู‰ ูŠุณุงูˆูŠ ุชูƒุงู…ู„ ุณุงู„ุจ Sin X ุงู„ู€ Sec ู…ู‚ู„ูˆุจ ุงู„ู€ Cos X DX
442
00:49:15,810 --> 00:49:20,570
ุฃุธู† ุงู„ุจุณุทุฉ ูุงุถู„ ุงู„ู…ู‚ุงู… ูŠุจู‚ู‰ ุงู„ุฌูˆุงุจ ู„ูŠู† Absolute
443
00:49:20,570 --> 00:49:28,570
value ู„ู€ Cos X ูŠุจู‚ู‰ ุฌุจุช ุงู„ู€ C ุงู„ุซู„ุงุซ ูŠุจู‚ู‰ ุณุงุฑ YP
444
00:49:28,570 --> 00:49:33,720
ูŠุณุงูˆูŠ ูˆูŠู† YP ูŠุง ุจู†ุงุชู‡ูŠู‡ ุจุฏูŠ ุฃุดูŠู„ ุงู„ู€ C1 ุงู„ู€ C1
445
00:49:33,720 --> 00:49:38,720
ุฌูŠุจู†ุงู‡ุง ุงู„ู„ูŠ ู‡ูŠ ู‚ุฏุงุด ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ Ln Absolute value
446
00:49:38,720 --> 00:49:47,480
ู„ู€ Sec ุงู„ X ุฒุงุฆุฏ Tan ุงู„ X ุฒุงุฆุฏ C2 ูˆูŠู† C2 ู‡ูŠูˆ ุฒุงุฆุฏ
447
00:49:47,480 --> 00:49:52,280
ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต X ููŠ ู…ูŠู†ุŸ ููŠ Cosine ุงู„ X
448
00:50:04,270 --> 00:50:12,930
ูŠุจู‚ู‰ y ูŠุณุงูˆูŠ yc ู‡ูŠ
449
00:50:12,930 --> 00:50:23,580
ุชุญุช ูŠุจู‚ู‰ c ูˆุงุญุฏ ุฒุงุฆุฏ C2 Cos X ุฒุงุฆุฏ C3 Sin X ุฒุงุฆุฏ YP
450
00:50:23,580 --> 00:50:28,540
ู‡ุงูŠ ูˆุจุฏูŠ ุฃู†ุฒู„ู‡ ุฒูŠ ู…ุง ู‡ูˆ ุจุณ ู„ูŠู‡ ุฎุงุทุฑ ุฃุฑุชุจู‡ ูŠุจู‚ู‰ ู‡ุงูŠ
451
00:50:28,540 --> 00:50:36,820
Sin X ููŠ Ln Absolute value ู„ู€ Cos X ู†ุงู‚ุต X ููŠ Cos
452
00:50:36,820 --> 00:50:45,600
X ุฒุงุฆุฏ Ln Absolute value ู„ู€ Sec X ุฒุงุฆุฏ Tan ุงู„ X ูˆูƒุงู†
453
00:50:45,600 --> 00:50:50,160
ุงู„ู„ู‡ ุจุงู„ุณุฑ ุนู„ูŠู†ุง ูŠุจู‚ู‰ ู‡ุฐุง ุญู„ ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
454
00:50:50,160 --> 00:50:54,780
ุชู…ุงู… ูˆู‡ูƒุฐุง ูŠุนู†ูŠ ุงู„ุดุบู„ ุจู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ ุทุจุนุง ู„ูˆ ุฌูŠุจู†ุงูƒ
455
00:50:54,780 --> 00:50:58,200
ุณุคุงู„ ููŠ ุงู„ุงู…ุชุญุงู† ู„ู† ูŠุฒูŠุฏ ุนู† ุงู„ุฑุชุจุฉ ุงู„ุซุงู„ุซุฉ ุฃู†
456
00:50:58,200 --> 00:51:01,780
ุฏุฎู„ู†ุง ููŠ ุงู„ุฑุชุจุฉ ุงู„ุฑุงุจุนุฉ ุจุฏูƒ ู…ุญุฏุฏ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฑุงุจุนุฉ
457
00:51:01,780 --> 00:51:05,760
ุจูŠุงุฎุฏ ูˆู‚ุช ูƒุชูŠุฑ ูˆุงู†ุช ุชุญู„ ููŠู‡ ูŠุจู‚ู‰ ูู‚ุท ู…ู† ุงู„ุฏุฑุฌุฉ
458
00:51:05,760 --> 00:51:11,260
ุงู„ุซุงู„ุซุฉ ุฃูˆ ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู†ูŠุฉ ุฅู† ุดุงุก ุงู„ู„ู‡ ู„ุงุฒู„ู†ุง ููŠ
459
00:51:11,260 --> 00:51:15,600
ู†ูุณ ุงู„ู€ Section ูˆู„ู…ุง ู†ู†ุชู‡ูŠ ุจุนุฏ ููŠ ุนู†ุฏูŠ ุจุนุถ ุงู„ุฃู…ุซู„ุฉ
460
00:51:15,600 --> 00:51:20,060
ุนู„ู‰ ู†ูุณ ุงู„ู…ูˆุถูˆุน ุจุงู„ุฅุถุงูุฉ ุฅู„ู‰ ุขุฎุฑ ุทุฑูŠู‚ุฉ ุงู„ู„ูŠ ู‡ูŠ
461
00:51:20,060 --> 00:51:24,340
ุทุฑูŠู‚ุฉ Reduction of Order ู„ุงุฎุชุฒุงู„ ุงู„ุฑุชุจุฉ ู„ู„ู…ุญุงุถุฑุฉ
462
00:51:24,340 --> 00:51:26,760
ุงู„ูŠูˆู… ุจุนุฏ ุงู„ุธู‡ุฑ ุฅู† ุดุงุก ุงู„ู„ู‡ ูˆุชุนุงู„ู‰