abdullah's picture
Add files using upload-large-folder tool
c8f3414 verified
1
00:00:21,160 --> 00:00:26,220
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ุนูˆุฏ ุงู„ุขู† ุฅู„ู‰ ู†ู‡ุงูŠุฉ
2
00:00:26,220 --> 00:00:29,920
ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉ ุจุฏุฃู†ุง ุจู…ูˆุถูˆุน ุงู„
3
00:00:29,920 --> 00:00:37,240
diagonalization ูˆูƒูŠู ู†ุนู…ู„ ุงู„ู‡ูˆ diagonalize ู„ู„ู…ุตูˆูุฉ
4
00:00:37,240 --> 00:00:41,780
ุจู…ุนู†ู‰ ุฎู„ูŠู‡ุง ู…ุตูˆูุฉ ู‚ุทุฑูŠุฉ ุงุจุชุฏู†ุง ุจุชุนุฑูŠู ุงู„ similar
5
00:00:41,780 --> 00:00:47,180
matrix ูู‚ู„ู†ุง ุงู† ุงู„ similar matrix ุจุฅุฐุง ุฌุฏุฑุช ู„ุงุฌูŠ
6
00:00:47,180 --> 00:00:53,710
ู…ุตูˆูุฉ ุชุงู†ูŠุฉ KุจุญูŠุซ ุงู„ูƒูŠ ู‡ุฐู‡ non zero matrix ูŠุนู†ูŠ ุงูˆ
7
00:00:53,710 --> 00:00:57,610
non singular matrix ุงูŠุด ูŠุนู†ูŠ ูŠุนู†ูŠ ุงู„ู…ุนูƒูˆุณ ุชุจุนู‡ุง
8
00:00:57,610 --> 00:01:02,470
ู…ูˆุฌูˆุฏ ุจุญูŠุซ ุงู„ู„ูŠ ุจูŠุจุฏุฃ ูŠุณูˆูŠ ุงู„ K inverse ููŠ ุงู„ A ููŠ
9
00:01:02,470 --> 00:01:06,750
ุงู„ูƒูŠ ุชู…ุงู…ุŸ ูˆุงุฎุฏู†ุง ุนู„ู‰ ุฐู„ูƒ ู…ุซุงู„ุง ูˆุงุญุฏุง ุจุนุฏ ู…ุง
10
00:01:06,750 --> 00:01:11,440
ุฃุซุจุชู†ุงุฅู† ุฅุฐุง ูƒุงู†ุช ุงู„ A similar ู„ B ูุฅู† B similar ู„
11
00:01:11,440 --> 00:01:14,940
A ูˆููŠ ู†ูุณ ุงู„ู„ุบุฉ ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช A is similar to
12
00:01:14,940 --> 00:01:18,580
itself ุชู…ุงู… ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู„ูŠ ุฎุฏู†ุงู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉ ูˆ
13
00:01:18,580 --> 00:01:23,160
ุงู„ุขู† ุจุฏู†ุง ู†ุถูŠู‚ .. ุฃุฎุฏู†ุง ุทุจุนุง ู…ุซุงู„ ูˆุงุญุฏ ู„ุณู‡ ูŠุงู…ุง
14
00:01:23,160 --> 00:01:27,500
ู†ุงุฎุฏ ุฃู…ุซู„ุฉ ูุจุฏู†ุง ู†ุจุฏุฃ ู†ุญุท ุจุนุถ ุงู„ู…ุนู„ูˆู…ุงุช ุงู„ู†ุธุฑูŠุฉ
15
00:01:27,500 --> 00:01:33,160
ุงู„ุฃุณุงุณูŠุฉ ุฃูˆ ุงู„ุนู…ูˆุฏูŠ ุงู„ูู‚ุฑูŠ ููŠ ู‡ุฐุง sectionุจูŠู‚ูˆู„ ู„ูŠ
16
00:01:33,160 --> 00:01:37,540
to show that the given n by n matrix is a is
17
00:01:37,540 --> 00:01:41,120
similar to a diagonal matrix ูˆ ุงู„ diagonal matrix
18
00:01:41,120 --> 00:01:44,180
ู‡ูŠ ุจูƒุชูˆุจู‡ุง ุจุงู„ุดูƒู„ ู‡ุฐุง ู…ู† ุญุฏ ู…ุง ุชุดูˆููŠู‡ุง ุฏูŠ ูŠุนู†ูŠ
19
00:01:44,180 --> 00:01:49,800
ู…ุตูˆูุฉ ู‚ุทุฑูŠุฉ ุฌู…ูŠุน ุนู†ุงุตุฑู‡ุง ุฃุตูุฑุง ู…ุนุงุฏุฉ ุนู†ุงุตุฑุงู„ู‚ุทุฑ
20
00:01:49,800 --> 00:01:57,540
ุงู„ุฑุฆูŠุณูŠ ู†ุฃุฎุฐ ุงู„ู†ุธุฑูŠุฉ ุงู„ุชุงู„ูŠุฉ ุทุจุนุง ู…ู† ุงู„ู„ู…ุฏุงุช ู‡ุฐูˆู„
21
00:01:57,540 --> 00:02:00,400
ุงู„ู„ู…ุฏุฉ ูˆุงุญุฏ ูˆ ุงู„ู„ู…ุฏุฉ ุงุชู†ูŠู† ูˆ ุงู„ู„ู…ุฏุฉ ุงู† ู‡ูŠ ุงู„ eigen
22
00:02:00,400 --> 00:02:07,440
values ู…ุด ุญูŠุงู„ู‡ ู…ุด ุงูŠ ุงุฑู‚ุงู… ูŠุจู‚ู‰ ุงุฑู‚ุงู… ู…ุญุฏุฏุฉุทูŠุจ
23
00:02:07,440 --> 00:02:11,480
ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ุฅูŠู‡ุŸ the n by n matrix A is similar
24
00:02:11,480 --> 00:02:16,420
to a diagonal matrix ู…ู„ุงุญุธูŠ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุจุฏูŠู†ุง
25
00:02:16,420 --> 00:02:21,060
canvas A K ุทู„ุช ุนู†ูŠ ู…ุตุฑูˆูุฉ ู‚ุทุฑูŠุฉ ููŠ ุงู„ุขุฎุฑุŒ ู…ุตุจูˆุท
26
00:02:21,060 --> 00:02:24,920
ูˆู„ุง ู„ุฃุŸ ุงู„ู…ุตุฑูˆู ุงู„ู‚ุทุฑูŠุฉ ุงู„ุนู…ูˆุฏูŠ ุงู„ูู‚ุฑูŠ ู‚ูŠู…ุฉ ุงู„ two
27
00:02:24,920 --> 00:02:28,870
landers ุงู„ู„ูŠ ุทู„ูˆุง ุนู†ุฏูŠ ุจุงู„ุถุจุทูŠุจู‚ู‰ ู‡ู†ุง ู„ู…ุง ุฃู‚ูˆู„ ุงู„ู€
28
00:02:28,870 --> 00:02:32,650
A is similar to a diagonal matrix if and only if
29
00:02:32,650 --> 00:02:36,350
it has a set of linearly independent eigenvectors
30
00:02:36,350 --> 00:02:43,250
K1 ูˆK2 ู„ุบุงูŠุฉ KM ุงู„ูƒู„ุงู… ู‡ุฐุง ุจุฏูŠ ุฃุนูŠุฏ ุตูŠุงุบุชู‡ ู…ุฑุฉ
31
00:02:43,250 --> 00:02:48,750
ุชุงู†ูŠุฉ ุจุงุฌูŠ ุจู‚ูˆู„ that is ู„ูˆ ูƒุงู† ุนู†ุฏ ุงู„ู…ุตูˆูุฉ K ู‡ุฐู‡
32
00:02:48,750 --> 00:02:53,670
ู…ุตูˆูุฉ K K1 ู‡ูˆ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ K2 ุงู„ุนู…ูˆุฏ ุงู„ุชุงู„ุช KN
33
00:02:53,670 --> 00:03:01,400
ุงู„ุนู…ูˆุฏ ุฑู‚ู… Mูˆูƒู„ eigen vector ู‡ุฐุง ู…ู†ุงุธุฑ ู„ู…ู†ุŸ ู…ู†ุงุธุฑ
34
00:03:01,400 --> 00:03:04,500
ู„ู„ eigen value ุงู„ู„ูŠ ู‡ูŠ ู„ุงู†ุฏุง ูˆุงุญุฏ ูˆุงู„ุชุงู†ูŠ ู„ุงู†ุฏุง
35
00:03:04,500 --> 00:03:08,920
ุงุชู†ูŠู† ูˆุงู„ุชุงู„ุชุฉ ู„ุงู†ุฏุง ุชู„ุงุชุฉ ูˆุงู„ุงุฎุฑ ู„ุงู†ุฏุง in them ุงู„
36
00:03:08,920 --> 00:03:14,340
K inverse A ููŠ ุงู„ K ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู…ุตูˆูุฉ ุงู„ู„ูŠ ุนู†ุฏู‡ุง
37
00:03:14,340 --> 00:03:18,880
ุฏูŠ ูŠุนู†ูŠ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู…ุตูˆูุฉ ู„ุฌู…ูŠุน ุนู†ุงุตุฑู‡ุง ุฃุตูุฑุง ู…ุง
38
00:03:18,880 --> 00:03:25,450
ุนุฏุง ุนู†ุงุตุฑ ู‚ุทุฉ ุงู„ุฑุฆูŠุณูŠ ุจูŠูƒูˆู†ูˆุง ุนู„ู‰ ุฃุณุฑู‡ุง ู‡ูˆ ู…ู†ุŸู‡ุฐู‡
39
00:03:25,450 --> 00:03:29,090
ุงู„ู†ุธุฑูŠุฉ ุจุชุญูƒูŠ ุจุงู„ูƒุงุฑุดุงูƒู„ ุงู†ู‡ุง ุฏู‡ ูŠุจู‚ู‰ ู„ูˆ ุงุนุทุงู†ูŠ
40
00:03:29,090 --> 00:03:35,010
ู…ุตููˆูุฉ ุงูŠู‡ ุจุฏูŠ ุงุฌูŠุจ ุงู„ diagonal matrix ุจุชุงุนู‡ุง ุจุญูŠุซ
41
00:03:35,010 --> 00:03:40,090
ุงู„ุนู†ุงุตุฑ ุชุจุน ุงู„ diagonal matrix ูŠูƒูˆู†ูˆุง ู‡ู… ุงู„ eigen
42
00:03:40,090 --> 00:03:46,120
values ูŠุจู‚ู‰ ุจุฏูŠ ุงุญุงูˆู„ ุงุฌูŠุจุงู„ู€Eigenvectors ุงู„ู„ูŠ
43
00:03:46,120 --> 00:03:50,260
ุนู†ุฏู†ุง ูˆุงู„ู€Eigenvectors ุจุณ ุจูŠุดุฑู‘ู†ูˆุง ูƒู„ู‡ู… linearly
44
00:03:50,260 --> 00:03:54,260
independent ู„ุฃู†ู‡ ุฌุงู„ูŠ linearly independent ูˆู„ูˆ
45
00:03:54,260 --> 00:03:58,420
ูˆุงุญุฏ ูŠุนุชู…ุฏ ุนู„ู‰ ุงู„ุชุงู†ูŠ ูƒู„ู‡ู… ู…ุณุชู‚ู„ุงุช ุนู† ุจุนุถ ุชู…ุงู…
46
00:03:58,420 --> 00:04:02,220
ุงู„ุงุณุชู‚ู„ุงู„ ูŠุจู‚ู‰ ุจุญุต ุงู„ุนุงู„ู…ูŠู† ุนู„ู‰ ุงู„ diagonal matrix
47
00:04:03,840 --> 00:04:07,760
ุงู„ุงู† ุจุฏุฃุฌูŠ ู„ู„ุนู†ูˆุงู† ุงู„ู„ูŠ ุงู†ุง ุฑุงูุนู‡ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช
48
00:04:07,760 --> 00:04:11,780
ูƒู†ุง ุจู†ุชูƒู„ู… ุนู† ุงู„ similar matrix ูู‚ุท ูˆ ู„ู… ู†ุชูƒู„ู… ุนู†
49
00:04:11,780 --> 00:04:15,460
ุงู„ diagonalization ุชู…ุงู…ุŸ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ุงุญู†ุง
50
00:04:15,460 --> 00:04:19,140
ุจู†ุญูƒูŠ ู‡ูˆ ุงู„ diagonalization ูˆ ุงุญู†ุง ู…ุด ุฐุงุฑูŠู† ุทู„ุน
51
00:04:19,140 --> 00:04:20,120
ุงู„ุชุฑูŠูุด ุจู‚ูˆู„
52
00:04:24,300 --> 00:04:28,980
ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ ุฌุงุจู„ู‡ if a is a similar to a diagonal
53
00:04:28,980 --> 00:04:34,880
matrix ูŠุนู†ูŠ ู‡ุงู„ูƒู„ุงู… ู‡ุฐุง ุตุญูŠุญ then a is said to be
54
00:04:34,880 --> 00:04:40,130
diagonalizableูŠุจู‚ู‰ ุงู„ู…ุตูˆูุฉ ุงูŠู‡ ุจู†ู‚ุฏุฑ ู†ุนู…ู„ู‡ุง ุนู„ู‰
55
00:04:40,130 --> 00:04:46,770
ุดูƒู„ ู…ุตูˆูุฉ ู‚ุทุฑูŠุฉ ูŠุจู‚ู‰ ู„ูˆ ูƒุงู†ุช ุงู„ู…ุตูˆูุฉ similar to a
56
00:04:46,770 --> 00:04:50,330
diagonal matrix automatic ุจู‚ูˆู„ ุงู† ุงู„ a ุฏูŠ
57
00:04:50,330 --> 00:04:55,180
diagonalizableุทูŠุจ ุงู„ุชุนุฑูŠู ุงู„ุชุงู†ูŠ ุจูŠู‚ูˆู„ ู„ูˆ ูƒุงู†ุช ุงู„
58
00:04:55,180 --> 00:05:00,600
a diagonalizable matrix then it processes ูŠุชูุชุฑุถ
59
00:05:00,600 --> 00:05:05,100
in linearly independent eigenvectors ูŠุจู‚ู‰ ุงู„
60
00:05:05,100 --> 00:05:08,140
eigenvectors ุงู„ู„ูŠ ุนู†ุฏู†ุง ุนุฏุฏู‡ู… ูŠุณุงูˆูŠ in ุจุฏู‡ู… ูŠูƒูˆู†ูˆุง
61
00:05:08,140 --> 00:05:15,240
linearly independentูˆู‡ุฐู‡ ุงู„ุณุชุฉ ู†ุณู…ูŠู‡ุง complete set
62
00:05:15,240 --> 00:05:20,380
of eigenvectors ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ูƒุงู…ู„ุฉ ู„ู…ูŠู† ู„ู„
63
00:05:20,380 --> 00:05:24,040
eigenvectors ุงู„ู„ูŠ ุนู†ุฏู†ุง ุนู„ู‰ ุฃูŠ ุญุงู„ ุงู„ุชุนุฑูŠู
64
00:05:24,040 --> 00:05:29,380
ุงู„ุฃูˆู„ุงู†ูŠ ุฏู‚ูŠู‚ ุฌุฏุง ู„ุฃู†ู‡ ู‡ูŠู‚ูˆู„ูƒ ูƒูŠู ุจุฏูƒ ุชุฎู„ูŠ ุงู„ู…ุตูˆูุฉ
65
00:05:29,380 --> 00:05:34,920
ุฏูŠ diagonal matrix ุตุญ ุงู„ุณุคุงู„ ู…ู…ูƒู†ุทู„ุน ู‡ู†ุง ู†ุทุฑุญ ุญุฏุซ
66
00:05:34,920 --> 00:05:39,440
ูˆ ู†ุญุงูˆู„ ุงู„ุฅุฌุงุจุฉ ุนู„ูŠู‡ ู†ู…ุดูŠ ุฎุทูˆุงุช ู…ุญุฏุฏุฉ ุงู„ุขู† ุจุนุฏ
67
00:05:39,440 --> 00:05:44,080
ู‚ู„ูŠู„ ูุชุฌูŠุฌูŠ ู…ุนุงูŠุง ุจู‚ูˆู„ how to diagonalize an n by
68
00:05:44,080 --> 00:05:48,180
n matrix ุงู†ุง ุจุนุทูŠูƒ ู…ุตููˆูุฉ ู„ู…ุง ุงุนุทูŠูƒ ู…ุตููˆูุฉ ูƒูŠู
69
00:05:48,180 --> 00:05:55,500
ุงู„ู…ุตููˆูุฉ ุฏูŠุจุชูƒุชุจ ุนู„ูŠู‡ุง ุนู„ู‰ ุดูƒู„ ู‚ุทุฑูŠ ูู‚ุท ูˆุจุญูŠุซ
70
00:05:55,500 --> 00:06:00,480
ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ู‡ู…ุง ุงู„ู€Eigenvalues ูู‚ุท ู„ุง ุบูŠุฑ
71
00:06:00,480 --> 00:06:04,360
ุจู‚ูˆู„ ู„ู‡ุง ุจุฏูŠ ุฃู…ุดูŠ ุชู„ุช ุฎุทูˆุงุช ุงู„ู„ูŠ ุนู†ุฏู†ุง ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰
72
00:06:06,680 --> 00:06:10,320
Find in linearly independent eigenvectors of the
73
00:06:10,320 --> 00:06:15,720
matrix A,C,K1,K2 ู„ุบุงูŠุฉ KN ูˆู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฌูŠู†ุงู‡ ุงุญู†ุง
74
00:06:15,720 --> 00:06:20,020
ุจู†ูˆุฌุฏู‡ ููŠ ุงู„ุฃู…ุซู„ุฉ ุงู„ุณุงุจู‚ุฉ ูƒู„ ุฃุฑุจุน section ูˆุงุญุฏ ูƒุงู†
75
00:06:20,020 --> 00:06:24,310
ุงู„ eigenvalues ูˆ ุงู„ eigenvectorsุฅุฐุง ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰
76
00:06:24,310 --> 00:06:30,090
ุชุญุตูŠู„ ุญุงุตู„ ููŠ ูƒู„ ุงู„ุฃู…ุซู„ุฉ ุงู„ู„ู‰ ูุงุชุช ุณูˆุงุก ูƒุงู†ุช
77
00:06:30,090 --> 00:06:33,530
complex ุงู„ู„ู‰ ุงู„ู„ู‰ ู„ุนู†ู‡ุง ูƒุงู†ุช complex ุฃูˆ real ุตุญูŠุญ
78
00:06:33,530 --> 00:06:37,830
ูˆู„ุง ู„ุง ูŠุฌุจ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ู„ู… ู†ุฃุชูŠ ุจุฌุฏูŠุฏ ู†ุฌูŠ ุงู„ุฎุทูˆุฉ
79
00:06:37,830 --> 00:06:42,690
ุงู„ุชุงู†ูŠุฉ finally matrix Kุงู„ู„ูŠ ู‡ูŠ ุนู†ุงุตุฑ ู‡ู… ุงู„ู„ูŠ ุนู…ูˆุฏ
80
00:06:42,690 --> 00:06:48,090
ุงู„ุฃูˆู„ ูƒูˆุงุญุฏ ูƒุชู†ูŠู† ูƒุงู… ูŠุจุฌู‰ ู‡ุฐู‡ ุจุฑุถู‡ ูƒู†ุง ุจู†ูƒุชุจู‡ุง
81
00:06:48,090 --> 00:06:50,930
ุงู„ู„ูŠ ู‡ูˆ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุชุจุนุช ุงู„
82
00:06:50,930 --> 00:06:54,870
eigenvectors ู„ู…ุง ู†ู‚ูˆู„ ุงู„ุณุช ู‡ุฐู‡ ุชูุณู…ู‘ุช ุงู„ bases ู„ู„
83
00:06:54,870 --> 00:07:00,260
eigen spaces ุชู…ุงู…ุŸ ูŠุจุฌู‰ุŒ ุฅูŠู‡ ุงู„ู…ุตุฑูˆู ููŠ ู‡ุฐู‡ุŸWhere
84
00:07:00,260 --> 00:07:04,840
ุงู„ูƒู‡ุงุช ู‡ุฐูˆู„ are called eigenvectors ูŠุจู‚ู‰ ุฌูŠุจู†ุง ู„ู‡
85
00:07:04,840 --> 00:07:09,820
ุงู„ู…ุตูˆูุฉ ุชุญุตูŠู„ ุญุงุตู„ ูƒู…ุงู† ู‡ุฐู‡ ูŠุนู†ูŠ ุงู„ eigenvectors
86
00:07:09,820 --> 00:07:13,560
ุงู„ู„ูŠ ุฌูŠุจู†ุงู‡ู… ุจุฏูƒ ุชูƒุชุจู‡ู… ุจุณ ุนู„ู‰ ุดูƒู„ ุงู„ู…ุตูˆูุฉ ู‡ูŠ ุงู„ู„ูŠ
87
00:07:13,560 --> 00:07:17,900
ุจุชู‚ูˆู„ู‡ ู…ู†ู‡ู… ุงู„ุฎุทูˆุฉ ุงู„ุซุงู†ูŠุฉูŠุจู‚ู‰ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุจุฏูŠ
88
00:07:17,900 --> 00:07:21,100
ุฃุฌูŠุจ ุงู„ eigenvalues ูˆ ุงู„ eigenvectors ุงู„ุฎุทูˆุฉ
89
00:07:21,100 --> 00:07:24,660
ุงู„ุชุงู†ูŠุฉ ุจุฏูŠ ุฃูƒุชุจ ุงู„ eigenvectors ุนู„ู‰ ุดูƒู„ ู…ุตููˆูุฉ
90
00:07:24,660 --> 00:07:30,820
ุงู„ุฎุทูˆุฉ ุงู„ุชุงู„ุชุฉ ุฏูŠ matrix ุงู„ู…ุตููุฉ ูƒุฅู†ูุฑุณ A ูƒูŠ ูˆุงู„ุจ
91
00:07:30,820 --> 00:07:35,080
A ุฏูŠุงุฌูˆู†ุงู„ matrix ุญุฏูŠู‡ุง ุงู„ุฑู…ุฒ ุฏูŠ ูŠุจู‚ู‰ ุจุชุทู„ุน ุนู†ุฏูƒ
92
00:07:35,080 --> 00:07:39,180
ุงู„ diagonal ูŠุนู†ูŠ ุจุฏูŠ ุฃุถุฑุจู…ุนูƒูˆุณ ุงู„ู…ุตููˆูุฉ K ุงู„ู„ูŠ
93
00:07:39,180 --> 00:07:43,240
ุทู„ุนุช ู‡ู†ุง ู‡ู†ุง ููŠ ุงุชู†ูŠู† ููŠ ุงู„ู…ุตููˆูุฉ A ุงู„ุฃุตู„ูŠ ุงู„ู„ูŠ
94
00:07:43,240 --> 00:07:48,180
ุนู†ุฏูŠ ููŠ ุงู„ู…ุตููˆูุฉ K ุงู„ู†ุชุฌ ู„ุงุฒู… ูŠุทู„ุน ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ
95
00:07:48,180 --> 00:07:51,460
ุนู†ุฏู†ุง ู‡ุฐู‡ where lambda I the eigenvector the
96
00:07:51,460 --> 00:07:56,580
eigenvalue corresponding to Ki ูˆุงู„I ู…ู† ูˆุงุญุฏ ู„ุบุงูŠุฉ
97
00:07:56,580 --> 00:08:01,200
ู…ูŠู† ู„ุบุงูŠุฉ ุงู„ N ุทุจ ุญุฏ ููŠูƒู… ุจุชุญุจ ุชุณุฃู„ ุฃูŠ ุณุคุงู„ ููŠ
98
00:08:01,200 --> 00:08:05,120
ุงู„ูƒู„ู…ุชูŠู† ุงู†ุง ุงุถุบุทูŠูƒ ู‚ุจู„ ุงู† ู†ุฐู‡ุจ ู„ู„ุชุทุจูŠู‚ ุงู„ุนุงู…ู„ูŠ
99
00:08:05,120 --> 00:08:11,690
ู„ู‡ุฐุง ุงู„ูƒู„ุงู…ุญุฏุซ ููŠูƒูˆุง ุชุญุจ ุชุณุฃู„ูˆุง ุงูŠ ุณุคุงู„ุŸ ุฌุงู‡ุฒูŠู†ุŸ
100
00:08:11,690 --> 00:08:16,010
ุทูŠุจ ุทุจุนุง ุชุนุฑููˆุง ุงู„ุงู…ุชุญุงู† ูˆุฌู‡ ุงู„ูŠูˆู… 24 ุงู„ู„ูŠ ู‡ูˆ ูŠูˆู…
101
00:08:16,010 --> 00:08:20,750
ุงู„ุซู„ุงุซุงุก ู…ุด ุจูƒุฑุง ุงู„ุซู„ุงุซุงุก ุงู„ู„ูŠ ุจุนุฏู‡ุง ุงู„ุฃุฑุจุนุฉ ูˆู„ุง
102
00:08:20,750 --> 00:08:25,470
ุงู„ุซู„ุงุซุฉุŸ ุงู„ุฃุฑุจุนุฉ ุงู„ุฃุฑุจุนุฉ ู…ุงููŠุด ู…ุดูƒู„ุฉ ุนุงุฏูŠ ุฌุฏุง ูŠุจู‚ู‰
103
00:08:25,470 --> 00:08:29,910
ุงู„ุงู…ุชุญุงู† ูŠูˆู… ุงู„ุฃุฑุจุนุงุก ุงู„ู„ูŠ ู‡ูˆ ุงู„ู‚ุงุฏู… ุณุงุนุฉ ู‚ุฏ ุฃูŠุดุŸ
104
00:08:29,910 --> 00:08:35,140
ุณุงุนุชูŠู† ุชุงู†ูŠุฉ ุจุนุฏ ู…ุง ู†ุฎู„ุต ู…ุญุงุถุฑุชู†ุงุจุณ ุนู†ุฏ ุงู„ุทู„ุงุจ ู…ุด
105
00:08:35,140 --> 00:08:41,920
ุนู†ุฏูƒู…. ุทูŠุจ ุนู„ู‰ ุฃูŠ ุญุงู„ ู…ุง ุนู„ูŠู†ุง ูŠุจู‚ู‰ ุงู„ุงู…ุชุญุงู† ูƒู…ุง
106
00:08:41,920 --> 00:08:47,280
ู‡ูˆ ููŠ chapter 3 ูˆ ุจุงู‚ูŠ chapter 2 ู…ุด ู‡ู†ุถูŠู ุฒูŠุงุฏุฉ
107
00:08:47,280 --> 00:08:53,290
ู„ู„ู…ุชุญุงู† ุงู†ุทุจุนู‡ ุฌุงู‡ุฒ.ู‡ุฐุง ู‡ูˆ ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจูŠู‚ูˆู„
108
00:08:53,290 --> 00:08:57,430
ุฎุฏ ุงู„ู…ุตูˆูุฉ ู†ุธุงู…ู‡ุง ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ุฒูŠ ู…ุง ุงู†ุช ุดุงูŠู
109
00:08:57,430 --> 00:09:01,190
ู‡ุงุชู„ ุงู„ eigen value ูˆ ุงู„ eigen vectors ูŠุจู‚ู‰ ู‡ุฐุง
110
00:09:01,190 --> 00:09:04,070
ุงู„ู„ูŠ ูƒู†ุง ุจู†ุฌูŠุจู‡ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ููŠ ุงู„ section ุงุฑุจุนุฉ
111
00:09:04,070 --> 00:09:08,510
ูˆุงุญุฏ ุจุนุฏูŠู† ุชุจูŠู†ูŠ ุงู† ุงู„ a is diagonalizable ูŠุจู‚ู‰
112
00:09:08,510 --> 00:09:15,340
ุจุนุฏูŠู† ุชุจูŠู†ูŠ ุงู† ุงู„ู…ุตูˆูุฉ aุจู‚ุฏุฑ ุงุณุชุจุฏู„ู‡ุง ุจู…ุตููˆูุฉ
113
00:09:15,340 --> 00:09:21,180
ู‚ุทุฑูŠุฉ ุนู†ุงุตุฑู‡ุง ู‡ู…ุง ุนู†ุงุตุฑ ู…ู† ุงู„ู€ eigenvalues ุฅุฐุง ุจุฏูŠ
114
00:09:21,180 --> 00:09:28,300
ุฃุจุฏุฃ ุฒูŠ ู…ุง ูƒู†ุช ุจุจุฏุฃ ู‡ู†ุงูƒ ุจุฏูŠ ุฃุฎุฏ lambda I ู†ุงู‚ุต
115
00:09:28,300 --> 00:09:36,080
ุงู„ู…ุตููˆูุฉ A ูˆุชุณุงูˆูŠ I Lambda ูˆ ู‡ู†ุง Zero Zero Lambda
116
00:09:36,080 --> 00:09:38,540
ู†ุงู‚ุต ุงู„ู…ุตููˆูุฉ A
117
00:09:41,740 --> 00:09:46,140
ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ู‡ุฐูŠ ุจุชุตุจุญ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ
118
00:09:46,140 --> 00:09:53,160
ู‡ู†ุง ู„ู†ุฏู† ู…ุงููŠุด ุบูŠุฑู‡ุง ูˆ ู‡ู†ุง ู†ุงู‚ุต ูˆุงุญุฏ ูˆ ู‡ู†ุง ู†ุงู‚ุต
119
00:09:53,160 --> 00:09:59,820
ุงุชู†ูŠู† ูˆ ู‡ู†ุง ู„ู†ุฏู† ู†ุงู‚ุต ูˆุงุญุฏ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง
120
00:10:00,650 --> 00:10:04,650
ุจุนุฏ ุฐู„ูƒ ุณุฃุญุตู„ ุนู„ู‰ determinant ู…ู† ุฎู„ุงู„ ุงู„ู€
121
00:10:04,650 --> 00:10:08,250
determinant ุฃูˆ ุงู„ู…ุญุฏุฏ ุณุฃุญุตู„ ุนู„ู‰ ู‚ูŠู… ุงู„ู€
122
00:10:08,250 --> 00:10:14,090
eigenvalues ูŠุจู‚ู‰ ุณุฃุญุตู„ ุนู„ู‰ determinant ู„ู…ู† ู„
123
00:10:14,090 --> 00:10:20,330
lambda I ู†ุงู‚ุต ุงู„ู€ A ูˆ ุฃุณูˆูŠ ุจุงู„ุฒูŠุฑูˆ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡
124
00:10:20,330 --> 00:10:26,570
ุงู† ุงู„ู…ุญุฏุฏ lambda ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† lambda ุณุงู„ุจ
125
00:10:26,570 --> 00:10:33,390
ูˆุงุญุฏ ุณูŠุณูˆู‰ุจุชููƒ ู‡ุฐุง ูŠุจู‚ู‰ ู„ุงู†ุฏุง ููŠ ู„ุงู†ุฏุง ู†ุงู‚ุต ูˆุงุญุฏ
126
00:10:33,390 --> 00:10:39,450
ู†ุงู‚ุต ุงุชู†ูŠู† ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰ ุงู„ู…ุญุฏุฏ ู‡ุฐุง
127
00:10:39,450 --> 00:10:46,370
ููŠ ู„ุงู†ุฏุง ุชุฑุจูŠุน ู†ุงู‚ุต ู„ุงู†ุฏุง ู†ุงู‚ุต ุงุชู†ูŠู† ูŠุณุงูˆูŠ Zero
128
00:10:46,370 --> 00:10:52,770
ุจุฏูŠ ุงุญู„ู„ ู‡ุฐุง ูƒุญุตู„ ุถุฑุจ ู‚ูˆุณูŠู† ูŠุจู‚ู‰ ุงูˆ ุญุตู„ ุถุฑุจ ุนุงู…ู„ูŠู†
129
00:10:52,770 --> 00:11:00,050
ูŠุณุงูˆูŠ Zeroู‡ู†ุง lambda ู‡ู†ุง lambda ู‡ู†ุง ูˆุงุญุฏ ู‡ู†ุง ุงุชู†ูŠู†
130
00:11:00,050 --> 00:11:04,930
ู‡ู†ุง ู†ุงู‚ุต ู‡ู†ุง ุฒุงุฆุฏ ูŠุจู‚ู‰ ุฒุงุฆุฏ lambda ุงูˆ ู†ุงู‚ุต ุงุชู†ูŠู†
131
00:11:04,930 --> 00:11:08,190
lambda ุจูŠุจู‚ู‰ ู†ุงู‚ุต lambda ูˆุงุญุฏุฉ ู‡ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู†ุง
132
00:11:08,190 --> 00:11:13,730
ูŠุจู‚ู‰ ุชุญู„ูŠู„ู†ุง ุณู„ูŠู… ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ lambda ุชุณุงูˆูŠ ุณุงู„ุจ
133
00:11:13,730 --> 00:11:17,910
ูˆุงุญุฏ ูˆ lambda ุชุณุงูˆูŠ ุงุชู†ูŠู† ู…ู† ู‡ุฐูˆู„ ุงู„ุจู†ุงุช
134
00:11:21,730 --> 00:11:29,470
ูŠุจู‚ู‰ ู‡ุฐูˆู„ are the eigenvalues
135
00:11:29,470 --> 00:11:39,530
of the matrix A ูŠุจู‚ู‰ ู‡ุฐูˆู„ ุงู„ู„ูŠ ู‡ู… ุงู„ eigenvalues
136
00:11:57,290 --> 00:12:02,270
ุจุนุฏ ุฐู„ูƒ ู†ุฌูŠุจ ุงู„ู€Eigenvectors ูŠุจู‚ู‰ ุงุญู†ุง ุญุชู‰ ุงู„ุขู† ููŠ
137
00:12:02,270 --> 00:12:06,390
ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ู„ุณู‡ ุฌูŠุจู†ุง ุงู„ู€Eigenvalues ูˆุจุนุฏ ุฐู„ูƒ
138
00:12:06,390 --> 00:12:09,930
ู†ุฌูŠุจ ุงู„ู€Eigenvectors
139
00:12:09,930 --> 00:12:16,490
ูŠุจู‚ู‰ ุจุงู„ุฏู‡ ุฏูŠ ู„ู„ู…ุตูˆูุฉ ุงูˆ ู„ุญุงุตู„ ุงู„ุถุฑุจ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†
140
00:12:18,900 --> 00:12:22,260
ู‡ุฐุง ูƒู„ู‡ ู…ู† ุฃูˆู„ ูˆู…ุจุชุฏุฃ ุงู„ุญู„ู‚ุฉ ุชุนุชุจุฑ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰
141
00:12:22,260 --> 00:12:29,560
ู†ู…ุฑุฉ a ุงุญู†ุง ุงู†ู†ุง lambda I ู†ุงู‚ุต ุงู„ a ููŠ ุงู„ X ุจูŠุณุงูˆูŠ
142
00:12:29,560 --> 00:12:32,660
zero ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุงู„ู„ูŠ ุจู†ุดุชุบู„ ุนู„ูŠู‡ุง
143
00:12:32,660 --> 00:12:40,440
ุงุจุชุฏุงุฆู‡ุง ู…ู† section 4-1 ู‡ูŠ ู‡ูŠ ู…ุงุบูŠุฑู†ุงุด ู‡ุฐุง ู…ุนู†ุงู‡ู…
144
00:12:42,120 --> 00:12:47,200
ู„ุงู†ุฏ ุงูŠ ู†ุงู‚ุต ุงุชู†ูŠู† ู‡ูŠ ู‡ุฌุงุฒุฉ ุงู„ู…ุตูˆูุฉ ู„ุงู†ู‡ุง ู†ุงู‚ุต
145
00:12:47,200 --> 00:12:52,320
ูˆุงุญุฏ ู„ุงู†ุฏ ุงูŠ ู†ุงู‚ุต ุงุชู†ูŠู† ู„ุงู†ุฏ ุงูŠ ู†ุงู‚ุต ูˆุงุญุฏ ู„ุงู†ุฏ ุงูŠ
146
00:12:52,320 --> 00:12:54,480
ู†ุงู‚ุต ุงุชู†ูŠู† ู„ุงู†ุฏ ุงูŠ ู†ุงู‚ุต ุงุชู†ูŠู† ู„ุงู†ุฏ ุงูŠ ู†ุงู‚ุต ุงุชู†ูŠู†
147
00:12:54,480 --> 00:12:55,100
ู„ุงู†ุฏ ุงูŠ ู†ุงู‚ุต ุงุชู†ูŠู† ู„ุงู†ุฏ ุงูŠ ู†ุงู‚ุต ุงุชู†ูŠู† ู„ุงู†ุฏ ุงูŠ ู†ุงู‚ุต
148
00:12:55,100 --> 00:12:55,320
ุงุชู†ูŠู† ู„ุงู†ุฏ ุงูŠ ู†ุงู‚ุต ุงุชู†ูŠู† ู„ุงู†ุฏ ุงูŠ ู†ุงู‚ุต ุงุชู†ูŠู† ู„ุงู†ุฏ
149
00:12:55,320 --> 00:12:55,620
ุงูŠ ู†ุงู‚ุต ุงุชู†ูŠู† ู„ุงู†ุฏ ุงูŠ ู†ุงู‚ุต ุงุชู†ูŠู† ู„ุงู†ุฏ ุงูŠ ู†ุงู‚ุต
150
00:12:55,620 --> 00:12:59,240
ุงุชู†ูŠู† ู„ุงู†ุฏ ุงูŠ ู†ุงู‚ุต ุงุชู†ูŠู† ู„ุงู†ุฏ ุงูŠ ู†ุงู‚ุต ุงุชู†ูŠู†
151
00:12:59,350 --> 00:13:05,730
ุจุชุงุฎุฏ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ ู„ูˆ ูƒุงู†ุช Lambda ุชุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ
152
00:13:05,730 --> 00:13:09,410
ู…ุงููŠุด ุงู„ู„ูŠ ุจุฏู‡ ูŠุตูŠุฑ ูŠุจู‚ู‰ ุจุฏู‡ ุฃุดูŠู„ ูƒู„ Lambda ูˆ ุฃุญุท
153
00:13:09,410 --> 00:13:14,570
ู…ูƒุงู†ู‡ุง ุณุงู„ุจ ูˆุงุญุฏ ูŠุจู‚ู‰ ุจุตูŠุฑ ุนู†ู‡ ู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ
154
00:13:14,570 --> 00:13:22,530
ูˆุงุญุฏ ูˆ ู‡ู†ุง ุณุงู„ุจ ุงุชู†ูŠู† ุณุงู„ุจ ุงุชู†ูŠู† ููŠ X ูˆุงุญุฏ X ุงุชู†ูŠู†
155
00:13:22,530 --> 00:13:27,650
ูƒู„ู‡ ุจุฏู‡ ูŠุณุงูˆูŠ ู…ู† Zero ูˆ Zeroู‡ุฐุง ุงู„ู…ุนุงุฏู„ ูŠุฌุจ ุฃู†
156
00:13:27,650 --> 00:13:32,270
ุฃููƒุฑ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ูˆ ุฃุญูˆู„ู‡ุง ุฅู„ู‰ ู…ุนุงุฏู„ุงุช ูŠุนู†ูŠ
157
00:13:32,270 --> 00:13:35,070
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู…ุตููˆู‡ูŠุฉ ูŠุฌุจ ุฃู† ุฃุถุฑุจู‡ุง ูˆ ุฃุญูˆู„ู‡ุง ุฅู„ู‰
158
00:13:35,070 --> 00:13:41,890
ู…ุนุงุฏู„ุชูŠู† ูุฃู‚ูˆู„ ู„ู‡ ู†ุงู‚ุต X1 ู†ุงู‚ุต X2 ุณูŠูƒูˆู† Zero ูˆู‡ู†ุง
159
00:13:41,890 --> 00:13:49,210
ู†ุงู‚ุต 2 X1 ู†ุงู‚ุต 2 X2 ุณูŠูƒูˆู† Zero ู‡ุฐู‡ ูƒุงู†ุช ู…ุนุงุฏู„ุฉ ูŠุง
160
00:13:49,210 --> 00:13:54,000
ุจู†ุงุชู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉ ุชู†ุชู‡ูŠ ู„ูƒ ููŠ ุงู„ุญู‚ูŠู‚ุฉ ู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉ
161
00:13:54,000 --> 00:14:00,860
ุฅุฐุง ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ูˆุงุญุฏุฉ X1 ุฒุงุฆุฏ X2 ุจุฏู‡ ูŠุณุงูˆูŠ Zero
162
00:14:00,860 --> 00:14:08,820
ูˆู…ู†ู‡ุง X1 ุจุฏู‡ ูŠุณุงูˆูŠ ู…ู† ุณุงู„ุจ X2 ุฃูˆ X2 ุจุฏู‡ ูŠุณุงูˆูŠ ุณุงู„ุจ
163
00:14:08,820 --> 00:14:17,060
X1ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู„ูˆ ูƒุงู†ุช ุงู„ X2 ุจุฏูŠ ุณุงูˆูŠ A then X1
164
00:14:17,060 --> 00:14:25,760
ุจุฏูŠ ู…ูŠู† ุณุงู„ุจ A ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ูŠ the eigen vectors
165
00:14:26,750 --> 00:14:37,190
are in the form ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุงู„ู„ูŠ ู‡ู…ุง ู…ู† X1 X2
166
00:14:37,190 --> 00:14:47,310
ุจุฏู‡ ูŠุณุงูˆูŠ X1 ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต A ูˆ X2 ุงู„ู„ูŠ ู‡ูŠ A ุจุงู„ุดูƒู„
167
00:14:47,310 --> 00:14:51,590
ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงูˆ A ููŠ ุณุงู„ุจ ูˆุงุญุฏ ูˆุงุญุฏ
168
00:14:54,310 --> 00:15:00,330
ูŠุจู‚ู‰ ุทุงู„ุน ุนู†ุฏูŠ ู‡ุฐุง ู‡ูˆ ูŠู…ุซู„ mean bases ู„ู„ eigen
169
00:15:00,330 --> 00:15:06,510
vector space ุงู„ู…ู†ุงุธุฑ ู„ู„ eigen value ู„ู…ู† lambda
170
00:15:06,510 --> 00:15:08,590
ุชุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ
171
00:15:17,540 --> 00:15:22,440
ุงู„ุงู† ุจุฏู†ุง ู†ุฌูŠ ู„ู…ูŠู†ุŸ ู†ุงุฎุฏ ู„ุงู† ุฏู‡ ุงู„ุชุงู†ูŠุฉ ูŠุจู‚ู‰ ุจุงุฌูŠ
172
00:15:22,440 --> 00:15:29,200
ุจู‚ูˆู„ู‡ ู‡ู†ุง F ู„ุงู† ุฏู‡ ุชุฒุงูˆูŠ ุงู„ุชุงู†ูŠุฉ ุทู„ุช ู…ุนุงู†ุง ุงุชู†ูŠู†
173
00:15:29,200 --> 00:15:34,970
ูŠุจู‚ู‰ thenู„ู…ุง ุทู„ุนุช ู„ุงู†ุฏุง ุชุณุงูˆูŠ ุงุชู†ูŠู† ูŠุจู‚ู‰ ุงู„ู…ุนุงุฏู„ุฉ
174
00:15:34,970 --> 00:15:39,390
ุงู„ู…ุตูููŠุฉ ู‡ุชูƒูˆู† ุนู„ูŠู‡ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ู‡ุดูŠู„ ูƒู„ ู„ุงู†ุฏุง ูˆ
175
00:15:39,390 --> 00:15:45,330
ุงุญุท ู…ูƒุงู†ู‡ุง ุงุชู†ูŠู† ูŠุจู‚ู‰ ุงุชู†ูŠู† ู†ุงู‚ุต ูˆุงุญุฏ ู‡ู†ุง ู†ุงู‚ุต
176
00:15:45,330 --> 00:15:50,690
ุงุชู†ูŠู† ูˆ ุงุชู†ูŠู† ู†ุงู‚ุต ูˆุงุญุฏ ุงู„ู„ูŠ ูŠุจู‚ู‰ ุฏุฑุฌุฉ ุงุจ ูˆุงุญุฏ
177
00:15:50,690 --> 00:15:55,830
ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง X ูˆุงุญุฏ X ุงุชู†ูŠู† ุจุฏู‡ุง ุชุณุงูˆูŠ
178
00:15:55,830 --> 00:16:02,120
Zero Zeroู‡ุฐูˆู„ ู‡ุชุนุทูŠู†ูŠ ู…ุนุงุฏู„ุชูŠู† ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰
179
00:16:02,120 --> 00:16:08,520
ุงู„ู„ู‰ ู‡ู‰ 2x1-x2 ุจุฏู‡ ูŠุณูˆู‰ zero ูˆุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชุงู†ูŠุฉ
180
00:16:08,520 --> 00:16:16,600
ุงู„ู†ุงู‚ุตู‰ 2x1 ุฒุงุฆุฏ x2 ุจุฑุถู‡ ูŠุณูˆู‰ zero ู‡ุฐูˆู„ ูƒุงู… ู…ุนุงุฏู„ุฉ
181
00:16:16,600 --> 00:16:21,210
ูŠุง ุจู†ุงุชุŸู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉ ู„ุฃู† ู„ูˆ ุถุฑุจุช ุงู„ุชุงู†ูŠุฉ ูู‰ ุณุงู„ุจ
182
00:16:21,210 --> 00:16:26,270
ุจูŠุตูŠุฑ ู‡ูŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุงู†ู‡ ุงุชู†ูŠู†
183
00:16:26,270 --> 00:16:31,910
ุงูƒุณ ูˆุงุญุฏ ู†ุงู‚ุต ุงูƒุณ ุงุชู†ูŠู† ุจุฏู‡ ูŠุณุงูˆูŠ Zero ู‡ุฐุง ู…ุนู†ุงู‡
184
00:16:31,910 --> 00:16:36,970
ุงู† ุงูƒุณ ุงุชู†ูŠู† ุจุฏู‡ ูŠุณุงูˆูŠ ุงุชู†ูŠู† ุงูƒุณ ูˆุงุญุฏ ูŠุจู‚ู‰ ู‡ุฐุง
185
00:16:36,970 --> 00:16:44,750
ู…ุนู†ุงู‡ ุงู† ู„ูˆ ูƒุงู†ุช ุงู„ X ูˆุงุญุฏ ุชุณุงูˆูŠ ุงูŠู‡ ูˆุงู„ู„ู‡ ุจูŠ ู…ุซู„ุง
186
00:16:44,750 --> 00:16:57,200
thenุจุนุฏ ุฐู„ูƒ X2 ูŠูƒูˆู† 2B ูˆุจุงู„ุชุงู„ูŠ ุงุตุจุญุช ู‡ู†ุง ู…ู† the
187
00:16:57,200 --> 00:17:08,180
Eigen vectors are inthe form ุตุงุฑ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ
188
00:17:08,180 --> 00:17:16,540
ุงู„ X1 ุจ B ูˆ ู‡ู†ุง ุจ 2B ูŠุนู†ูŠ ุจูŠู‡ ุจุฑุง ูˆ ู‡ู†ุง ูˆุงุญุฏ ุงุชู†ูŠู†
189
00:17:16,540 --> 00:17:23,720
ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุทุจุนุง ู‡ุฐุง ูŠู…ุซู„ bases ู„ู…ูŠู† ู„ู„
190
00:17:23,720 --> 00:17:30,380
eigen vector space ุงู„ู„ูŠ ุนู†ุฏู†ุง ุทูŠุจ ุงู„ุขู† ุฎู„ุตุช ุงู„ู„ูŠ
191
00:17:30,380 --> 00:17:35,760
ู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ุงู„ู…ุทู„ูˆุจ ุงู„ุชุงู„ูŠ ุฌุงู„ูŠ ู‡ุชู„ ุงู„ู…ุตููˆูุฉ K
192
00:17:35,760 --> 00:17:43,320
ุจุงุฌูŠ ุจู‚ูˆู„ู‡ุง ุงู„ู…ุตููˆูุฉ K ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ ู‡ูŠ ุนุจุงุฑุฉ
193
00:17:43,320 --> 00:17:49,460
ุนู† K ูˆุงุญุฏ ูˆ K ุงุชู†ูŠู† ููŠ ุนู†ุฏูŠ ุบูŠุฑู‡ู…ุŸ ู…ุงุนู†ุฏูŠุด ุบูŠุฑู‡ู… K
194
00:17:49,460 --> 00:17:56,860
ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ู…ู† ุณุงู„ุจ ูˆุงุญุฏ ูˆ ูˆุงุญุฏ ูˆ K ุงุชู†ูŠู† K ุงุชู†ูŠู†
195
00:17:56,860 --> 00:18:03,570
ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ุนู…ูˆุฏ ูˆุงุญุฏ ูˆ ุงุชู†ูŠู†ู„ุงุญุธ ุงู† ุงุชู†ูŠู† ู‡ุฏูˆู„
196
00:18:03,570 --> 00:18:07,870
linearly dependent ูˆู„ุง linearly independent
197
00:18:07,870 --> 00:18:14,010
ุงู†ุฏุจู†ุฏู†ุช ู„ูŠุด ุงู† ูˆู„ุง ูˆุงุญุฏ ููŠู‡ู… ู…ุถุงุนูุงุช ุงู„ุขุฎุฑ ูŠุจู‚ู‰
198
00:18:14,010 --> 00:18:21,290
ู‡ู†ุง ุจุงุฌูŠ ุจู‚ูˆู„ูƒ ุจูŠู† ุฌุซูŠู† ู†ูˆุชthat ู„ุญุธุฉ ุฃู† ุงู„ุณุงู„ุจ
199
00:18:21,290 --> 00:18:29,110
ูˆุงุญุฏ ูˆูˆุงุญุฏ and ุงู„ุชุงู†ูŠ ูˆุงุญุฏ ูˆุงุชู†ูŠู† are linearly
200
00:18:29,110 --> 00:18:30,390
independent
201
00:18:34,060 --> 00:18:40,500
ุงู„ุฎุทูˆุฉ ุงู„ุชุงู„ุชุฉ ู‡ูŠ ุงู„ู…ุทู„ูˆุจ ู†ู…ุฑ ุจูŠู‡ ู…ู† ุงู„ู…ุณุฃู„ุฉ ุจูŠู‘ู„ูŠ
202
00:18:40,500 --> 00:18:44,960
ุงู† a is diagonalizable ูŠุนู†ูŠ ุงุญู†ุง ุญุชู‰ ุงู„ู„ูŠ ู‡ู†ุฌูŠุจู†ุง
203
00:18:44,960 --> 00:18:48,640
ุงู„ eigenvalues ูˆ ุงู„ eigenvectors ุงู„ู„ูŠ ุนู†ุฏู†ุง ูˆ
204
00:18:48,640 --> 00:18:54,840
ุญุทู†ุงู‡ู… ุนู„ู‰ ุดูƒู„ ู…ุตููˆูุฉ ุงุฐุง ุจูŠุฏุงุฌูŠ ู„ู†ู…ุฑ ุจูŠู‡ ู…ู†
205
00:18:54,840 --> 00:19:00,110
ุงู„ุณุคุงู„ู…ุด ู‡ู†ุฌูŠุจ ู†ู…ุฑุฉ ุจูŠู‡ ุจุฏูŠ ุฃุฌูŠ ู„ู„ู…ุตููˆูุฉ K ูˆ ุฃุฌูŠุจ
206
00:19:00,110 --> 00:19:05,170
ู…ู† ุงู„ู…ุนูƒูˆุซ ุณุจุนู‡ุง ู…ุด ู‡ู†ุฌูŠุจ ุงู„ู…ุนูƒูˆุซ ุณุจุนู‡ุง ุจุฏูŠ ุฃุนุฑู
207
00:19:05,170 --> 00:19:11,510
ู‚ุฏุงุด ุงู„ determinant ู„ู„ K ุชู…ุงู… ูŠุจู‚ู‰ ุงู„ู…ุญุฏุฏ ุณุงู„ุจ
208
00:19:11,510 --> 00:19:18,910
ูˆุงุญุฏ ูˆุงุญุฏ ุงุชู†ูŠู† ูˆูŠุณุงูˆูŠ ุณุงู„ุจ ุงุชู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ ูˆูŠุณุงูˆูŠ
209
00:19:18,910 --> 00:19:24,870
ู‚ุฏุงุด ุณุงู„ุจ ุชู„ุงุชุฉ ูˆุฒูŠ ู…ุง ุงู†ุชูˆุง ุดุงูŠููŠู†ู„ุง ูŠุณุงูˆูŠ zero
210
00:19:24,870 --> 00:19:31,350
ูŠุนู†ูŠ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ non singular matrix ูŠุจุฌู‰ ู‡ุฐุง
211
00:19:31,350 --> 00:19:40,570
ู…ุนู†ุงู‡ ุงู†ูƒ is a non singular matrix
212
00:19:41,270 --> 00:19:46,830
ู…ุง ุฏุงู… non singular matrix ุฅุฐุง ุฅูŠู‡ ุงู„ู„ูŠ ู‡ูŠ ู…ุนูƒูˆุณ
213
00:19:46,830 --> 00:19:52,310
ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฌูŠุจ ุงู„ู…ุนูƒูˆุณ ุชุจุน ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ูˆ ู†ุถุฑุจู‡ ููŠ
214
00:19:52,310 --> 00:19:59,650
ุงู„ู…ุตููˆูุฉ A ูˆ ูƒุฐู„ูƒ ููŠ ุงู„ู…ุตููˆูุฉ K ุชุณู„ู… ูŠุจู‚ู‰ ุงู„ุงู† K
215
00:19:59,650 --> 00:20:05,730
inverse AK ุฅูŠุด ุจุฏู‡ ุชุนู…ู„ ุฅูŠุด ุงู„ู†ุงุชุฌ ูŠุง ุจู†ุงุช ุญุชู‰
216
00:20:05,730 --> 00:20:07,450
ุจุชุฌุฑูŠ ุชู‚ูˆู„ูŠ ุฌุฏูŠุด ุงู„ู†ุงุชุฌ
217
00:20:09,990 --> 00:20:15,550
ู‡ู…ุง ุงู„ู…ุตูˆูุฉ ู†ุธุงู… ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ุจุญูŠุซ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ
218
00:20:15,550 --> 00:20:19,910
ู‡ูˆ ู†ุงู‚ุต ูˆุงุญุฏ ูˆุงุชู†ูŠู† ูˆุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ุงู„ุซุงู†ูˆูŠ ูŠุจู‚ู‰
219
00:20:19,910 --> 00:20:24,270
ุฃุณูุงุฑ ูŠุนู†ูŠ ุฌุงุจ ุงู„ู…ุจุฏุฃ ู„ุฅู† ู‡ุฐู‡ ุงู„ู…ุตูˆูุฉ ู‡ูŠ ุงู„ู„ูŠ
220
00:20:24,270 --> 00:20:28,830
ุจุชุนู…ู„ูŠ ุงู„ diagonalization ู„ู„ู…ูŠู… ู„ู„ู…ุตูˆูุฉ A ูˆุจุงู„ุชุงู„ูŠ
221
00:20:28,830 --> 00:20:34,850
ุจู‚ูˆู„ ุงู„ A is diagonalizable ุทูŠุจ ู‡ุฐุง ู…ุนู†ุงู‡ ุทุจุนุง
222
00:20:34,850 --> 00:20:39,970
ู‡ุชุนุฑููŠุด ู…ูŠู† ูŠุง ุจู†ุงุชุŸุงู„ู†ุชุฌ ุงู„ู…ุตูˆูุฉ ุงู„ู„ูŠ ุจุชุทู„ุนูŠุด
223
00:20:39,970 --> 00:20:44,610
ุจู‚ูˆู„ ุนู„ูŠู‡ุง similar to a ู…ุด ู‡ุชุนุฑู ุงู„ similar ูˆูƒุฃู†ู‡
224
00:20:44,610 --> 00:20:48,850
ุงู„ similar ู‡ูŠ ู…ู†ุŸ ู‡ูŠ ุงู„ diagonalization ู‡ูŠ ู†ูุณ
225
00:20:48,850 --> 00:20:53,350
ุงู„ุนู…ู„ูŠุฉ ุจุณ ู‡ู†ุง ุญุทู†ุง ู„ู‡ุง ุดุบู„ ูˆ ูƒุฏู‡ ู‡ู†ุงูƒ ู…ุงูƒู†ุงุด
226
00:20:53,350 --> 00:20:57,190
ุจู†ุนุฑู ู‡ุฐุง ุงู„ูƒู„ุงู… ููŠ ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ุงุทุฑุญู†ุงู‡ ุงู„ู…ุญุงุถุฑุฉ
227
00:20:57,190 --> 00:21:02,010
ุงู„ู…ุงุถูŠุฉูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุจุงู„ุฏุงุฎู„ ู„ู…ุนูƒูˆุณ
228
00:21:02,010 --> 00:21:08,010
ุงู„ู…ุตูˆูุฉ K ุจู†ุจุฏู„ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ู…ูƒุงู† ุจุนุถ
229
00:21:08,010 --> 00:21:14,130
ูˆุจู†ุบูŠุฑ ุฅุดุงุฑุงุช ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุซุงู†ูˆูŠ ูˆุจู†ุฌุณู… ุนู„ู‰ ู…ุญุฏุฏ
230
00:21:14,130 --> 00:21:19,730
ู‡ุฐู‡ ุงู„ู…ุตูˆูุฉ ุงู„ู…ุญุฏุฏ ู‡ุฐุง ูƒุฏู‡ุŸ ุณุงู„ุจ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ู‡ุงูŠ
231
00:21:19,730 --> 00:21:26,640
ูˆุงุญุฏ ุนู„ู‰ ุณุงู„ุจ ุชู„ุงุชุฉุจุชุฏุงุฌูŠ ู‡ู†ุง ู‡ุฐุง ุงุชู†ูŠู† ูˆู‡ู†ุง ุณุงู„ุจ
232
00:21:26,640 --> 00:21:32,020
ูˆุงุญุฏ ูˆู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ูˆู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ุบูŠุฑุช ุงุดุงุฑุงุช
233
00:21:32,020 --> 00:21:36,060
ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุซุงู†ูˆูŠ ูˆุจุฏู„ุช ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ู…ูƒุงู†
234
00:21:36,060 --> 00:21:43,500
ุจุนุถ ุงู„ a ุจุงุฌูŠ ุจู†ุฒู„ู‡ุง ูƒู…ุง ูƒุงู†ุช ู„ู‡ zero ูˆุงุญุฏ ุงุชู†ูŠู†
235
00:21:43,500 --> 00:21:52,120
ูˆุงุญุฏ ู…ุตูˆูุฉ ูƒ ูƒู…ุง ู‡ูŠ ูˆุงุญุฏ ุงุชู†ูŠู† ูˆูŠุณุงูˆูŠุณุงู„ุจ ุชู„ุช
236
00:21:52,120 --> 00:21:57,980
ุฎู„ู‘ูŠูƒ ุจุฑุง ุชู…ุงู…ุŸ ุจูŠุถู„ ู„ุฅู† ู‡ู†ุง ุจุฏูŠ ุฃุฏุฑุจ ุงู„ู…ุตูุชูŠู†
237
00:21:57,980 --> 00:22:04,800
ู…ุซู„ุง ู‡ุฐุง ุงุชู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ููŠู‡
238
00:22:04,800 --> 00:22:09,880
ุจุฏูŠ ุฃุถุฑุจ ู‡ุฏูˆู„ ุงู„ู…ุตูุชูŠู† ููŠ ุจุนุถ ูŠุจู‚ู‰ Zero ูˆุงุญุฏ ุงู„ู„ูŠ
239
00:22:09,880 --> 00:22:15,740
ู‡ูˆ ุจูˆุงุญุฏ ูŠุจู‚ู‰ Zero ูˆุงุชู†ูŠู† ูŠุจู‚ู‰ ููŠ ุงุชู†ูŠู†ูŠุจู‚ู‰ ุณุงู„ุจ
240
00:22:15,740 --> 00:22:21,440
ุงุชู†ูŠู† ูˆ ูˆุงุญุฏ ูŠุจู‚ู‰ ุณุงู„ุจ ูˆุงุญุฏ ุงุชู†ูŠู† ูˆ ุงุชู†ูŠู† ูŠุจู‚ู‰ ูƒุฏู‡
241
00:22:21,440 --> 00:22:26,040
ุงุดุŸ ุงุฑุจุนุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
242
00:22:26,040 --> 00:22:32,080
ุจุฏู‡ ูŠุณุงูˆูŠ ุณุงู„ุจ ุทูˆู„ ููŠู‡ ู†ุถุฑุจ ุงู„ู…ุตูุชูŠู† ู‡ุฏูˆู„ ููŠ ุจุนุถ
243
00:22:32,080 --> 00:22:39,630
ูŠุจู‚ู‰ ู‡ู†ุง ุงุชู†ูŠู† ูˆ ู‡ู†ุง ูˆุงุญุฏ ูŠุจู‚ู‰ ุชู„ุงุชุฉู‡ู†ุง ุฃุฑุจุนุฉ
244
00:22:39,630 --> 00:22:46,750
ูˆู†ุงู‚ุต ุฃุฑุจุนุฉ ูŠุจู‚ู‰ zero ุชู…ุงู… ู‡ู†ุง ุตู ุซุงู†ูŠ ุณุงู„ุจ ูˆุงุญุฏ
245
00:22:46,750 --> 00:22:51,510
ูˆู…ูˆุฌุจ ูˆุงุญุฏ ูŠุจู‚ู‰ zero ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู†ูŠ
246
00:22:51,510 --> 00:22:57,610
ุณุงู„ุจ ุงุชู†ูŠู† ูˆุณุงู„ุจ ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ุณุงู„ุจ ุณุชุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
247
00:22:57,610 --> 00:23:03,690
ุนู†ุฏู†ุง ุฏู‡ุจุฏูŠ ุงุถุฑุจ ูƒู„ ุงู„ุนู†ุงุตุฑ ููŠ ุณุงู„ุจ ุทูˆู„ ูŠุจู‚ู‰ ู‡ุฐุง
248
00:23:03,690 --> 00:23:08,970
ุจูŠุนุทูŠูƒูˆุง ุฌุฏุงุด ุณุงู„ุจ ูˆุงุญุฏ ูˆ ู‡ู†ุง zero ูˆ ู‡ู†ุง zero ุณุงู„ุจ
249
00:23:08,970 --> 00:23:14,230
ู…ุน ุณุงู„ุจ ู…ูˆุฌุจ ูˆ ู‡ู†ุง ุจุงุชู†ูŠู† ุงุทู„ุนู„ูŠ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑุฉ
250
00:23:14,230 --> 00:23:18,810
ุฑุฆูŠุณูŠ ุณุงู„ุจ ูˆุงุญุฏ ูˆ ุงุชู†ูŠู† ู‡ูŠ ู‚ูŠู… main ุงู„ eigen value
251
00:23:18,810 --> 00:23:23,970
ุงู„ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู† ุงู„ a is diagonalizable ูŠุจู‚ู‰
252
00:23:23,970 --> 00:23:31,720
ู‡ู†ุงุงู„ู€ A is diagonalizable
253
00:23:31,720 --> 00:23:34,040
ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ
254
00:24:01,920 --> 00:24:11,060
ู†ุงุฎุฏ ุงู„ู…ู„ุงุญุธุฉ ู‡ุฐู‡ remark it
255
00:24:11,060 --> 00:24:22,540
should be noted that it should be noted that ูŠุฌุจ
256
00:24:22,540 --> 00:24:29,060
ู…ู„ุงุญุธุฉ ุงู† not every square matrix not every
257
00:24:32,360 --> 00:24:45,100
square matrix ู…ุด ูƒู„ ู…ุตูˆูุฉ ู…ุฑุจุนุฉ is similar to
258
00:24:45,100 --> 00:24:51,880
a diagonal matrix
259
00:24:51,880 --> 00:24:58,860
because ุงู„ุณุจุจ
260
00:25:01,690 --> 00:25:11,770
ุจุณุจุจ ุงู† ู„ูŠุณ ูƒู„ ู…ู‚ุงุทุน ูƒู„ ู…ู‚ุงุทุนุฉ
261
00:25:11,770 --> 00:25:19,870
ู„ุฏูŠู‡ุง
262
00:25:19,870 --> 00:25:26,650
ู…ู‚ุงุทุนุฉ ูƒุงู…ู„ุฉ ูƒู…ู‚ุงุทุนุฉ
263
00:25:26,650 --> 00:25:26,650
ูƒุงู…ู„ุฉ
264
00:25:31,150 --> 00:25:38,230
complicit of eigenvectors
265
00:25:38,230 --> 00:25:41,450
example
266
00:25:41,450 --> 00:25:48,430
is
267
00:25:48,430 --> 00:25:57,750
the matrix A ุชุณุงูˆูŠ
268
00:25:58,890 --> 00:26:07,490
ุงูŠุชู†ูŠู† ุชู„ุงุชุฉ ุฒูŠุฑูˆ ุงุชู†ูŠู† Similar to
269
00:26:07,490 --> 00:26:10,890
a diagonal matrix
270
00:26:36,780 --> 00:27:04,360
ุงู„ุนู…ูˆุฏ ู‡ุฐุง ู„ุงุฒู… ุฎู„ุงุต ุฎู„ูŠ
271
00:27:04,360 --> 00:27:10,490
ุจุงู„ูƒู…ุงู„ู…ู„ุงุญุธุฉ ุงู„ู„ู‰ ูƒุชุจู†ุงู‡ุง ุงู„ู…ุซุงู„ ุงู„ู„ู‰ ุฌุงุจ ู„ูˆ ูƒุงู†
272
00:27:10,490 --> 00:27:13,810
ู‡ู†ุง ู…ุตุญูˆู ู…ุฑุจุน ู†ุธุงู… ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ู„ู‚ู†ุงู‡ุง
273
00:27:13,810 --> 00:27:18,010
diagonalizable ู„ู…ุง ู†ุณุฃู„ ู‡ู„ ุงู„ู…ุตุญูˆู ุฏูŠ
274
00:27:18,010 --> 00:27:22,370
diagonalizable ูˆู„ุง ู„ุง ุงู†ุง ุจูู‡ู… ู…ู†ู‡ุง ุดุบู„ุชูŠู† ุงู„ุดุบู„
275
00:27:22,370 --> 00:27:26,130
ุงู„ุงูˆู„ู‰ ู‚ุฏ ุชูƒูˆู† diagonalizable ูˆู‚ุฏ ู„ุง ุชูƒูˆู†
276
00:27:26,130 --> 00:27:31,060
diagonalizableุฅุฐุง ู…ุง ุจู†ู‚ุฏุฑ ู†ู‚ูˆู„ ู…ุด ูƒู„ ู…ุตููˆูุฉ
277
00:27:31,060 --> 00:27:36,100
similar to ุงูŠ ู…ุตููˆูุฉ ุฃุฎุฑู‰ ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุฃูˆ ุจู…ุนู†ู‰
278
00:27:36,100 --> 00:27:41,760
ุฃุฎุฑ ู…ุด ูƒู„ ู…ุตููˆูุฉ ุจุชูƒูˆู† diagonalizable ุทูŠุจ ูƒูŠู‡ ุจุฏู†ุง
279
00:27:41,760 --> 00:27:46,300
ู†ุซุจุช ุตุญุฉ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃูˆ ูƒูŠู‡ ุจุฏู†ุง ู†ุจูŠู† ู‡ุฐุง ุงู„ูƒู„ุงู…ุŸ
280
00:27:46,300 --> 00:27:49,120
ุฅูŠุด ุจู‚ูˆู„ูŠ ู‡ู†ุง ููŠ ุงู„ู…ู„ุงุญุธุฉ ุฏูŠุŸ
281
00:27:57,900 --> 00:28:07,700
ู…ุด ูƒู„ ู…ุตููˆูุฉ ู…ุฑุจุนุฉ ู…ุดูƒู„ุฉ ู…ุด ูƒู„ ู…ุตููˆูุฉ
282
00:28:07,700 --> 00:28:11,600
ู…ุฑุจุนุฉ ู…ุดูƒู„ุฉ
283
00:28:11,600 --> 00:28:12,280
ู…ุด ูƒู„
284
00:28:14,720 --> 00:28:18,640
square matrix ุงู„ู…ุตุญูˆูุฉ ู…ุฑุจุนูŠุฉ ูˆ complete set of
285
00:28:18,640 --> 00:28:24,120
eigenvalues ุชุนุงู„ู‰ ู†ุชุฑุฌู… ู‡ุฐุง ุงู„ูƒู„ุงู… ุนู„ู‰ ุฃุฑุถ ุงู„ูˆุงู‚ุน
286
00:28:24,120 --> 00:28:27,100
ุงู„ู…ุนุทูŠู†ูŠ ุงู„ู…ุตุญูˆูุฉ ูˆุฌุงู„ู‰ ูŠุดูˆู ู„ูŠ ู‡ู„ ู‡ุฐู‡
287
00:28:27,100 --> 00:28:32,180
diagonalizable ูˆู„ุง not diagonalizable ุฅุฐุง ุจุฏูŠ ุฃู…ุดูŠ
288
00:28:32,180 --> 00:28:35,940
ู…ุซู„ ู…ุง ู…ุดูŠุช ููŠ ุงู„ู…ุซุงู„ ุงู„ู„ู‰ ุทูˆู‰ ุดูˆู ุญุงู„ูŠ ุฅู„ู‰ ูˆูŠู†
289
00:28:35,940 --> 00:28:41,280
ุจุฏูŠ ุฃูˆุตู„ ู‡ู„ ุจู‚ุฏุฑ ุฃูƒู…ู„ ูˆู„ุง ุจู‚ุฏุฑุด ุฃูƒู…ู„ูˆุฅุฐุง ู…ุงู‚ุฏุฑุด
290
00:28:41,280 --> 00:28:45,360
ุฃูƒู…ู„ ุฅูŠุด ุงู„ุดูŠุก ุงู„ู„ูŠ ุฎู„ุงู†ูŠ ู…ุงู‚ุฏุฑุด ุฃูƒู…ู„ ุงู„ุญูƒูŠ ุชุจุนูŠ
291
00:28:45,360 --> 00:28:52,280
ุจู‚ูˆู„ู‡ ุจุณูŠุทุฉ ุฅุฐุง ุฃู†ุง ุจุฏูŠ ุฃุจุฏุฃ ุจ lambda I ู†ุงู‚ุต ุงู„ a
292
00:28:52,280 --> 00:29:02,480
ูŠุจู‚ู‰ ุงู„ู„ูŠ ู‡ูŠ mean lambda 00 lambda ู†ุงู‚ุต ุงู„ a 2302
293
00:29:02,480 --> 00:29:10,830
ูˆูŠุณุงูˆูŠู‡ู†ุง ู„ุงู†ุฏุง ู†ุงู‚ุต ุงุชู†ูŠู† ูˆู‡ู†ุง ู†ุงู‚ุต ุซู„ุงุซุฉ ูˆ zero
294
00:29:10,830 --> 00:29:16,590
ูƒุฒูŠ ู…ุง ู‡ูˆ ูˆู‡ู†ุง ู„ุงู†ุฏุง ู†ุงู‚ุต ุงุชู†ูŠู† ุจุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
295
00:29:16,590 --> 00:29:25,080
ู‡ุฐุงุจุฏู‰ ุงุฎุฏ ุงู„ู…ุญุฏุฏ ูŠุจู‚ู‰ determinant ู„landa i ู†ุงู‚ุต
296
00:29:25,080 --> 00:29:32,580
ุงู„ a ูˆูŠุณูˆู‰ ุงู„ู…ุญุฏุฏ landa ู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต ุซู„ุงุซุฉ zero
297
00:29:32,580 --> 00:29:39,270
landa ู†ุงู‚ุต ุงุชู†ูŠู†ูŠุจู‚ู‰ ู‡ุฐุง lambda ู†ุงู‚ุต ุงุชู†ูŠู† ู„ูƒู„
298
00:29:39,270 --> 00:29:45,470
ุชุฑุจูŠุน ู†ุงู‚ุต ุงู„ zero ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ zero ูŠุจู‚ู‰
299
00:29:45,470 --> 00:29:51,210
ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† ุงู„ lambda ู†ุงู‚ุต ุงุชู†ูŠู† ู„ูƒู„ ุชุฑุจูŠุน ูŠุณุงูˆูŠ
300
00:29:51,210 --> 00:29:56,410
zero ู‡ุฐู‡ ู…ุนุงุฏู„ุฉ ู…ู† ุงูŠ ุฏุฑุฌุฉ ู…ู† ุฏุฑุฌุฉ ุงู† ูŠุจู‚ู‰ ู„ู‡ุง ูƒู…
301
00:29:56,410 --> 00:30:00,890
ุญู„ ุญู„ูŠู† ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ู„ูƒ ุงู„ุญู„ุงู†
302
00:30:05,540 --> 00:30:12,540
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจู†ุงุก ุนู„ูŠู‡ ุงู† ู„ุงู†ุฏุง ูˆุงุญุฏ ุชุณุงูˆูŠ
303
00:30:12,540 --> 00:30:19,850
ู„ุงู†ุฏุง ุงุชู†ูŠู† ุชุณุงูˆูŠ ุงุชู†ูŠู†ุจู†ุงุก ุนู„ูŠู‡ ุณุฃุญุตู„ ุนู„ู‰
304
00:30:19,850 --> 00:30:27,190
ุงู„ู€Eigenvectors ุงู„ู…ู†ุงุธุฑุฉ ู„ู…ู†ุŸ ู„ู€Landa ุชุณุงูˆูŠ ุงุชู†ูŠู†
305
00:30:27,190 --> 00:30:32,930
ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ู†ุง ู„ูˆ ุฃุฎุฏู†ุง ู„ุงู†ุฏุง ูˆุงุญุฏ ุชุณุงูˆูŠ ุงุชู†ูŠู†
306
00:30:32,930 --> 00:30:40,090
ุชู…ุงู…ุŸ ุจุฏูŠ ุฃุฑูˆุญ ุฃุฎุฏ ู…ู†ุŸ ู„ุงู†ุฏุง I ู†ุงู‚ุต ุงู„ู€A ููŠ ุงู„ู€X
307
00:30:40,090 --> 00:30:47,130
ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏูŠ ูŠุณุงูˆูŠ Zero ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ุงู„ุงู†ุฏุง
308
00:30:47,130 --> 00:30:52,150
ุงูŠ ู†ุงู‚ุต ู„ูŠู‡ุง ู‡ุฐู‡ ุงู„ู…ุตูˆูุฉ ู‡ุดูŠู„ ู„ุงู†ุฏุง ู‡ุฐู‡ ูˆ ุงูƒุชุจ
309
00:30:52,150 --> 00:30:58,540
ู…ูƒุงู†ู‡ุง ุฌุฏุงุดูˆ ุงูƒุชุจ ู…ูƒุงู†ู‡ุง ุงุชู†ูŠู† ุจูŠุตูŠุฑ ู‡ุงูŠู‡ุง ู‡ุงูŠ
310
00:30:58,540 --> 00:31:02,240
ู„ุงู†ุฏุง ู†ุงู‚ุต ุงุชู†ูŠู† ูˆู„ุง ุดูŠ ุชู‚ูˆู„ูŠ ู…ู† ูˆูŠู† ุงุฌุช ูˆ ู‡ู†ุง
311
00:31:02,240 --> 00:31:10,760
ู†ุงู‚ุต ุชู„ุงุชุฉ ูˆ ู‡ู†ุง zero ูˆ ู‡ู†ุง ู„ุงู†ุฏุง ู†ุงู‚ุต ุงุชู†ูŠู† ูˆ ู‡ุงุฏ
312
00:31:10,760 --> 00:31:16,820
ุงู„ X ูˆุงุญุฏ X ุงุชู†ูŠู† ุจุฏู‡ุง ุณุงูˆูŠ zero ูˆ zero ุจุงู„ุดูƒู„
313
00:31:16,820 --> 00:31:21,810
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุงูŠุจู‚ู‰ ู„ู…ุง ู„ุงู†ุฏุง ุชุณุงูˆูŠ ุงุชู†ูŠู† ุจูŠุตูŠุฑ
314
00:31:21,810 --> 00:31:26,970
ุงู„ู…ุตููˆูุฉ ู„ุงู†ู‡ุง ุชุจู‚ู‰ ูƒู…ุŸ Zero ูˆู‡ุฐู‡ ุณุงู„ุจ ุชู„ุงุชุฉ ูˆู‡ุฐู‡
315
00:31:26,970 --> 00:31:33,690
Zero ูˆู‡ุฐู‡ Zero ููŠ X ูˆุงุญุฏ X ุงุชู†ูŠู† ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูˆ
316
00:31:33,690 --> 00:31:39,730
Zero ูŠุจู‚ู‰ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุจูŠุนุทูŠู†ุง ู…ูŠู†ุŸ
317
00:31:39,730 --> 00:31:45,130
ุจูŠุนุทูŠู†ุง ุณุงู„ุจ ุชู„ุงุชุฉ X ุงุชู†ูŠู† ูŠุณุงูˆูŠ Zero ููŠ ุบูŠุฑ ู‡ูŠ
318
00:31:45,130 --> 00:31:51,940
ูƒุฏู‡ุŸู…ุง ุงุนุทุงู†ูŠุด ุงู„ุง ู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉ ุจู…ุฌู‡ูˆู„ ูˆุงุญุฏ ูƒู„
319
00:31:51,940 --> 00:31:57,060
ุงู„ู„ูŠ ุจู‚ุฏุฑ ุงู‚ูˆู„ู‡ ู…ู† ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุงู† ุงู„ X2 ุจุฏู‡ ุณุงูˆูŠ
320
00:31:57,060 --> 00:32:05,550
ู‚ุฏุงุด ุทุจ ูˆ ุงู„ X1 ุงูŠ ุฑู‚ู…ุŸ ู…ูŠู† ู…ูƒุงู† ูŠูƒูˆู†ูŠุจู‚ู‰ ุจุงุฌูŠ
321
00:32:05,550 --> 00:32:14,170
ุจู‚ูˆู„ู‡ and ุงูƒุณ ุงุชู†ูŠู† ุจุฏู‡ ูŠุณูˆูŠ ุงู„ a say ู…ุซู„ุง ูŠุนู†ูŠ ุงู‡
322
00:32:14,170 --> 00:32:17,270
ูˆู‚ุน ูƒูŠูุŸ ุจุณู…ุน
323
00:32:19,810 --> 00:32:31,730
ูŠุจู‚ู‰ X1 ูŠุจู‚ู‰ X1 ูŠุจู‚ู‰ X1
324
00:32:31,730 --> 00:32:40,890
ูŠุจู‚ู‰ X1 ูŠุจู‚ู‰ X1 ูŠุจู‚ู‰ X1 ูŠุจู‚ู‰ X1 ูŠุจู‚ู‰ X1 ูŠุจู‚ู‰ X1
325
00:32:40,890 --> 00:32:43,450
ูŠุจู‚ู‰ X1 ูŠุจู‚ู‰
326
00:32:46,580 --> 00:32:55,980
ุชูˆ ู„ุงู†ุฏุง ูˆุงุญุฏ ูŠุณุงูˆูŠ ุงุชู†ูŠู† are in the form ุนู„ู‰
327
00:32:55,980 --> 00:33:04,040
ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ X ูˆุงุญุฏ X ุงุชู†ูŠู† ูŠุณุงูˆูŠ X ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุจ
328
00:33:04,040 --> 00:33:09,700
A ูˆ X ุงุชู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุจู‚ุฏุงุด ุจ Zero ุงู„ู„ูŠ ูŠุณุงูˆูŠ A ููŠ
329
00:33:09,700 --> 00:33:14,260
ูˆุงุญุฏ Zero ุทุจ
330
00:33:14,260 --> 00:33:21,480
ู„ุงู†ุฏุง ู…ูƒุฑุฑุฉูŠุจู‚ู‰ ุงู„ุชุงู†ูŠุฉ ุฒูŠู‡ุง ุตุญ ูˆู„ุง ู„ุฃ ูŠุจู‚ู‰ also
331
00:33:21,480 --> 00:33:28,240
the eigenvectors
332
00:33:28,240 --> 00:33:35,900
corresponding to
333
00:33:35,900 --> 00:33:45,480
land ุงุชู†ูŠู† ุชุณุงูˆูŠ ุงุชู†ูŠู† are in the four
334
00:33:47,770 --> 00:33:54,870
ูŠุจู‚ู‰ ุฃุตุจุญุช ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ุจูŠ ู…ุซู„ุง ู„ูƒู† ู‡ูŠ
335
00:33:54,870 --> 00:34:00,370
ู‡ูŠ ู†ูุณู‡ุง ู…ุงุชุบูŠุฑุชุด ูŠุจู‚ู‰ ู„ูŠุณ ุจูŠ ูˆุฅู†ู…ุง ุงูŠู‡ ููŠ ูˆุงุญุฏ
336
00:34:00,370 --> 00:34:01,070
ุฒูŠุฑูˆ
337
00:34:04,190 --> 00:34:09,650
ุทูŠุจ ุชุนุงู„ู‰ ู†ุดูˆู ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุดูˆ ุดูƒู„ ุงู„ู…ุตูˆูุฉ K
338
00:34:09,650 --> 00:34:14,310
ุงู„ู…ุตูˆูุฉ K ุจุญุท ููŠู‡ุง ุงู„ Eigen vectors ู…ุธุจูˆุทุฉ ูˆู„ุง ู„ุฃ
339
00:34:14,310 --> 00:34:24,210
ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู…ุตูˆูุฉ K ุจุฏู‡ุง ุชุณุงูˆูŠ 1010
340
00:34:24,210 --> 00:34:26,070
ุชู…ุงู…
341
00:34:28,060 --> 00:34:32,700
ู„ูˆ ุฑุฌุนู†ุง ู„ a similar to b ูŠู‚ูˆู„ู†ุง if there exists a
342
00:34:32,700 --> 00:34:38,620
non singular matrix K such that ุชู…ุงู…ุŸ ุจุฏู†ุง ู†ุดูˆู ู‡ู„
343
00:34:38,620 --> 00:34:42,220
ู‡ุฐู‡ singular ูˆู„ุง non singular
344
00:34:44,480 --> 00:34:49,600
ูŠุจู‚ู‰ ุงุญู†ุง ุจู†ุงุช ู‡ู†ุง ุทู„ุนู†ุง ุงู„ู…ุตูˆูุฉ K ุชุจุนุช ุงู„
345
00:34:49,600 --> 00:34:54,480
eigenvectors ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุฌูŠู†ุง ุงุฎุฏู†ุง
346
00:34:54,480 --> 00:34:59,300
ุงู„ู…ุญุฏุฏ ุงู„ู„ูŠ ู„ู‡ุง ูˆุฌูŠู†ุง ุงู„ู…ุญุฏุฏ ุงู„ู„ูŠ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ Zero
347
00:34:59,300 --> 00:35:03,780
ู…ุฏุงู… ุงู„ู…ุญุฏุฏ Zero ูŠุนู†ูŠ ุงู„ K inverse does not exist
348
00:35:03,780 --> 00:35:09,760
ู„ุฃู† ุงู„ู…ุตูˆูุฉ ุงู„ู„ูŠ ู„ู‡ุง ู…ุงูƒูˆุณ ู‡ูŠ ุงู„ู…ุตูˆูุฉ ุงู„ู„ูŠ ู…ุญุฏุฏู‡ุง
349
00:35:09,760 --> 00:35:15,700
ู„ุง ูŠุณุงูˆูŠ Zero ุชู…ุงู…ุŸูŠุณุงูˆูŠ ุฒูŠ ุฑูˆูŠุจ ุฌู‡ุฏูŠ ู…ุด ู…ูˆุฌูˆุฏุฉุŒ
350
00:35:15,700 --> 00:35:20,980
ู…ุฏู† ู…ุด ู…ูˆุฌูˆุฏุฉุŒ ุฅุฐุง ู„ุง ูŠู…ูƒู† ุชุจู‚ู‰ ุงู„ู…ุตูˆูุฉ similar to
351
00:35:20,980 --> 00:35:24,560
a diagonal matrix ุฃูˆ ุงู„ู…ุตูˆูุฉ ุจู‚ูˆู„ ุนู†ู‡ุง ู‡ูŠ
352
00:35:24,560 --> 00:35:29,160
diagonalizable ูŠุนุทูŠูƒูˆุง ุงู„ุนุงููŠุฉ