# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ASLG-PC12: Synthetic English-ASL Gloss Parallel Corpus 2012""" import datasets _DESCRIPTION = """\ A large synthetic collection of parallel English and ASL-Gloss texts. There are two string features: text, and gloss. """ _CITATION = """\ @inproceedings{othman2012english, title={English-asl gloss parallel corpus 2012: Aslg-pc12}, author={Othman, Achraf and Jemni, Mohamed}, booktitle={5th Workshop on the Representation and Processing of Sign Languages: Interactions between Corpus and Lexicon LREC}, year={2012} } """ _GLOSS_URL = "https://www.achrafothman.net/aslsmt/corpus/sample-corpus-asl-en.asl" _TEXT_URL = "https://www.achrafothman.net/aslsmt/corpus/sample-corpus-asl-en.en" _HOMEPAGE = "https://achrafothman.net/site/asl-smt/" class ASLGPC12(datasets.GeneratorBasedBuilder): """ASLG-PC12: Synthetic English-ASL Gloss Parallel Corpus 2012""" VERSION = datasets.Version("0.0.1") # sample corpus def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=datasets.Features( { "gloss": datasets.Value("string"), # American sign language gloss "text": datasets.Value("string"), # English text } ), homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" gloss_path, text_path = dl_manager.download([_GLOSS_URL, _TEXT_URL]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"gloss_path": gloss_path, "text_path": text_path}, ) ] def _generate_examples(self, gloss_path, text_path): """ Yields examples. """ gloss_f = open(gloss_path, "r", encoding="utf-8") text_f = open(text_path, "r", encoding="utf-8") for i, (gloss, text) in enumerate(zip(gloss_f, text_f)): yield i, {"gloss": gloss, "text": text} gloss_f.close() text_f.close()