Datasets:

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
activebus commited on
Commit
1782bb6
1 Parent(s): 68220a2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -3
README.md CHANGED
@@ -1,3 +1,36 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Altogether-FT
2
+
3
+ (EMNLP 2024) Altogether-FT is an annotated fine-tuning dataset that re-aligns alt-texts into dense captions. It powers altogether captioner to transform Internet-scale quality alt-texts into dense captions, instead of captioning from scratch as naive captions (e.g, "a dog is walking in the park.").
4
+ It contains 15448 examples for training and 500 examples for evaluation from WIT and DataComp.
5
+
6
+ ![Altogether](altogether.png)
7
+
8
+
9
+ ```bibtex
10
+ @inproceedings{xu2024altogether,
11
+ title={Altogether: Image Captioning via Re-aligning Alt-text},
12
+ author={Hu Xu, Po-Yao Huang, Xiaoqing Ellen Tan, Ching-Feng Yeh, Jacob Kahn, Christine Jou, Gargi Ghosh, Omer Levy, Luke Zettlemoyer, Wen-tau Yih, Shang-Wen Li, Saining Xie and Christoph Feichtenhofer},
13
+ journal={arXiv preprint arXiv:xxxx.xxxxx},
14
+ year={2024}
15
+ }
16
+ ```
17
+
18
+ ## Altogether-FT
19
+
20
+ ```python
21
+ from datasets import load_dataset
22
+
23
+ train_dataset = load_dataset("json", data_files="activebus/Altogether-FT/altogether_ft_train.json", field="data")
24
+
25
+ eval_dataset = load_dataset("json", data_files="activebus/Altogether-FT/altogether_ft_eval.json", field="data")
26
+ ```
27
+
28
+
29
+ ## License
30
+
31
+ The majority of Altogether-FT is licensed under CC-BY-NC, portions of the project are available under separate license terms: CLIPCap is licensed MIT and open_clip is licensed under the https://github.com/mlfoundations/open_clip license.
32
+
33
+
34
+ ---
35
+ license: cc-by-nc-4.0
36
+ ---