|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Cleaned Indonesian split of the mC4 corpus.""" |
|
import json |
|
import glob |
|
import gzip |
|
import textwrap |
|
import datasets |
|
import zstandard as zstd |
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
file = sorted(glob.glob('/data/KoPI-CC/2021_39/raw/*.zst')) |
|
_CITATION = """ |
|
@article{JMLR:v21:20-074, |
|
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, |
|
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, |
|
journal = {Journal of Machine Learning Research}, |
|
year = {2020}, |
|
volume = {21}, |
|
number = {140}, |
|
pages = {1-67}, |
|
url = {http://jmlr.org/papers/v21/20-074.html} |
|
} |
|
""" |
|
_DESCRIPTION = """\ |
|
A thoroughly cleaned version of the Italian portion of the multilingual |
|
colossal, cleaned version of Common Crawl's web crawl corpus (mC4) by AllenAI. |
|
Based on Common Crawl dataset: "https://commoncrawl.org". |
|
This is the processed version of Google's mC4 dataset by AllenAI, with further cleaning |
|
detailed in the repository README file. |
|
""" |
|
_HOMEPAGE = "https://github.com/allenai/allennlp/discussions/5056" |
|
_LICENSE = "Open Data Commons Attribution License (ODC-By) v1.0" |
|
_BASE_URL = "https://huggingface.co/datasets/munggok/mc4-id/resolve/main/mc4-id-filter/c4-id{split_suffix}.tfrecord-{index:05d}-of-{n_shards:05d}.json.gz" |
|
_CONFIGS = { |
|
"tiny": {"train": 100, "validation": 1}, |
|
"small": {"train": 250, "validation": 2}, |
|
"medium": {"train": 500, "validation": 4}, |
|
"large": {"train": 750, "validation": 6}, |
|
"full": {"train": 1016, "validation": 8} |
|
} |
|
class OscarConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for the Clean mC4 Italian.""" |
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Clean mC4 Italian. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(**kwargs) |
|
class Oscar(datasets.GeneratorBasedBuilder): |
|
"""mC4, a colossal, cleaned version of Common Crawl's web crawl corpus.""" |
|
BUILDER_CONFIGS = [ |
|
OscarConfig( |
|
name="full", |
|
version=datasets.Version("1.0.0"), |
|
description=textwrap.dedent( |
|
f"""\ |
|
The full cleaned version of the Italian portion of the multilingual C4 corpus. |
|
Estimated size of compressed files: 103GB |
|
""" |
|
) |
|
) |
|
] |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
"timestamp": datasets.Value("string"), |
|
"meta": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
def _split_generators(self, dl_manager): |
|
data_urls = {} |
|
train_downloaded_files = file |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}), |
|
] |
|
def _generate_examples(self, filepaths): |
|
"""This function returns the examples in the raw (text) form by iterating on all the files.""" |
|
id_ = 0 |
|
for filepath in filepaths: |
|
logger.info(f"Generating examples from {filepath}") |
|
with zstd.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: |
|
for line in f: |
|
if line: |
|
example = json.loads(line) |
|
meta = dict() |
|
meta["warc_headers"] = example["warc_headers"] |
|
meta["warc_headers"]["warc-identified-content-language"] = example[ |
|
"warc_headers" |
|
].get("warc-identified-content-language") |
|
meta["identification"] = example["metadata"]["identification"] |
|
meta["annotations"] = example["metadata"]["annotation"] |
|
meta["line_identifications"] = example["metadata"][ |
|
"sentence_identifications" |
|
] |
|
yield id_, {'text':example['content'],'url':example['warc_headers']['warc-target-uri'],'timestamp':example['warc_headers']['warc-date'],"meta": json.dumps(meta)} |
|
id_ += 1 |
|
|