|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Cleaned Indonesian split of the KoPI corpus.""" |
|
import json |
|
import glob |
|
import gzip |
|
from posixpath import split |
|
import textwrap |
|
import datasets |
|
import zstandard as zstd |
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = """ |
|
""" |
|
_DESCRIPTION = """\ |
|
""" |
|
_TYPE = ['raw','dedup','neardup'] |
|
_CONF_LANG = ['ace_Latn','ban_Latn','bjn_Latn','ind_Latn','jav_Latn','min_Latn','sun_Latn'] |
|
_CONFIGS = [] |
|
for j in _CONF_LANG: |
|
for m in _TYPE: |
|
_CONFIGS.append(j+'-'+m) |
|
_ALL_CONFIG = ["all-raw", "all-dedup", "all-neardup"] + _CONFIGS |
|
_HOMEPAGE = "https://huggingface.co/datasets/munggok/KoPI-NLLB" |
|
_LICENSE = "ODC_C" |
|
_BASE_URL = 'https://huggingface.co/datasets/munggok/KoPI-NLLB/resolve/main/{tipe}/{lang}.json.zst' |
|
|
|
def kopi_nllb_constructor(nam): |
|
return KoPINLLBConfig( |
|
name=nam, |
|
version=datasets.Version("1.0.0"), |
|
) |
|
|
|
class KoPINLLBConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for the Clean KoPI corpus.""" |
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Clean KoPI corpus. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(**kwargs) |
|
class KoPINLLB(datasets.GeneratorBasedBuilder): |
|
"""KoPI corpus.""" |
|
BUILDER_CONFIGS = [kopi_nllb_constructor(m) for m in _ALL_CONFIG ] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
"score": datasets.Value("float32"), |
|
"source": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
def _split_generators(self, dl_manager): |
|
name = self.config.name.split("-") |
|
if name[0] == "all": |
|
train = [_BASE_URL.format(tipe=name[1],lang=m) for m in _CONF_LANG] |
|
else: |
|
train = [_BASE_URL.format(tipe=name[1],lang=name[0])] |
|
train_downloaded_files = dl_manager.download(train) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}) |
|
] |
|
def _generate_examples(self, filepaths): |
|
"""This function returns the examples in the raw (text) form by iterating on all the files.""" |
|
id_ = 0 |
|
for filepath in filepaths: |
|
logger.info(f"Generating examples from {filepath}") |
|
with zstd.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: |
|
for line in f: |
|
if line: |
|
example = json.loads(line) |
|
if line: |
|
example = json.loads(line) |
|
yield id_, {'text':example['text'],'url':example['url'],'source':example['source'],'score': float(example['score'])} |
|
id_ += 1 |