chad-brouze
commited on
Commit
•
d88a7b3
1
Parent(s):
83e97f4
Adding samples results for afrimgsm_direct_xho to CohereForAI/aya-23-8B
Browse files
CohereForAI__aya-23-8B/results_2024-10-01T03-01-55.801880.json
ADDED
@@ -0,0 +1,536 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"afrimgsm_direct_xho": {
|
4 |
+
"alias": "afrimgsm_direct_xho",
|
5 |
+
"exact_match,remove_whitespace": 0.0,
|
6 |
+
"exact_match_stderr,remove_whitespace": 0.0,
|
7 |
+
"exact_match,flexible-extract": 0.008,
|
8 |
+
"exact_match_stderr,flexible-extract": 0.005645483676690173
|
9 |
+
},
|
10 |
+
"afrimgsm_direct_zul": {
|
11 |
+
"alias": "afrimgsm_direct_zul",
|
12 |
+
"exact_match,remove_whitespace": 0.0,
|
13 |
+
"exact_match_stderr,remove_whitespace": 0.0,
|
14 |
+
"exact_match,flexible-extract": 0.02,
|
15 |
+
"exact_match_stderr,flexible-extract": 0.008872139507342683
|
16 |
+
},
|
17 |
+
"afrimmlu_direct_xho": {
|
18 |
+
"alias": "afrimmlu_direct_xho",
|
19 |
+
"acc,none": 0.228,
|
20 |
+
"acc_stderr,none": 0.018781306529363204,
|
21 |
+
"f1,none": 0.22499762903231807,
|
22 |
+
"f1_stderr,none": "N/A"
|
23 |
+
},
|
24 |
+
"afrimmlu_direct_zul": {
|
25 |
+
"alias": "afrimmlu_direct_zul",
|
26 |
+
"acc,none": 0.25,
|
27 |
+
"acc_stderr,none": 0.019384310743640384,
|
28 |
+
"f1,none": 0.2522065219763795,
|
29 |
+
"f1_stderr,none": "N/A"
|
30 |
+
},
|
31 |
+
"afrixnli_en_direct_xho": {
|
32 |
+
"alias": "afrixnli_en_direct_xho",
|
33 |
+
"acc,none": 0.335,
|
34 |
+
"acc_stderr,none": 0.019285007627653686,
|
35 |
+
"f1,none": 0.27778903523584375,
|
36 |
+
"f1_stderr,none": "N/A"
|
37 |
+
},
|
38 |
+
"afrixnli_en_direct_zul": {
|
39 |
+
"alias": "afrixnli_en_direct_zul",
|
40 |
+
"acc,none": 0.33166666666666667,
|
41 |
+
"acc_stderr,none": 0.019236854622688142,
|
42 |
+
"f1,none": 0.26541415513303723,
|
43 |
+
"f1_stderr,none": "N/A"
|
44 |
+
}
|
45 |
+
},
|
46 |
+
"group_subtasks": {
|
47 |
+
"afrimgsm_direct_xho": [],
|
48 |
+
"afrimgsm_direct_zul": [],
|
49 |
+
"afrimmlu_direct_xho": [],
|
50 |
+
"afrimmlu_direct_zul": [],
|
51 |
+
"afrixnli_en_direct_xho": [],
|
52 |
+
"afrixnli_en_direct_zul": []
|
53 |
+
},
|
54 |
+
"configs": {
|
55 |
+
"afrimgsm_direct_xho": {
|
56 |
+
"task": "afrimgsm_direct_xho",
|
57 |
+
"tag": [
|
58 |
+
"afrimgsm",
|
59 |
+
"afrimgsm_direct"
|
60 |
+
],
|
61 |
+
"group": [
|
62 |
+
"afrimgsm",
|
63 |
+
"afrimgsm_direct"
|
64 |
+
],
|
65 |
+
"dataset_path": "masakhane/afrimgsm",
|
66 |
+
"dataset_name": "xho",
|
67 |
+
"test_split": "test",
|
68 |
+
"doc_to_text": "{% if answer is not none %}{{question+\"\\nAnswer:\"}}{% else %}{{\"Question: \"+question+\"\\nAnswer:\"}}{% endif %}",
|
69 |
+
"doc_to_target": "{% if answer is not none %}{{answer[21:]}}{% else %}{{answer_number|string}}{% endif %}",
|
70 |
+
"description": "",
|
71 |
+
"target_delimiter": "",
|
72 |
+
"fewshot_delimiter": "\n\n",
|
73 |
+
"num_fewshot": 0,
|
74 |
+
"metric_list": [
|
75 |
+
{
|
76 |
+
"metric": "exact_match",
|
77 |
+
"aggregation": "mean",
|
78 |
+
"higher_is_better": true,
|
79 |
+
"ignore_case": true,
|
80 |
+
"ignore_punctuation": true
|
81 |
+
}
|
82 |
+
],
|
83 |
+
"output_type": "generate_until",
|
84 |
+
"generation_kwargs": {
|
85 |
+
"do_sample": false,
|
86 |
+
"until": [
|
87 |
+
"Question:",
|
88 |
+
"</s>",
|
89 |
+
"<|im_end|>"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
"repeats": 1,
|
93 |
+
"filter_list": [
|
94 |
+
{
|
95 |
+
"name": "remove_whitespace",
|
96 |
+
"filter": [
|
97 |
+
{
|
98 |
+
"function": "remove_whitespace"
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"function": "take_first"
|
102 |
+
}
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"filter": [
|
107 |
+
{
|
108 |
+
"function": "regex",
|
109 |
+
"group_select": -1,
|
110 |
+
"regex_pattern": "(-?[$0-9.,]{2,})|(-?[0-9]+)"
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"function": "take_first"
|
114 |
+
}
|
115 |
+
],
|
116 |
+
"name": "flexible-extract"
|
117 |
+
}
|
118 |
+
],
|
119 |
+
"should_decontaminate": false,
|
120 |
+
"metadata": {
|
121 |
+
"version": 2.0
|
122 |
+
}
|
123 |
+
},
|
124 |
+
"afrimgsm_direct_zul": {
|
125 |
+
"task": "afrimgsm_direct_zul",
|
126 |
+
"tag": [
|
127 |
+
"afrimgsm",
|
128 |
+
"afrimgsm_direct"
|
129 |
+
],
|
130 |
+
"group": [
|
131 |
+
"afrimgsm",
|
132 |
+
"afrimgsm_direct"
|
133 |
+
],
|
134 |
+
"dataset_path": "masakhane/afrimgsm",
|
135 |
+
"dataset_name": "zul",
|
136 |
+
"test_split": "test",
|
137 |
+
"doc_to_text": "{% if answer is not none %}{{question+\"\\nAnswer:\"}}{% else %}{{\"Question: \"+question+\"\\nAnswer:\"}}{% endif %}",
|
138 |
+
"doc_to_target": "{% if answer is not none %}{{answer[21:]}}{% else %}{{answer_number|string}}{% endif %}",
|
139 |
+
"description": "",
|
140 |
+
"target_delimiter": "",
|
141 |
+
"fewshot_delimiter": "\n\n",
|
142 |
+
"num_fewshot": 0,
|
143 |
+
"metric_list": [
|
144 |
+
{
|
145 |
+
"metric": "exact_match",
|
146 |
+
"aggregation": "mean",
|
147 |
+
"higher_is_better": true,
|
148 |
+
"ignore_case": true,
|
149 |
+
"ignore_punctuation": true
|
150 |
+
}
|
151 |
+
],
|
152 |
+
"output_type": "generate_until",
|
153 |
+
"generation_kwargs": {
|
154 |
+
"do_sample": false,
|
155 |
+
"until": [
|
156 |
+
"Question:",
|
157 |
+
"</s>",
|
158 |
+
"<|im_end|>"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
"repeats": 1,
|
162 |
+
"filter_list": [
|
163 |
+
{
|
164 |
+
"name": "remove_whitespace",
|
165 |
+
"filter": [
|
166 |
+
{
|
167 |
+
"function": "remove_whitespace"
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"function": "take_first"
|
171 |
+
}
|
172 |
+
]
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"filter": [
|
176 |
+
{
|
177 |
+
"function": "regex",
|
178 |
+
"group_select": -1,
|
179 |
+
"regex_pattern": "(-?[$0-9.,]{2,})|(-?[0-9]+)"
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"function": "take_first"
|
183 |
+
}
|
184 |
+
],
|
185 |
+
"name": "flexible-extract"
|
186 |
+
}
|
187 |
+
],
|
188 |
+
"should_decontaminate": false,
|
189 |
+
"metadata": {
|
190 |
+
"version": 2.0
|
191 |
+
}
|
192 |
+
},
|
193 |
+
"afrimmlu_direct_xho": {
|
194 |
+
"task": "afrimmlu_direct_xho",
|
195 |
+
"tag": [
|
196 |
+
"afrimmlu",
|
197 |
+
"afrimmlu_direct"
|
198 |
+
],
|
199 |
+
"group": [
|
200 |
+
"afrimmlu",
|
201 |
+
"afrimmlu_direct"
|
202 |
+
],
|
203 |
+
"dataset_path": "masakhane/afrimmlu",
|
204 |
+
"dataset_name": "xho",
|
205 |
+
"validation_split": "validation",
|
206 |
+
"test_split": "test",
|
207 |
+
"fewshot_split": "validation",
|
208 |
+
"doc_to_text": "def doc_to_text(doc):\n output = \"\"\"You are a highly knowledgeable and intelligent artificial intelligence\n model answers multiple-choice questions about {subject}\n\n Question: {question}\n\n Choices:\n A: {choice1}\n B: {choice2}\n C: {choice3}\n D: {choice4}\n\n Answer: \"\"\"\n\n choices = eval(doc[\"choices\"])\n text = output.format(\n subject=doc[\"subject\"],\n question=doc[\"question\"],\n choice1=choices[0],\n choice2=choices[1],\n choice3=choices[2],\n choice4=choices[3],\n )\n return text\n",
|
209 |
+
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
210 |
+
"doc_to_choice": "def doc_to_choice(doc):\n choices = eval(doc[\"choices\"])\n return choices\n",
|
211 |
+
"description": "",
|
212 |
+
"target_delimiter": " ",
|
213 |
+
"fewshot_delimiter": "\n\n",
|
214 |
+
"num_fewshot": 0,
|
215 |
+
"metric_list": [
|
216 |
+
{
|
217 |
+
"metric": "f1",
|
218 |
+
"aggregation": "def weighted_f1_score(items):\n from sklearn.metrics import f1_score\n\n unzipped_list = list(zip(*items))\n golds = unzipped_list[0]\n preds = unzipped_list[1]\n fscore = f1_score(golds, preds, average=\"weighted\")\n return fscore\n",
|
219 |
+
"average": "weighted",
|
220 |
+
"hf_evaluate": true,
|
221 |
+
"higher_is_better": true,
|
222 |
+
"ignore_case": true,
|
223 |
+
"ignore_punctuation": true,
|
224 |
+
"regexes_to_ignore": [
|
225 |
+
",",
|
226 |
+
"\\$"
|
227 |
+
]
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"metric": "acc",
|
231 |
+
"aggregation": "mean",
|
232 |
+
"higher_is_better": true,
|
233 |
+
"ignore_case": true,
|
234 |
+
"ignore_punctuation": true,
|
235 |
+
"regexes_to_ignore": [
|
236 |
+
",",
|
237 |
+
"\\$"
|
238 |
+
]
|
239 |
+
}
|
240 |
+
],
|
241 |
+
"output_type": "multiple_choice",
|
242 |
+
"repeats": 1,
|
243 |
+
"should_decontaminate": true,
|
244 |
+
"doc_to_decontamination_query": "Question: {{question}}\nAnswer:",
|
245 |
+
"metadata": {
|
246 |
+
"version": 1.0
|
247 |
+
}
|
248 |
+
},
|
249 |
+
"afrimmlu_direct_zul": {
|
250 |
+
"task": "afrimmlu_direct_zul",
|
251 |
+
"tag": [
|
252 |
+
"afrimmlu",
|
253 |
+
"afrimmlu_direct"
|
254 |
+
],
|
255 |
+
"group": [
|
256 |
+
"afrimmlu",
|
257 |
+
"afrimmlu_direct"
|
258 |
+
],
|
259 |
+
"dataset_path": "masakhane/afrimmlu",
|
260 |
+
"dataset_name": "zul",
|
261 |
+
"validation_split": "validation",
|
262 |
+
"test_split": "test",
|
263 |
+
"fewshot_split": "validation",
|
264 |
+
"doc_to_text": "def doc_to_text(doc):\n output = \"\"\"You are a highly knowledgeable and intelligent artificial intelligence\n model answers multiple-choice questions about {subject}\n\n Question: {question}\n\n Choices:\n A: {choice1}\n B: {choice2}\n C: {choice3}\n D: {choice4}\n\n Answer: \"\"\"\n\n choices = eval(doc[\"choices\"])\n text = output.format(\n subject=doc[\"subject\"],\n question=doc[\"question\"],\n choice1=choices[0],\n choice2=choices[1],\n choice3=choices[2],\n choice4=choices[3],\n )\n return text\n",
|
265 |
+
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
266 |
+
"doc_to_choice": "def doc_to_choice(doc):\n choices = eval(doc[\"choices\"])\n return choices\n",
|
267 |
+
"description": "",
|
268 |
+
"target_delimiter": " ",
|
269 |
+
"fewshot_delimiter": "\n\n",
|
270 |
+
"num_fewshot": 0,
|
271 |
+
"metric_list": [
|
272 |
+
{
|
273 |
+
"metric": "f1",
|
274 |
+
"aggregation": "def weighted_f1_score(items):\n from sklearn.metrics import f1_score\n\n unzipped_list = list(zip(*items))\n golds = unzipped_list[0]\n preds = unzipped_list[1]\n fscore = f1_score(golds, preds, average=\"weighted\")\n return fscore\n",
|
275 |
+
"average": "weighted",
|
276 |
+
"hf_evaluate": true,
|
277 |
+
"higher_is_better": true,
|
278 |
+
"ignore_case": true,
|
279 |
+
"ignore_punctuation": true,
|
280 |
+
"regexes_to_ignore": [
|
281 |
+
",",
|
282 |
+
"\\$"
|
283 |
+
]
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"metric": "acc",
|
287 |
+
"aggregation": "mean",
|
288 |
+
"higher_is_better": true,
|
289 |
+
"ignore_case": true,
|
290 |
+
"ignore_punctuation": true,
|
291 |
+
"regexes_to_ignore": [
|
292 |
+
",",
|
293 |
+
"\\$"
|
294 |
+
]
|
295 |
+
}
|
296 |
+
],
|
297 |
+
"output_type": "multiple_choice",
|
298 |
+
"repeats": 1,
|
299 |
+
"should_decontaminate": true,
|
300 |
+
"doc_to_decontamination_query": "Question: {{question}}\nAnswer:",
|
301 |
+
"metadata": {
|
302 |
+
"version": 1.0
|
303 |
+
}
|
304 |
+
},
|
305 |
+
"afrixnli_en_direct_xho": {
|
306 |
+
"task": "afrixnli_en_direct_xho",
|
307 |
+
"tag": [
|
308 |
+
"afrixnli",
|
309 |
+
"afrixnli_en_direct"
|
310 |
+
],
|
311 |
+
"group": [
|
312 |
+
"afrixnli",
|
313 |
+
"afrixnli_en_direct"
|
314 |
+
],
|
315 |
+
"dataset_path": "masakhane/afrixnli",
|
316 |
+
"dataset_name": "xho",
|
317 |
+
"validation_split": "validation",
|
318 |
+
"test_split": "test",
|
319 |
+
"fewshot_split": "validation",
|
320 |
+
"doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:",
|
321 |
+
"doc_to_target": "def doc_to_target(doc):\n replacements = {0: \"True\", 1: \"Neither\", 2: \"False\"}\n return replacements[doc[\"label\"]]\n",
|
322 |
+
"doc_to_choice": [
|
323 |
+
"True",
|
324 |
+
"Neither",
|
325 |
+
"False"
|
326 |
+
],
|
327 |
+
"description": "",
|
328 |
+
"target_delimiter": " ",
|
329 |
+
"fewshot_delimiter": "\n\n",
|
330 |
+
"num_fewshot": 0,
|
331 |
+
"metric_list": [
|
332 |
+
{
|
333 |
+
"metric": "f1",
|
334 |
+
"aggregation": "def weighted_f1_score(items):\n from sklearn.metrics import f1_score\n\n unzipped_list = list(zip(*items))\n golds = unzipped_list[0]\n preds = unzipped_list[1]\n fscore = f1_score(golds, preds, average=\"weighted\")\n return fscore\n",
|
335 |
+
"average": "weighted",
|
336 |
+
"higher_is_better": true,
|
337 |
+
"ignore_case": true,
|
338 |
+
"ignore_punctuation": true
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"metric": "acc",
|
342 |
+
"aggregation": "mean",
|
343 |
+
"higher_is_better": true,
|
344 |
+
"ignore_case": true,
|
345 |
+
"ignore_punctuation": true
|
346 |
+
}
|
347 |
+
],
|
348 |
+
"output_type": "multiple_choice",
|
349 |
+
"repeats": 1,
|
350 |
+
"should_decontaminate": true,
|
351 |
+
"doc_to_decontamination_query": "premise",
|
352 |
+
"metadata": {
|
353 |
+
"version": 1.0
|
354 |
+
}
|
355 |
+
},
|
356 |
+
"afrixnli_en_direct_zul": {
|
357 |
+
"task": "afrixnli_en_direct_zul",
|
358 |
+
"tag": [
|
359 |
+
"afrixnli",
|
360 |
+
"afrixnli_en_direct"
|
361 |
+
],
|
362 |
+
"group": [
|
363 |
+
"afrixnli",
|
364 |
+
"afrixnli_en_direct"
|
365 |
+
],
|
366 |
+
"dataset_path": "masakhane/afrixnli",
|
367 |
+
"dataset_name": "zul",
|
368 |
+
"validation_split": "validation",
|
369 |
+
"test_split": "test",
|
370 |
+
"fewshot_split": "validation",
|
371 |
+
"doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:",
|
372 |
+
"doc_to_target": "def doc_to_target(doc):\n replacements = {0: \"True\", 1: \"Neither\", 2: \"False\"}\n return replacements[doc[\"label\"]]\n",
|
373 |
+
"doc_to_choice": [
|
374 |
+
"True",
|
375 |
+
"Neither",
|
376 |
+
"False"
|
377 |
+
],
|
378 |
+
"description": "",
|
379 |
+
"target_delimiter": " ",
|
380 |
+
"fewshot_delimiter": "\n\n",
|
381 |
+
"num_fewshot": 0,
|
382 |
+
"metric_list": [
|
383 |
+
{
|
384 |
+
"metric": "f1",
|
385 |
+
"aggregation": "def weighted_f1_score(items):\n from sklearn.metrics import f1_score\n\n unzipped_list = list(zip(*items))\n golds = unzipped_list[0]\n preds = unzipped_list[1]\n fscore = f1_score(golds, preds, average=\"weighted\")\n return fscore\n",
|
386 |
+
"average": "weighted",
|
387 |
+
"higher_is_better": true,
|
388 |
+
"ignore_case": true,
|
389 |
+
"ignore_punctuation": true
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"metric": "acc",
|
393 |
+
"aggregation": "mean",
|
394 |
+
"higher_is_better": true,
|
395 |
+
"ignore_case": true,
|
396 |
+
"ignore_punctuation": true
|
397 |
+
}
|
398 |
+
],
|
399 |
+
"output_type": "multiple_choice",
|
400 |
+
"repeats": 1,
|
401 |
+
"should_decontaminate": true,
|
402 |
+
"doc_to_decontamination_query": "premise",
|
403 |
+
"metadata": {
|
404 |
+
"version": 1.0
|
405 |
+
}
|
406 |
+
}
|
407 |
+
},
|
408 |
+
"versions": {
|
409 |
+
"afrimgsm_direct_xho": 2.0,
|
410 |
+
"afrimgsm_direct_zul": 2.0,
|
411 |
+
"afrimmlu_direct_xho": 1.0,
|
412 |
+
"afrimmlu_direct_zul": 1.0,
|
413 |
+
"afrixnli_en_direct_xho": 1.0,
|
414 |
+
"afrixnli_en_direct_zul": 1.0
|
415 |
+
},
|
416 |
+
"n-shot": {
|
417 |
+
"afrimgsm_direct_xho": 0,
|
418 |
+
"afrimgsm_direct_zul": 0,
|
419 |
+
"afrimmlu_direct_xho": 0,
|
420 |
+
"afrimmlu_direct_zul": 0,
|
421 |
+
"afrixnli_en_direct_xho": 0,
|
422 |
+
"afrixnli_en_direct_zul": 0
|
423 |
+
},
|
424 |
+
"higher_is_better": {
|
425 |
+
"afrimgsm_direct_xho": {
|
426 |
+
"exact_match": true
|
427 |
+
},
|
428 |
+
"afrimgsm_direct_zul": {
|
429 |
+
"exact_match": true
|
430 |
+
},
|
431 |
+
"afrimmlu_direct_xho": {
|
432 |
+
"f1": true,
|
433 |
+
"acc": true
|
434 |
+
},
|
435 |
+
"afrimmlu_direct_zul": {
|
436 |
+
"f1": true,
|
437 |
+
"acc": true
|
438 |
+
},
|
439 |
+
"afrixnli_en_direct_xho": {
|
440 |
+
"f1": true,
|
441 |
+
"acc": true
|
442 |
+
},
|
443 |
+
"afrixnli_en_direct_zul": {
|
444 |
+
"f1": true,
|
445 |
+
"acc": true
|
446 |
+
}
|
447 |
+
},
|
448 |
+
"n-samples": {
|
449 |
+
"afrixnli_en_direct_zul": {
|
450 |
+
"original": 600,
|
451 |
+
"effective": 600
|
452 |
+
},
|
453 |
+
"afrixnli_en_direct_xho": {
|
454 |
+
"original": 600,
|
455 |
+
"effective": 600
|
456 |
+
},
|
457 |
+
"afrimmlu_direct_zul": {
|
458 |
+
"original": 500,
|
459 |
+
"effective": 500
|
460 |
+
},
|
461 |
+
"afrimmlu_direct_xho": {
|
462 |
+
"original": 500,
|
463 |
+
"effective": 500
|
464 |
+
},
|
465 |
+
"afrimgsm_direct_zul": {
|
466 |
+
"original": 250,
|
467 |
+
"effective": 250
|
468 |
+
},
|
469 |
+
"afrimgsm_direct_xho": {
|
470 |
+
"original": 250,
|
471 |
+
"effective": 250
|
472 |
+
}
|
473 |
+
},
|
474 |
+
"config": {
|
475 |
+
"model": "hf",
|
476 |
+
"model_args": "pretrained=CohereForAI/aya-23-8B",
|
477 |
+
"model_num_parameters": 8028033024,
|
478 |
+
"model_dtype": "torch.float16",
|
479 |
+
"model_revision": "main",
|
480 |
+
"model_sha": "5f6dc63f4b4071cff399af26e576f4540554236d",
|
481 |
+
"batch_size": "auto:4",
|
482 |
+
"batch_sizes": [
|
483 |
+
8,
|
484 |
+
32,
|
485 |
+
64,
|
486 |
+
64
|
487 |
+
],
|
488 |
+
"device": null,
|
489 |
+
"use_cache": null,
|
490 |
+
"limit": null,
|
491 |
+
"bootstrap_iters": 100000,
|
492 |
+
"gen_kwargs": null,
|
493 |
+
"random_seed": 0,
|
494 |
+
"numpy_seed": 1234,
|
495 |
+
"torch_seed": 1234,
|
496 |
+
"fewshot_seed": 1234
|
497 |
+
},
|
498 |
+
"git_hash": "15ffb0d",
|
499 |
+
"date": 1727750420.4119575,
|
500 |
+
"pretty_env_info": "PyTorch version: 2.4.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.22.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.2.0-37-generic-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.140\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA RTX A6000\nGPU 1: NVIDIA RTX A6000\n\nNvidia driver version: 535.129.03\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 40 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 28\nOn-line CPU(s) list: 0-27\nVendor ID: AuthenticAMD\nModel name: AMD EPYC-Rome Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 1\nSocket(s): 28\nStepping: 0\nBogoMIPS: 4999.23\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm rep_good nopl cpuid extd_apicid pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr wbnoinvd arat npt nrip_save umip rdpid arch_capabilities\nVirtualization: AMD-V\nL1d cache: 896 KiB (28 instances)\nL1i cache: 896 KiB (28 instances)\nL2 cache: 14 MiB (28 instances)\nL3 cache: 448 MiB (28 instances)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-27\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; SMT disabled\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] flake8==4.0.1\n[pip3] numpy==1.25.2\n[pip3] torch==2.4.1+cu121\n[pip3] torchaudio==2.4.1+cu121\n[pip3] torchvision==0.19.1+cu121\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
501 |
+
"transformers_version": "4.45.1",
|
502 |
+
"upper_git_hash": null,
|
503 |
+
"tokenizer_pad_token": [
|
504 |
+
"<PAD>",
|
505 |
+
"0"
|
506 |
+
],
|
507 |
+
"tokenizer_eos_token": [
|
508 |
+
"<|END_OF_TURN_TOKEN|>",
|
509 |
+
"255001"
|
510 |
+
],
|
511 |
+
"tokenizer_bos_token": [
|
512 |
+
"<BOS_TOKEN>",
|
513 |
+
"5"
|
514 |
+
],
|
515 |
+
"eot_token_id": 255001,
|
516 |
+
"max_length": 8192,
|
517 |
+
"task_hashes": {
|
518 |
+
"afrixnli_en_direct_zul": "011b872bfe35d1ead7694b59c7023bc079845f39fb417791e0c2e19e49c8ce6e",
|
519 |
+
"afrixnli_en_direct_xho": "812b77def909fef6b7ec5373d4bfa09d6a6f5b2971b0bcad3e81a1f94d743411",
|
520 |
+
"afrimmlu_direct_zul": "460ed49479021e40a2b7b112085638761d2b46580532bb66a18403f43575d9d5",
|
521 |
+
"afrimmlu_direct_xho": "7cb5c1bd5911e13faf3f2e7c2740974738d8396d115a4fe06ab4af64e8dee56b",
|
522 |
+
"afrimgsm_direct_zul": "afc89857751cbc97ed864d974b6032c80c182128e51964077051627b45798654",
|
523 |
+
"afrimgsm_direct_xho": "56a4760bd96dbcd55fb7f296c706a2846e0533cb832b638f98f56d8f96d4d3ad"
|
524 |
+
},
|
525 |
+
"model_source": "hf",
|
526 |
+
"model_name": "CohereForAI/aya-23-8B",
|
527 |
+
"model_name_sanitized": "CohereForAI__aya-23-8B",
|
528 |
+
"system_instruction": null,
|
529 |
+
"system_instruction_sha": null,
|
530 |
+
"fewshot_as_multiturn": false,
|
531 |
+
"chat_template": null,
|
532 |
+
"chat_template_sha": null,
|
533 |
+
"start_time": 6430.178763367,
|
534 |
+
"end_time": 7735.584634235,
|
535 |
+
"total_evaluation_time_seconds": "1305.4058708679995"
|
536 |
+
}
|
CohereForAI__aya-23-8B/samples_afrimgsm_direct_xho_2024-10-01T03-01-55.801880.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|