import torch import os import random import numpy as np from tqdm import tqdm from datasets import load_dataset, concatenate_datasets from llava.model.builder import load_pretrained_model from llava.mm_utils import get_model_name_from_path from argparse import ArgumentParser from utils.data_utils import load_yaml, construct_prompt, save_json, process_single_sample, CAT_SHORT2LONG from utils.model_utils import call_llava_engine_df, llava_image_processor from utils.eval_utils import parse_multi_choice_response, parse_open_response def run_model(args, samples, model, call_model_engine_fn=None, tokenizer=None, processor=None): out_samples = dict() with torch.no_grad(): for sample in tqdm(samples): response = call_model_engine_fn(args, sample, model, tokenizer, processor) if sample['question_type'] == 'multiple-choice': pred_ans = parse_multi_choice_response(response, sample['all_choices'], sample['index2ans']) else: # open question pred_ans = response out_samples[sample['id']] = pred_ans return out_samples def set_seed(seed_value): """ Set the seed for PyTorch (both CPU and CUDA), Python, and NumPy for reproducible results. :param seed_value: An integer value to be used as the seed. """ torch.manual_seed(seed_value) if torch.cuda.is_available(): torch.cuda.manual_seed(seed_value) torch.cuda.manual_seed_all(seed_value) # For multi-GPU setups random.seed(seed_value) np.random.seed(seed_value) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def main(): parser = ArgumentParser() parser.add_argument('--output_path', type=str, default='llava1.5_13b_val.json', help='name of saved json') parser.add_argument('--config_path', type=str, default="configs/llava1.5.yaml") parser.add_argument('--data_path', type=str, default="MMMU/MMMU") # hf dataset path. parser.add_argument('--model_path', type=str, default="liuhaotian/llava-v1.5-13b") parser.add_argument('--split', type=str, default='validation') parser.add_argument('--seed', type=int, default=42) args = parser.parse_args() device = torch.device("cuda") if torch.cuda.is_available() else "cpu" set_seed(args.seed) print('llava_initializing...') processor = None call_model_engine = call_llava_engine_df vis_process_func = llava_image_processor # load config and process to one value args.config = load_yaml(args.config_path) for key, value in args.config.items(): if key != 'eval_params' and type(value) == list: assert len(value) == 1, 'key {} has more than one value'.format(key) args.config[key] = value[0] # run for each subject sub_dataset_list = [] for subject in CAT_SHORT2LONG.values(): sub_dataset = load_dataset(args.data_path, subject, split=args.split) sub_dataset_list.append(sub_dataset) # merge all dataset dataset = concatenate_datasets(sub_dataset_list) # load model model_name = get_model_name_from_path(args.model_path) tokenizer, model, vis_processors, _ = load_pretrained_model(args.model_path, None, model_name) samples = [] for sample in dataset: sample = process_single_sample(sample) sample = construct_prompt(sample, args.config) if sample['image']: sample['image'] = vis_process_func(sample['image'], vis_processors).to(device) samples.append(sample) # run ex out_samples = run_model(args, samples, model, call_model_engine, tokenizer, processor) save_json(args.output_path, out_samples) # metric_dict.update({"num_example": len(out_samples)}) # save_json(save_result_path, metric_dict) if __name__ == '__main__': main()