Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Size:
1M - 10M
ArXiv:
License:
import json | |
import os | |
import datasets | |
_CITATION = """\ | |
""" | |
_DESCRIPTION = """\ | |
""" | |
_HOMEPAGE = "https://indicnlp.ai4bharat.org/" | |
_LICENSE = "Creative Commons Attribution-NonCommercial 4.0 International Public License" | |
_URL = "https://huggingface.co/datasets/ai4bharat/naamapadam/resolve/main/data/{}_IndicNER_v{}.zip" | |
_LANGUAGES = ["as", "bn", "gu", "hi", "kn", "ml", "mr", "or", "pa", "ta", "te"] | |
class NaamapadamPR(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="{}".format(lang), version=datasets.Version("1.0.0") | |
) | |
for lang in _LANGUAGES | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"O", | |
"B-PER", | |
"I-PER", | |
"B-ORG", | |
"I-ORG", | |
"B-LOC", | |
"I-LOC", | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
license=_LICENSE, | |
version=self.VERSION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
lang = str(self.config.name) | |
url = _URL.format(lang, self.VERSION.version_str[:-2]) | |
data_dir = dl_manager.download_and_extract(url) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, lang + "_train.json"), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, lang + "_test.json"), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, lang + "_val.json"), | |
}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples as (key, example) tuples.""" | |
with open(filepath, encoding="utf-8") as f: | |
for idx_, row in enumerate(f): | |
data = json.loads(row) | |
yield idx_, {"tokens": data["words"], "ner_tags": data["ner"]} | |