Datasets:
File size: 11,102 Bytes
4b66a3e 2df12ca d9ca2bb 2df12ca d9ca2bb 2df12ca d9ca2bb 2df12ca d9ca2bb 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 1421177 ad6ec9b 7a02591 0d9787a 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 7a02591 66858c9 7a02591 4b1d822 672d846 4b66a3e d6de37e 2df12ca 94e82da cb8d8a9 94e82da 672d846 cb8d8a9 94e82da cb8d8a9 94e82da 8d04741 94e82da 672d846 289f51a 672d846 94e82da 5d8859e 94e82da 289f51a 94e82da 672d846 94e82da 672d846 94e82da ac797c6 672d846 2df12ca 4b1d822 8d04741 672d846 8d04741 4b1d822 672d846 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
---
license: cc-by-4.0
task_categories:
- text-generation
language:
- as
- bn
- gu
- en
- hi
- kn
- ks
- ml
- mr
- ne
- or
- pa
- sa
- sd
- ta
- te
- ur
tags:
- language-modeling
- casual-lm
- llm
pretty_name: sangraha
dataset_info:
- config_name: verified
features:
- name: doc_id
dtype: string
- name: type
dtype: string
- name: text
dtype: string
splits:
- name: asm
- name: ben
- name: brx
- name: doi
- name: eng
- name: gom
- name: guj
- name: hin
- name: kan
- name: kas
- name: mai
- name: mal
- name: mar
- name: mni
- name: nep
- name: ori
- name: pan
- name: san
- name: sat
- name: snd
- name: tam
- name: tel
- name: urd
- config_name: unverified
features:
- name: doc_id
dtype: string
- name: text
dtype: string
splits:
- name: asm
- name: ben
- name: guj
- name: hin
- name: kan
- name: mal
- name: mar
- name: nep
- name: ori
- name: pan
- name: san
- name: tam
- name: tel
- name: urd
- config_name: synthetic
features:
- name: doc_id
dtype: string
- name: text
dtype: string
splits:
- name: asm_Beng
- name: asm_Latn
- name: ben_Beng
- name: ben_Latn
- name: guj_Gujr
- name: guj_Latn
- name: hin_Deva
- name: hin_Latn
- name: kan_Knda
- name: kan_Latn
- name: mal_Mlym
- name: mal_Latn
- name: mar_Deva
- name: mar_Latn
- name: npi_Deva
- name: npi_Latn
- name: ory_Orya
- name: ory_Latn
- name: pan_Guru
- name: pan_Latn
- name: san_Deva
- name: san_Latn
- name: tam_Taml
- name: tam_Latn
- name: tel_Telu
- name: tel_Latn
- name: urd_Arab
- name: urd_Latn
configs:
- config_name: verified
data_files:
- split: asm
path: verified/asm/*.parquet
- split: ben
path: verified/ben/*.parquet
- split: brx
path: verified/brx/*.parquet
- split: doi
path: verified/doi/*.parquet
- split: eng
path: verified/eng/*.parquet
- split: gom
path: verified/gom/*.parquet
- split: guj
path: verified/guj/*.parquet
- split: hin
path: verified/hin/*.parquet
- split: kan
path: verified/kan/*.parquet
- split: kas
path: verified/kas/*.parquet
- split: mai
path: verified/mai/*.parquet
- split: mal
path: verified/mal/*.parquet
- split: mar
path: verified/mar/*.parquet
- split: mni
path: verified/mni/*.parquet
- split: nep
path: verified/nep/*.parquet
- split: ori
path: verified/ori/*.parquet
- split: pan
path: verified/pan/*.parquet
- split: san
path: verified/san/*.parquet
- split: sat
path: verified/sat/*.parquet
- split: snd
path: verified/snd/*.parquet
- split: tam
path: verified/tam/*.parquet
- split: tel
path: verified/tel/*.parquet
- split: urd
path: verified/urd/*.parquet
- config_name: unverified
data_files:
- split: asm
path: unverified/asm/*.parquet
- split: ben
path: unverified/ben/*.parquet
- split: guj
path: unverified/guj/*.parquet
- split: hin
path: unverified/hin/*.parquet
- split: kan
path: unverified/kan/*.parquet
- split: mal
path: unverified/mal/*.parquet
- split: mar
path: unverified/mar/*.parquet
- split: nep
path: unverified/nep/*.parquet
- split: ori
path: unverified/ori/*.parquet
- split: pan
path: unverified/pan/*.parquet
- split: san
path: unverified/san/*.parquet
- split: tam
path: unverified/tam/*.parquet
- split: tel
path: unverified/tel/*.parquet
- split: urd
path: unverified/urd/*.parquet
- config_name: synthetic
data_files:
- split: asm_Beng
path: synthetic/asm_Beng/*.parquet
- split: asm_Latn
path: synthetic/asm_Latn/*.parquet
- split: ben_Beng
path: synthetic/ben_Beng/*.parquet
- split: ben_Latn
path: synthetic/ben_Latn/*.parquet
- split: guj_Gujr
path: synthetic/guj_Gujr/*.parquet
- split: guj_Latn
path: synthetic/guj_Latn/*.parquet
- split: hin_Deva
path: synthetic/hin_Deva/*.parquet
- split: hin_Latn
path: synthetic/hin_Latn/*.parquet
- split: kan_Knda
path: synthetic/kan_Knda/*.parquet
- split: kan_Latn
path: synthetic/kan_Latn/*.parquet
- split: mal_Mlym
path: synthetic/mal_Mlym/*.parquet
- split: mal_Latn
path: synthetic/mal_Latn/*.parquet
- split: mar_Deva
path: synthetic/mar_Deva/*.parquet
- split: mar_Latn
path: synthetic/mar_Latn/*.parquet
- split: npi_Deva
path: synthetic/npi_Deva/*.parquet
- split: npi_Latn
path: synthetic/npi_Latn/*.parquet
- split: ory_Orya
path: synthetic/ory_Orya/*.parquet
- split: ory_Latn
path: synthetic/ory_Latn/*.parquet
- split: pan_Guru
path: synthetic/pan_Guru/*.parquet
- split: pan_Latn
path: synthetic/pan_Latn/*.parquet
- split: san_Deva
path: synthetic/san_Deva/*.parquet
- split: san_Latn
path: synthetic/san_Latn/*.parquet
- split: tam_Taml
path: synthetic/tam_Taml/*.parquet
- split: tam_Latn
path: synthetic/tam_Latn/*.parquet
- split: tel_Telu
path: synthetic/tel_Telu/*.parquet
- split: tel_Latn
path: synthetic/tel_Latn/*.parquet
- split: urd_Arab
path: synthetic/urd_Arab/*.parquet
- split: urd_Latn
path: synthetic/urd_Latn/*.parquet
size_categories:
- 100B<n<1T
---
# Sangraha
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/63ef3cd11e695b35aa48bebc/nDnyidcqIOLAP9dTw9GrK.png" />
</p>
Sangraha is the largest high-quality, cleaned Indic language pretraining data containing 251B tokens summed up over 22 languages, extracted from curated sources, existing multilingual corpora and large scale translations.
**Coming Soon**:
- Sangraha Synthetic - Translated and Romanised English Wikimedia data.
- Sangraha Verified - Hindi YouTube transcribed data.
**More information**:
- For detailed information on the curation and cleaning process of Sangraha, please checkout our paper [on Arxiv](https://arxiv.org/abs/2403.06350);
- Check out the scraping and cleaning pipelines used to curate Sangraha [on GitHub](https://github.com/AI4Bharat/IndicLLMSuite);
## Getting Started
For downloading the entire Sangraha:
```python
from datasets import load_dataset
dataset = load_dataset("ai4bharat/sangraha")
```
For downloading a subset (Verified/Unverified) of Sangraha:
```python
from datasets import load_dataset
dataset = load_dataset("ai4bharat/sangraha", data_dir="<subset_name>")
# for example: dataset = load_dataset("ai4bharat/sangraha", data_dir="verified")
```
For downloading one language from a subset of Sangraha:
```python
from datasets import load_dataset
dataset = load_dataset("ai4bharat/sangraha", data_dir="<subset_name>/<lang_code>")
# for example: dataset = load_dataset("ai4bharat/sangraha", data_dir="verified/asm")
```
## Background
Sangraha contains three broad components:
- **Sangraha Verified**: Containing scraped data from "human-verified" Websites, OCR-extracted data from high quality Indic language PDFs, transcribed data from various Indic language videos, podcasts, movies, courses, etc.
- **Sangraha Unverfied**: High quality Indic language data extracted from existing multilingual corpora employing perplexity filtering using n-gram language models trained on Sangraha Verified.
- **Sangraha Synthetic**: WikiMedia English translated to 14 Indic languages and further "romanised" from 14 languages by transliteration to English.
## Data Statistics
| **Lang Code** | **Verified** | **Synthetic** | **Unverified** | **Total Tokens (in Millions)** |
| ------------- | ------------ | ------------- | -------------- | ------------------------------ |
| asm | 292.1 | 11,696.4 | 17.5 | 12,006.0 |
| ben | 10,604.4 | 13,814.1 | 5,608.8 | 30,027.5 |
| brx | 1.5 | - | - | 1.5 |
| doi | 0.06 | - | - | 0.06 |
| eng | 12,759.9 | - | - | 12,759.9 |
| gom | 10.1 | - | - | 10.1 |
| guj | 3,647.9 | 12,934.5 | 597.0 | 17,179.4 |
| hin | 12,617.3 | 9,578.7 | 12,348.3 | 34,544.3 |
| kan | 1,778.3 | 12,087.4 | 388.8 | 14,254.5 |
| kas | 0.5 | - | - | 0.5 |
| mai | 14.6 | - | - | 14.6 |
| mal | 2,730.8 | 13,130.0 | 547.8 | 16,408.6 |
| mar | 2,827.0 | 10,816.7 | 652.1 | 14,295.8 |
| mni | 7.4 | - | - | 7.4 |
| npi | 1,822.5 | 10,588.7 | 485.5 | 12,896.7 |
| ori | 1,177.1 | 11,338.0 | 23.7 | 12,538.8 |
| pan | 1,075.3 | 9,969.6 | 136.9 | 11,181.8 |
| san | 1,329.0 | 13,553.5 | 9.8 | 14,892.3 |
| sat | 0.3 | - | - | 0.3 |
| snd | 258.2 | - | - | 258.2 |
| tam | 3,985.1 | 11,859.3 | 1,515.9 | 17,360.3 |
| urd | 3,658.1 | 9,415.8 | 1,328.2 | 14,402.1 |
| tel | 3,706.8 | 11,924.5 | 647.4 | 16,278.7 |
| **Total** | **64,306.1** | **162,707.9** | **24,307.7** | **251,321.0** |
To cite Sangraha, please use:
```
@misc{khan2024indicllmsuite,
title={IndicLLMSuite: A Blueprint for Creating Pre-training and Fine-Tuning Datasets for Indian Languages},
author={Mohammed Safi Ur Rahman Khan and Priyam Mehta and Ananth Sankar and Umashankar Kumaravelan and Sumanth Doddapaneni and Suriyaprasaad G and Varun Balan G and Sparsh Jain and Anoop Kunchukuttan and Pratyush Kumar and Raj Dabre and Mitesh M. Khapra},
year={2024},
eprint={2403.06350},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|