Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
katielink commited on
Commit
d2cd1b5
·
verified ·
1 Parent(s): fe7fabf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md CHANGED
@@ -32,4 +32,73 @@ configs:
32
  data_files:
33
  - split: train
34
  path: data/train-*
 
 
 
 
 
 
 
 
 
35
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  data_files:
33
  - split: train
34
  path: data/train-*
35
+ license: cc-by-nc-sa-4.0
36
+ language:
37
+ - en
38
+ tags:
39
+ - patient summary
40
+ - medical
41
+ - biology
42
+ size_categories:
43
+ - 100K<n<1M
44
  ---
45
+ *This is a dataset repository made for the AISC class at Harvard Medical School. Please find the original dataset repository here:https://huggingface.co/datasets/zhengyun21/PMC-Patients*
46
+
47
+ # Dataset Card for PMC-Patients
48
+
49
+ ## Dataset Description
50
+
51
+ - **Homepage:** https://github.com/pmc-patients/pmc-patients
52
+ - **Repository:** https://github.com/pmc-patients/pmc-patients
53
+ - **Paper:** https://arxiv.org/pdf/2202.13876.pdf
54
+ - **Leaderboard:** https://pmc-patients.github.io/
55
+ - **Point of Contact:** zhengyun21@mails.tsinghua.edu.cn
56
+
57
+ ### Dataset Summary
58
+
59
+ **PMC-Patients** is a first-of-its-kind dataset consisting of 167k patient summaries extracted from case reports in PubMed Central (PMC), 3.1M patient-article relevance and 293k patient-patient similarity annotations defined by PubMed citation graph.
60
+
61
+
62
+ ### Supported Tasks and Leaderboards
63
+
64
+ **This is purely the patient summary dataset with relational annotations. For ReCDS benchmark, refer to [this dataset](https://huggingface.co/datasets/zhengyun21/PMC-Patients-ReCDS)**
65
+
66
+ Based on PMC-Patients, we define two tasks to benchmark Retrieval-based Clinical Decision Support (ReCDS) systems: Patient-to-Article Retrieval (PAR) and Patient-to-Patient Retrieval (PPR).
67
+ For details, please refer to [our paper](https://arxiv.org/pdf/2202.13876.pdf) and [leaderboard](https://pmc-patients.github.io/).
68
+
69
+ ### Languages
70
+
71
+ English (en).
72
+
73
+ ## Dataset Structure
74
+
75
+ ### PMC-Paitents.csv
76
+
77
+ This file contains all information about patients summaries in PMC-Patients, with the following columns:
78
+
79
+ - `patient_id`: string. A continuous id of patients, starting from 0.
80
+ - `patient_uid`: string. Unique ID for each patient, with format PMID-x, where PMID is the PubMed Identifier of the source article of the patient and x denotes index of the patient in source article.
81
+ - `PMID`: string. PMID for source article.
82
+ - `file_path`: string. File path of xml file of source article.
83
+ - `title`: string. Source article title.
84
+ - `patient`: string. Patient summary.
85
+ - `age`: list of tuples. Each entry is in format `(value, unit)` where value is a float number and unit is in 'year', 'month', 'week', 'day' and 'hour' indicating age unit. For example, `[[1.0, 'year'], [2.0, 'month']]` indicating the patient is a one-year- and two-month-old infant.
86
+ - `gender`: 'M' or 'F'. Male or Female.
87
+ - `relevant_articles`: dict. The key is PMID of the relevant articles and the corresponding value is its relevance score (2 or 1 as defined in the ``Methods'' section).
88
+ - `similar_patients`: dict. The key is patient_uid of the similar patients and the corresponding value is its similarity score (2 or 1 as defined in the ``Methods'' section).
89
+ ## Dataset Creation
90
+ If you are interested in the collection of PMC-Patients and reproducing our baselines, please refer to [this reporsitory](https://github.com/zhao-zy15/PMC-Patients).
91
+ ### Citation Information
92
+ If you find PMC-Patients helpful in your research, please cite our work by:
93
+ ```
94
+ @article{zhao2023large,
95
+ title={A large-scale dataset of patient summaries for retrieval-based clinical decision support systems},
96
+ author={Zhao, Zhengyun and Jin, Qiao and Chen, Fangyuan and Peng, Tuorui and Yu, Sheng},
97
+ journal={Scientific Data},
98
+ volume={10},
99
+ number={1},
100
+ pages={909},
101
+ year={2023},
102
+ publisher={Nature Publishing Group UK London}
103
+ }
104
+ ```