|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The BookCorpus dataset.""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Twi Text C3 is the largest Twi texts collected and used to train FastText embeddings in the |
|
YorubaTwi Embedding paper: https://www.aclweb.org/anthology/2020.lrec-1.335/ |
|
""" |
|
|
|
_CITATION = """\ |
|
@inproceedings{alabi-etal-2020-massive, |
|
title = "Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of Yoruba and {T}wi", |
|
author = "Alabi, Jesujoba and |
|
Amponsah-Kaakyire, Kwabena and |
|
Adelani, David and |
|
Espa{\\~n}a-Bonet, Cristina", |
|
booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference", |
|
month = may, |
|
year = "2020", |
|
address = "Marseille, France", |
|
publisher = "European Language Resources Association", |
|
url = "https://www.aclweb.org/anthology/2020.lrec-1.335", |
|
pages = "2754--2762", |
|
language = "English", |
|
ISBN = "979-10-95546-34-4", |
|
} |
|
""" |
|
|
|
URL = "https://drive.google.com/uc?export=download&id=1s8NSFT4Kz0caKZ4VybPNzt88F8ZanprY" |
|
|
|
|
|
class TwiTextC3Config(datasets.BuilderConfig): |
|
"""BuilderConfig for Twi Text C3.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for BookCorpus. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(TwiTextC3Config, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
|
|
|
|
class TwiTextC3(datasets.GeneratorBasedBuilder): |
|
"""Twi Text C3 dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
TwiTextC3Config( |
|
name="plain_text", |
|
description="Plain text", |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://www.aclweb.org/anthology/2020.lrec-1.335/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
arch_path = dl_manager.download_and_extract(URL) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": arch_path}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, mode="r", encoding="utf-8") as f: |
|
lines = f.read().splitlines() |
|
for id, line in enumerate(lines): |
|
yield id, {"text": line.strip()} |
|
|