system HF staff commited on
Commit
1286fbf
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ language_creators:
5
+ - expert-generated
6
+ languages:
7
+ - en
8
+ - tw
9
+ licenses:
10
+ - unknown
11
+ multilinguality:
12
+ - multilingual
13
+ size_categories:
14
+ - n<1K
15
+ source_datasets: []
16
+ task_categories:
17
+ - text-scoring
18
+ task_ids:
19
+ - semantic-similarity-scoring
20
+ ---
21
+
22
+ # Dataset Card for Yorùbá Wordsim-353
23
+
24
+ ## Table of Contents
25
+ - [Dataset Description](#dataset-description)
26
+ - [Dataset Summary](#dataset-summary)
27
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
28
+ - [Languages](#languages)
29
+ - [Dataset Structure](#dataset-structure)
30
+ - [Data Instances](#data-instances)
31
+ - [Data Fields](#data-instances)
32
+ - [Data Splits](#data-instances)
33
+ - [Dataset Creation](#dataset-creation)
34
+ - [Curation Rationale](#curation-rationale)
35
+ - [Source Data](#source-data)
36
+ - [Annotations](#annotations)
37
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
38
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
39
+ - [Social Impact of Dataset](#social-impact-of-dataset)
40
+ - [Discussion of Biases](#discussion-of-biases)
41
+ - [Other Known Limitations](#other-known-limitations)
42
+ - [Additional Information](#additional-information)
43
+ - [Dataset Curators](#dataset-curators)
44
+ - [Licensing Information](#licensing-information)
45
+ - [Citation Information](#citation-information)
46
+
47
+ ## Dataset Description
48
+
49
+ - **Homepage:** -https://www.aclweb.org/anthology/2020.lrec-1.335/
50
+ - **Repository:** https://github.com/ajesujoba/YorubaTwi-Embedding
51
+ - **Paper:** https://www.aclweb.org/anthology/2020.lrec-1.335/
52
+ - **Leaderboard:** -
53
+ - **Point of Contact:** [Kwabena Amponsah-Kaakyire](mailto:s8kwampo@stud.uni-saarland.de)
54
+
55
+ ### Dataset Summary
56
+
57
+ A translation of the word pair similarity dataset wordsim-353 to Twi. However, only 274 (out of 353) pairs of words were translated
58
+
59
+ ### Supported Tasks and Leaderboards
60
+
61
+ [More Information Needed]
62
+
63
+ ### Languages
64
+
65
+ Twi (ISO 639-1: tw)
66
+
67
+ ## Dataset Structure
68
+
69
+ ### Data Instances
70
+
71
+ An instance consists of a pair of words as well as their similarity. The dataset contains both the original English words (from wordsim-353) as well as their translation to Twi.
72
+
73
+ ### Data Fields
74
+
75
+ - `twi1`: the first word of the pair; translation to Twi
76
+ - `twi2`: the second word of the pair; translation to Twi
77
+ - `similarity`: similarity rating according to the English dataset
78
+
79
+ ### Data Splits
80
+
81
+ Only the test data is available
82
+
83
+ ## Dataset Creation
84
+
85
+ ### Curation Rationale
86
+
87
+ [More Information Needed]
88
+
89
+ ### Source Data
90
+
91
+ #### Initial Data Collection and Normalization
92
+
93
+ [More Information Needed]
94
+
95
+ #### Who are the source language producers?
96
+
97
+ [More Information Needed]
98
+
99
+ ### Annotations
100
+
101
+ #### Annotation process
102
+
103
+ [More Information Needed]
104
+
105
+ #### Who are the annotators?
106
+
107
+ [More Information Needed]
108
+
109
+ ### Personal and Sensitive Information
110
+
111
+ [More Information Needed]
112
+
113
+ ## Considerations for Using the Data
114
+
115
+ ### Social Impact of Dataset
116
+
117
+ [More Information Needed]
118
+
119
+ ### Discussion of Biases
120
+
121
+ [More Information Needed]
122
+
123
+ ### Other Known Limitations
124
+
125
+ [More Information Needed]
126
+
127
+ ## Additional Information
128
+
129
+ ### Dataset Curators
130
+
131
+ [More Information Needed]
132
+
133
+ ### Licensing Information
134
+
135
+ [More Information Needed]
136
+
137
+ ### Citation Information
138
+
139
+ ```
140
+ @inproceedings{alabi-etal-2020-massive,
141
+ title = "Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of {Y}or{\`u}b{\'a} and {T}wi",
142
+ author = "Alabi, Jesujoba and
143
+ Amponsah-Kaakyire, Kwabena and
144
+ Adelani, David and
145
+ Espa{\~n}a-Bonet, Cristina",
146
+ booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference",
147
+ month = may,
148
+ year = "2020",
149
+ address = "Marseille, France",
150
+ publisher = "European Language Resources Association",
151
+ url = "https://www.aclweb.org/anthology/2020.lrec-1.335",
152
+ pages = "2754--2762",
153
+ abstract = "The success of several architectures to learn semantic representations from unannotated text and the availability of these kind of texts in online multilingual resources such as Wikipedia has facilitated the massive and automatic creation of resources for multiple languages. The evaluation of such resources is usually done for the high-resourced languages, where one has a smorgasbord of tasks and test sets to evaluate on. For low-resourced languages, the evaluation is more difficult and normally ignored, with the hope that the impressive capability of deep learning architectures to learn (multilingual) representations in the high-resourced setting holds in the low-resourced setting too. In this paper we focus on two African languages, Yor{\`u}b{\'a} and Twi, and compare the word embeddings obtained in this way, with word embeddings obtained from curated corpora and a language-dependent processing. We analyse the noise in the publicly available corpora, collect high quality and noisy data for the two languages and quantify the improvements that depend not only on the amount of data but on the quality too. We also use different architectures that learn word representations both from surface forms and characters to further exploit all the available information which showed to be important for these languages. For the evaluation, we manually translate the wordsim-353 word pairs dataset from English into Yor{\`u}b{\'a} and Twi. We extend the analysis to contextual word embeddings and evaluate multilingual BERT on a named entity recognition task. For this, we annotate with named entities the Global Voices corpus for Yor{\`u}b{\'a}. As output of the work, we provide corpora, embeddings and the test suits for both languages.",
154
+ language = "English",
155
+ ISBN = "979-10-95546-34-4",
156
+ }
157
+ ```
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "A translation of the word pair similarity dataset wordsim-353 to Twi.\n\nThe dataset was presented in the paper\nAlabi et al.: Massive vs. Curated Embeddings for Low-Resourced\nLanguages: the Case of Yor\u00f9b\u00e1 and Twi (LREC 2020).\n", "citation": "@inproceedings{alabi-etal-2020-massive,\n title = \"Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of {Y}or{\\`u}b{\\'a} and {T}wi\",\n author = \"Alabi, Jesujoba and\n Amponsah-Kaakyire, Kwabena and\n Adelani, David and\n Espa{\\~n}a-Bonet, Cristina\",\n booktitle = \"Proceedings of the 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.335\",\n pages = \"2754--2762\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://github.com/ajesujoba/YorubaTwi-Embedding", "license": "", "features": {"twi1": {"dtype": "string", "id": null, "_type": "Value"}, "twi2": {"dtype": "string", "id": null, "_type": "Value"}, "similarity": {"dtype": "float32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "twi_wordsim353", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 7285, "num_examples": 274, "dataset_name": "twi_wordsim353"}}, "download_checksums": {"https://raw.githubusercontent.com/ajesujoba/YorubaTwi-Embedding/master/Twi/wordsim_tw.csv": {"num_bytes": 6141, "checksum": "69850d6cf5079f1a2d79fd9fdf426ee29c167b65b5babd3a88d1f7411d5921a5"}}, "download_size": 6141, "post_processing_size": null, "dataset_size": 7285, "size_in_bytes": 13426}}
dummy/0.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0b2c6978c383e44709b6accb472094a3b6d156cf145436f8f1f776f0cbf28ff
3
+ size 322
twi_wordsim353.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """WordSim-353 for Yoruba"""
18
+
19
+ from __future__ import absolute_import, division, print_function
20
+
21
+ import csv
22
+
23
+ import datasets
24
+
25
+
26
+ _DESCRIPTION = """\
27
+ A translation of the word pair similarity dataset wordsim-353 to Twi.
28
+
29
+ The dataset was presented in the paper
30
+ Alabi et al.: Massive vs. Curated Embeddings for Low-Resourced
31
+ Languages: the Case of Yorùbá and Twi (LREC 2020).
32
+ """
33
+
34
+ _CITATION = """\
35
+ @inproceedings{alabi-etal-2020-massive,
36
+ title = "Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of {Y}or{\\`u}b{\\'a} and {T}wi",
37
+ author = "Alabi, Jesujoba and
38
+ Amponsah-Kaakyire, Kwabena and
39
+ Adelani, David and
40
+ Espa{\\~n}a-Bonet, Cristina",
41
+ booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference",
42
+ month = may,
43
+ year = "2020",
44
+ address = "Marseille, France",
45
+ publisher = "European Language Resources Association",
46
+ url = "https://www.aclweb.org/anthology/2020.lrec-1.335",
47
+ pages = "2754--2762",
48
+ language = "English",
49
+ ISBN = "979-10-95546-34-4",
50
+ }
51
+ """
52
+
53
+ _DOWNLOAD_URL = "https://raw.githubusercontent.com/ajesujoba/YorubaTwi-Embedding/master/Twi/wordsim_tw.csv"
54
+
55
+
56
+ class TwiWordsim353(datasets.GeneratorBasedBuilder):
57
+ """WordSim-353 for Yoruba."""
58
+
59
+ def _info(self):
60
+ return datasets.DatasetInfo(
61
+ description=_DESCRIPTION,
62
+ features=datasets.Features(
63
+ {
64
+ "twi1": datasets.Value("string"),
65
+ "twi2": datasets.Value("string"),
66
+ "similarity": datasets.Value("float32"),
67
+ }
68
+ ),
69
+ homepage="https://github.com/ajesujoba/YorubaTwi-Embedding",
70
+ citation=_CITATION,
71
+ )
72
+
73
+ def _split_generators(self, dl_manager):
74
+ test_path = dl_manager.download_and_extract(_DOWNLOAD_URL)
75
+ return [
76
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
77
+ ]
78
+
79
+ def _generate_examples(self, filepath):
80
+ """Generate WordSim-353 for Yoruba examples."""
81
+ with open(filepath, encoding="utf-8") as csv_file:
82
+ csv_reader = csv.DictReader(csv_file, delimiter=",")
83
+ for id_, row in enumerate(csv_reader):
84
+ yield id_, {
85
+ "twi1": row["twi1"],
86
+ "twi2": row["twi2"],
87
+ "similarity": row["EngSim"],
88
+ }