Upload 5 files
Browse files- MELD_Audio.py +146 -0
- README.md +42 -4
- dev.csv +0 -0
- test.csv +0 -0
- train.csv +0 -0
MELD_Audio.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
import pandas as pd
|
6 |
+
from datasets import ClassLabel
|
7 |
+
import os
|
8 |
+
|
9 |
+
"""The Audio, Speech, and Vision Processing Lab - Emotional Sound Database (ASVP - ESD)"""
|
10 |
+
|
11 |
+
_CITATION = """\
|
12 |
+
@article{poria2018meld,
|
13 |
+
title={Meld: A multimodal multi-party dataset for emotion recognition in conversations},
|
14 |
+
author={Poria, Soujanya and Hazarika, Devamanyu and Majumder, Navonil and Naik, Gautam and Cambria, Erik and Mihalcea, Rada},
|
15 |
+
journal={arXiv preprint arXiv:1810.02508},
|
16 |
+
year={2018}
|
17 |
+
}
|
18 |
+
@article{chen2018emotionlines,
|
19 |
+
title={Emotionlines: An emotion corpus of multi-party conversations},
|
20 |
+
author={Chen, Sheng-Yeh and Hsu, Chao-Chun and Kuo, Chuan-Chun and Ku, Lun-Wei and others},
|
21 |
+
journal={arXiv preprint arXiv:1802.08379},
|
22 |
+
year={2018}
|
23 |
+
}
|
24 |
+
"""
|
25 |
+
|
26 |
+
_DESCRIPTION = """\
|
27 |
+
Multimodal EmotionLines Dataset (MELD) has been created by enhancing and extending EmotionLines dataset.
|
28 |
+
MELD contains the same dialogue instances available in EmotionLines, but it also encompasses audio and
|
29 |
+
visual modality along with text. MELD has more than 1400 dialogues and 13000 utterances from Friends TV series.
|
30 |
+
Multiple speakers participated in the dialogues. Each utterance in a dialogue has been labeled by any of these
|
31 |
+
seven emotions -- Anger, Disgust, Sadness, Joy, Neutral, Surprise and Fear. MELD also has sentiment (positive,
|
32 |
+
negative and neutral) annotation for each utterance.
|
33 |
+
This dataset is modified from https://huggingface.co/datasets/zrr1999/MELD_Text_Audio.
|
34 |
+
The audio is extracted from MELD mp4 files while the audio only has one channel with sample rate 16khz.
|
35 |
+
"""
|
36 |
+
|
37 |
+
_LICENSE = "gpl-3.0"
|
38 |
+
|
39 |
+
|
40 |
+
class MELD_Audio(datasets.GeneratorBasedBuilder):
|
41 |
+
"""TODO: Short description of my dataset."""
|
42 |
+
|
43 |
+
VERSION = datasets.Version("0.0.1")
|
44 |
+
BUILDER_CONFIGS = [ # noqa: RUF012
|
45 |
+
datasets.BuilderConfig(name="MELD_Audio", version=VERSION, description="MELD audio"),
|
46 |
+
]
|
47 |
+
|
48 |
+
def _info(self):
|
49 |
+
return datasets.DatasetInfo(
|
50 |
+
description=_DESCRIPTION,
|
51 |
+
features=datasets.Features(
|
52 |
+
{
|
53 |
+
"text": datasets.Value("string"),
|
54 |
+
"path": datasets.Value("string"),
|
55 |
+
"audio": datasets.Audio(sampling_rate=16000),
|
56 |
+
"emotion": ClassLabel(names=["neutral", "joy", "sadness", "anger", "fear", "disgust", "surprise"]),
|
57 |
+
"sentiment": ClassLabel(names=["neutral", "positive", "negative"]),
|
58 |
+
}
|
59 |
+
),
|
60 |
+
homepage=_HOMEPAGE,
|
61 |
+
license=_LICENSE,
|
62 |
+
citation=_CITATION,
|
63 |
+
)
|
64 |
+
|
65 |
+
def _split_generators(self, dl_manager):
|
66 |
+
"""Returns SplitGenerators."""
|
67 |
+
metadata_dir: dict[str, str] = dl_manager.download_and_extract(
|
68 |
+
{"train": "train_sent_emo.csv", "validation": "dev_sent_emo.csv", "test": "test_sent_emo.csv"}
|
69 |
+
) # type: ignore # noqa: PGH003
|
70 |
+
data_path: dict[str, str] = dl_manager.download(
|
71 |
+
{
|
72 |
+
"audios_train": "archive/train.tar.gz",
|
73 |
+
"audios_validation": "archive/dev.tar.gz",
|
74 |
+
"audios_test": "archive/test.tar.gz",
|
75 |
+
}
|
76 |
+
) # type: ignore # noqa: PGH003
|
77 |
+
path_to_clips = "MELD_Audio"
|
78 |
+
local_extracted_archive: dict[str, str] = (
|
79 |
+
dl_manager.extract(data_path)
|
80 |
+
if not dl_manager.is_streaming
|
81 |
+
else {
|
82 |
+
"audios_train": None,
|
83 |
+
"audios_validation": None,
|
84 |
+
"audios_test": None,
|
85 |
+
}
|
86 |
+
) # type: ignore # noqa: PGH003
|
87 |
+
|
88 |
+
return [
|
89 |
+
datasets.SplitGenerator(
|
90 |
+
name=datasets.Split.TRAIN, # type: ignore # noqa: PGH003
|
91 |
+
gen_kwargs={
|
92 |
+
"filepath": metadata_dir["train"],
|
93 |
+
"split": "train",
|
94 |
+
"local_extracted_archive": local_extracted_archive["audios_train"],
|
95 |
+
"audio_files": dl_manager.iter_archive(data_path["audios_train"]),
|
96 |
+
"path_to_clips": path_to_clips,
|
97 |
+
},
|
98 |
+
),
|
99 |
+
datasets.SplitGenerator(
|
100 |
+
name=datasets.Split.VALIDATION, # type: ignore # noqa: PGH003
|
101 |
+
gen_kwargs={
|
102 |
+
"filepath": metadata_dir["validation"],
|
103 |
+
"split": "validation",
|
104 |
+
"local_extracted_archive": local_extracted_archive["audios_validation"],
|
105 |
+
"audio_files": dl_manager.iter_archive(data_path["audios_validation"]),
|
106 |
+
"path_to_clips": path_to_clips,
|
107 |
+
},
|
108 |
+
),
|
109 |
+
datasets.SplitGenerator(
|
110 |
+
name=datasets.Split.TEST, # type: ignore # noqa: PGH003
|
111 |
+
gen_kwargs={
|
112 |
+
"filepath": metadata_dir["test"],
|
113 |
+
"split": "test",
|
114 |
+
"local_extracted_archive": local_extracted_archive["audios_test"],
|
115 |
+
"audio_files": dl_manager.iter_archive(data_path["audios_test"]),
|
116 |
+
"path_to_clips": path_to_clips,
|
117 |
+
},
|
118 |
+
),
|
119 |
+
]
|
120 |
+
|
121 |
+
def _generate_examples(self, filepath, split, local_extracted_archive, audio_files, path_to_clips):
|
122 |
+
"""Yields examples."""
|
123 |
+
metadata_df = pd.read_csv(filepath, sep=",", index_col=0, header=0)
|
124 |
+
metadata = {}
|
125 |
+
for _, row in metadata_df.iterrows():
|
126 |
+
id_ = f"dia{row['Dialogue_ID']}_utt{row['Utterance_ID']}"
|
127 |
+
audio_path = f"{split}/{id_}.flac"
|
128 |
+
metadata[audio_path] = row
|
129 |
+
|
130 |
+
id_ = 0
|
131 |
+
for path, f in audio_files:
|
132 |
+
if path in metadata:
|
133 |
+
row = metadata[path]
|
134 |
+
path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
|
135 |
+
audio = {"path": path, bytes: f.read()}
|
136 |
+
yield (
|
137 |
+
id_,
|
138 |
+
{
|
139 |
+
"text": row["Utterance"],
|
140 |
+
"path": path,
|
141 |
+
"audio": audio,
|
142 |
+
"emotion": row["Emotion"],
|
143 |
+
"sentiment": row["Sentiment"],
|
144 |
+
},
|
145 |
+
)
|
146 |
+
id_ += 1
|
README.md
CHANGED
@@ -1,5 +1,43 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
dataset_info:
|
3 |
+
config_name: MELD_Text
|
4 |
+
features:
|
5 |
+
- name: text
|
6 |
+
dtype: string
|
7 |
+
- name: path
|
8 |
+
dtype: string
|
9 |
+
- name: audio
|
10 |
+
dtype:
|
11 |
+
audio:
|
12 |
+
sampling_rate: 16000
|
13 |
+
- name: emotion
|
14 |
+
dtype:
|
15 |
+
class_label:
|
16 |
+
names:
|
17 |
+
'0': neutral
|
18 |
+
'1': joy
|
19 |
+
'2': sadness
|
20 |
+
'3': anger
|
21 |
+
'4': fear
|
22 |
+
'5': disgust
|
23 |
+
'6': surprise
|
24 |
+
- name: sentiment
|
25 |
+
dtype:
|
26 |
+
class_label:
|
27 |
+
names:
|
28 |
+
'0': neutral
|
29 |
+
'1': positive
|
30 |
+
'2': negative
|
31 |
+
splits:
|
32 |
+
- name: train
|
33 |
+
num_bytes: 3629722
|
34 |
+
num_examples: 9988
|
35 |
+
- name: validation
|
36 |
+
num_bytes: 411341
|
37 |
+
num_examples: 1108
|
38 |
+
- name: test
|
39 |
+
num_bytes: 945283
|
40 |
+
num_examples: 2610
|
41 |
+
download_size: 7840135137
|
42 |
+
dataset_size: 4986346
|
43 |
+
---
|
dev.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
test.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
train.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|