akariasai commited on
Commit
2d26098
1 Parent(s): 48b4084

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -3
README.md CHANGED
@@ -1,3 +1,40 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Dataset Card for PopQA
2
+
3
+ ## Dataset Summary
4
+ PopQA is a large-scale open-domain question answering (QA) dataset, consisting of 14k entity-centric QA pairs. Each question is created by converting a knowledge tuple retrieved from Wikidata using a template. Each question come with the original `subject_entitiey`, `object_entity`and `relationship_type` annotation, as well as Wikipedia monthly page views.
5
+
6
+ ## Languages
7
+ The dataset contains samples in English only.
8
+
9
+ ## Dataset Structure
10
+ ### Data Instances
11
+ - Size of downloaded dataset file: 5.2 MB
12
+
13
+ ## Data Fields
14
+ - `id`: question id
15
+ - `subj`: subject entity name
16
+ - `prop`: relationship type
17
+ - `obj`: object entity name
18
+ - `subj_id`: Wikidata ID of the subject entity
19
+ - `prop_id`: Wikidata relationship type ID
20
+ - `obj_id`: Wikidata ID of the object entity
21
+ - `s_aliases`: aliases of the subject entity
22
+ - `o_aliases`: aliases of the object entity
23
+ - `s_uri`: Wikidata URI of the subject entity
24
+ - `o_uri`: Wikidata URI of the object entity
25
+ - `s_wiki_title`: Wikipedia page title of the subject entity
26
+ - `o_wiki_title`: Wikipedia page title of the object entity
27
+ - `s_pop`: Wikipedia monthly pageview of the subject entity
28
+ - `o_pop`: Wikipedia monthly pageview of the object entity
29
+ - `question`: PopQA question
30
+ - `possible_answers`: a list of the gold answers.
31
+
32
+ ## Citation Information
33
+ ```
34
+ @article{ mallen2023llm_memorization ,
35
+ title={When Not to Trust Language Models: Investigating Effectiveness and Limitations of Parametric and Non-Parametric Memories },
36
+ author={ Mallen, Alex and Asai,Akari and Zhong, Victor and Das, Rajarshi and Hajishirzi, Hannaneh and Khashabi, Daniel},
37
+ journal={ arXiv preprint },
38
+ year={ 2022 }
39
+ }
40
+ ```