|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition""" |
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{bododataset2022v1, |
|
title = {Bodo Dataset: A comprehensive list of Bodo Datasets}, |
|
author = {Sanjib Narzary}, |
|
booktitle = {Alayaran Dataset Repository}, |
|
url = {http://get.alayaran.com}, |
|
year = {2022}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The shared task of CoNLL-2003 concerns language-independent named entity recognition. We will concentrate on |
|
four types of named entities: persons, locations, organizations and names of miscellaneous entities that do |
|
not belong to the previous three groups. |
|
|
|
The CoNLL-2003 shared task data files contain four columns separated by a single space. Each word has been put on |
|
a separate line and there is an empty line after each sentence. The first item on each line is a word, the second |
|
a part-of-speech (POS) tag, the third a syntactic chunk tag and the fourth the named entity tag. The chunk tags |
|
and the named entity tags have the format I-TYPE which means that the word is inside a phrase of type TYPE. Only |
|
if two phrases of the same type immediately follow each other, the first word of the second phrase will have tag |
|
B-TYPE to show that it starts a new phrase. A word with tag O is not part of a phrase. Note the dataset uses IOB2 |
|
tagging scheme, whereas the original dataset uses IOB1. |
|
|
|
For more details see https://www.clips.uantwerpen.be/conll2003/ner/ and https://www.aclweb.org/anthology/W03-0419 |
|
""" |
|
|
|
_URL = "http://get.alayaran.com/pos/bodo-pos-conll/bodo-pos.zip" |
|
_TRAINING_FILE = "train-pos.txt" |
|
_DEV_FILE = "valid-pos.txt" |
|
_TEST_FILE = "test-pos.txt" |
|
|
|
|
|
class BodoPoSConll2003Config(datasets.BuilderConfig): |
|
"""BuilderConfig for Conll2003""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig forConll2003. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(BodoPoSConll2003Config, self).__init__(**kwargs) |
|
|
|
|
|
class Conll2003(datasets.GeneratorBasedBuilder): |
|
"""Conll2003 dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
BodoPoSConll2003Config(name="bodo-pos-conll-2003", version=datasets.Version("1.0.0"), description="Bodo PoS Conll2003 dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"pos_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
'RD_UNK', |
|
'DM_DMD', |
|
'N_NNV', |
|
'QT_QTO', |
|
'N_NST', |
|
'PR_PRC', |
|
'CC_CCS', |
|
'RP_NEG', |
|
'QT_QTF', |
|
'N_NNP', |
|
'CC_CCD', |
|
'PR_PRQ', |
|
'DM_DMR', |
|
'QT_QTC', |
|
'DM_DMI', |
|
'PR_PRF', |
|
'RB', |
|
'PSP', |
|
'V_VAUX_VF', |
|
'PR_PRP', |
|
'RD_RDF', |
|
'RP_RPD', |
|
'JJ', |
|
'RP_INJ', |
|
'V_VM', |
|
'V_VM_VF', |
|
'PR_PRL', |
|
'RD_PUNC', |
|
'RP_INTF', |
|
'DM_DMQ', |
|
'RD_ECH', |
|
'RD_SYM', |
|
'N_NN', |
|
'PR_PRI', |
|
'V_VM_VNF', |
|
'V_VAUX', |
|
] |
|
) |
|
), |
|
"chunk_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", |
|
"B-ADJP", |
|
"I-ADJP", |
|
"B-ADVP", |
|
"I-ADVP", |
|
"B-CONJP", |
|
"I-CONJP", |
|
"B-INTJ", |
|
"I-INTJ", |
|
"B-LST", |
|
"I-LST", |
|
"B-NP", |
|
"I-NP", |
|
"B-PP", |
|
"I-PP", |
|
"B-PRT", |
|
"I-PRT", |
|
"B-SBAR", |
|
"I-SBAR", |
|
"B-UCP", |
|
"I-UCP", |
|
"B-VP", |
|
"I-VP", |
|
] |
|
) |
|
), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", |
|
"B-PER", |
|
"I-PER", |
|
"B-ORG", |
|
"I-ORG", |
|
"B-LOC", |
|
"I-LOC", |
|
"B-MISC", |
|
"I-MISC", |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="http://get.alayaran.com", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
downloaded_file = dl_manager.download_and_extract(_URL) |
|
data_files = { |
|
"train": os.path.join(downloaded_file, _TRAINING_FILE), |
|
"dev": os.path.join(downloaded_file, _DEV_FILE), |
|
"test": os.path.join(downloaded_file, _TEST_FILE), |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
guid = 0 |
|
tokens = [] |
|
pos_tags = [] |
|
chunk_tags = [] |
|
ner_tags = [] |
|
for line in f: |
|
if line.startswith("-DOCSTART-") or line == "" or line == "\n": |
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"pos_tags": pos_tags, |
|
"chunk_tags": chunk_tags, |
|
"ner_tags": ner_tags, |
|
} |
|
guid += 1 |
|
tokens = [] |
|
pos_tags = [] |
|
chunk_tags = [] |
|
ner_tags = [] |
|
else: |
|
|
|
splits = line.split(" ") |
|
tokens.append(splits[0]) |
|
pos_tags.append(splits[1]) |
|
chunk_tags.append('O') |
|
ner_tags.append('O') |
|
|
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"pos_tags": pos_tags, |
|
"chunk_tags": chunk_tags, |
|
"ner_tags": ner_tags, |
|
} |
|
|