|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""SAT dataset.""" |
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
SAT (Style Augmented Translation) dataset contains roughly 3.3 million English-Vietnamese pairs of texts. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/vietai/sat" |
|
|
|
|
|
_LICENSE = "Unknown" |
|
|
|
_URL = { |
|
"train": "https://storage.googleapis.com/vietai_public/best_vi_translation/v1/train.en-vi.json", |
|
"test": "https://storage.googleapis.com/vietai_public/best_vi_translation/v1/test.en-vi.json", |
|
} |
|
|
|
|
|
class Sat(datasets.GeneratorBasedBuilder): |
|
"""SAT dataset.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({"translation": datasets.features.Translation(languages=["en", "vi"])}), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_path = dl_manager.download(_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_path": data_path["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_path": data_path["test"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_path): |
|
with open(data_path, encoding="utf-8") as f: |
|
for key, line in enumerate(f): |
|
yield key, json.loads(line) |
|
|