File size: 8,676 Bytes
a607951
 
 
 
 
 
 
 
 
 
 
 
 
807ad95
 
a607951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7053f50
47885c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a607951
 
 
e1cf4ef
 
 
a607951
 
7053f50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a607951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
---
annotations_creators:
- machine-generated
- expert-generated
language_creators:
- machine-generated
- expert-generated
language:
- en
license:
- unknown
multilinguality:
- monolingual
pretty_name: NIH-CXR14
paperswithcode_id: chestx-ray14
size_categories:
- 100K<n<1M
task_categories:
- image-classification
task_ids:
- multi-class-image-classification
---

# Dataset Card for NIH Chest X-ray dataset

## Table of Contents

- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [NIH Chest X-ray Dataset of 10 Common Thorax Disease Categories](https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/36938765345)
- **Repository:**
- **Paper:** [ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases](https://arxiv.org/abs/1705.02315)
- **Leaderboard:**
- **Point of Contact:** rms@nih.gov

### Dataset Summary

_ChestX-ray dataset comprises 112,120 frontal-view X-ray images of 30,805 unique patients with the text-mined fourteen disease image labels (where each image can have multi-labels), mined from the associated radiological reports using natural language processing. Fourteen common thoracic pathologies include Atelectasis, Consolidation, Infiltration, Pneumothorax, Edema, Emphysema, Fibrosis, Effusion, Pneumonia, Pleural_thickening, Cardiomegaly, Nodule, Mass and Hernia, which is an extension of the 8 common disease patterns listed in our CVPR2017 paper. Note that original radiology reports (associated with these chest x-ray studies) are not meant to be publicly shared for many reasons. The text-mined disease labels are expected to have accuracy >90%.Please find more details and benchmark performance of trained models based on 14 disease labels in our arxiv paper: [1705.02315](https://arxiv.org/abs/1705.02315)_


## Dataset Structure

### Data Instances

A sample from the training set is provided below:

```
{'image_file_path': '/root/.cache/huggingface/datasets/downloads/extracted/95db46f21d556880cf0ecb11d45d5ba0b58fcb113c9a0fff2234eba8f74fe22a/images/00000798_022.png',
 'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=1024x1024 at 0x7F2151B144D0>,
 'labels': [9, 3]}
```

### Data Fields

The data instances have the following fields:
- `image_file_path` a `str` with the image path
- `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`.
- `labels`: an `int` classification label.
<details>
  <summary>Class Label Mappings</summary>
  ```json
  {
    "No Finding": 0,
    "Atelectasis": 1,
    "Cardiomegaly": 2,
    "Effusion": 3,
    "Infiltration": 4,
    "Mass": 5,
    "Nodule": 6,
    "Pneumonia": 7,
    "Pneumothorax": 8,
    "Consolidation": 9,
    "Edema": 10,
    "Emphysema": 11,
    "Fibrosis": 12,
    "Pleural_Thickening": 13,
    "Hernia": 14
 }
  ```
</details>

**Label distribution on the dataset:**

| labels             |   obs |       freq |
|:-------------------|------:|-----------:|
| No Finding         | 60361 | 0.426468   |
| Infiltration       | 19894 | 0.140557   |
| Effusion           | 13317 | 0.0940885  |
| Atelectasis        | 11559 | 0.0816677  |
| Nodule             |  6331 | 0.0447304  |
| Mass               |  5782 | 0.0408515  |
| Pneumothorax       |  5302 | 0.0374602  |
| Consolidation      |  4667 | 0.0329737  |
| Pleural_Thickening |  3385 | 0.023916   |
| Cardiomegaly       |  2776 | 0.0196132  |
| Emphysema          |  2516 | 0.0177763  |
| Edema              |  2303 | 0.0162714  |
| Fibrosis           |  1686 | 0.0119121  |
| Pneumonia          |  1431 | 0.0101104  |
| Hernia             |   227 | 0.00160382 |

### Data Splits

 
|             |train| test|
|-------------|----:|----:|
|# of examples|86524|25596|


**Label distribution by dataset split:**

| labels             |   ('Train', 'obs') |   ('Train', 'freq') |   ('Test', 'obs') |   ('Test', 'freq') |
|:-------------------|-------------------:|--------------------:|------------------:|-------------------:|
| No Finding         |              50500 |          0.483392   |              9861 |         0.266032   |
| Infiltration       |              13782 |          0.131923   |              6112 |         0.164891   |
| Effusion           |               8659 |          0.082885   |              4658 |         0.125664   |
| Atelectasis        |               8280 |          0.0792572  |              3279 |         0.0884614  |
| Nodule             |               4708 |          0.0450656  |              1623 |         0.0437856  |
| Mass               |               4034 |          0.038614   |              1748 |         0.0471578  |
| Consolidation      |               2852 |          0.0272997  |              1815 |         0.0489654  |
| Pneumothorax       |               2637 |          0.0252417  |              2665 |         0.0718968  |
| Pleural_Thickening |               2242 |          0.0214607  |              1143 |         0.0308361  |
| Cardiomegaly       |               1707 |          0.0163396  |              1069 |         0.0288397  |
| Emphysema          |               1423 |          0.0136211  |              1093 |         0.0294871  |
| Edema              |               1378 |          0.0131904  |               925 |         0.0249548  |
| Fibrosis           |               1251 |          0.0119747  |               435 |         0.0117355  |
| Pneumonia          |                876 |          0.00838518 |               555 |         0.0149729  |
| Hernia             |                141 |          0.00134967 |                86 |         0.00232012 |

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### License and attribution 

There are no restrictions on the use of the NIH chest x-ray images. However, the dataset has the following attribution requirements:

- Provide a link to the NIH download site: https://nihcc.app.box.com/v/ChestXray-NIHCC
- Include a citation to the CVPR 2017 paper (see Citation information section)
- Acknowledge that the NIH Clinical Center is the data provider


### Citation Information

```
@inproceedings{Wang_2017,
	doi = {10.1109/cvpr.2017.369},
	url = {https://doi.org/10.1109%2Fcvpr.2017.369},
	year = 2017,
	month = {jul},
	publisher = {{IEEE}
},
	author = {Xiaosong Wang and Yifan Peng and Le Lu and Zhiyong Lu and Mohammadhadi Bagheri and Ronald M. Summers},
	title = {{ChestX}-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases},
	booktitle = {2017 {IEEE} Conference on Computer Vision and Pattern Recognition ({CVPR})}
}
```

### Contributions

Thanks to [@alcazar90](https://github.com/alcazar90) for adding this dataset.