Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
File size: 8,676 Bytes
a607951 807ad95 a607951 7053f50 47885c5 a607951 e1cf4ef a607951 7053f50 a607951 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
---
annotations_creators:
- machine-generated
- expert-generated
language_creators:
- machine-generated
- expert-generated
language:
- en
license:
- unknown
multilinguality:
- monolingual
pretty_name: NIH-CXR14
paperswithcode_id: chestx-ray14
size_categories:
- 100K<n<1M
task_categories:
- image-classification
task_ids:
- multi-class-image-classification
---
# Dataset Card for NIH Chest X-ray dataset
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [NIH Chest X-ray Dataset of 10 Common Thorax Disease Categories](https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/36938765345)
- **Repository:**
- **Paper:** [ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases](https://arxiv.org/abs/1705.02315)
- **Leaderboard:**
- **Point of Contact:** rms@nih.gov
### Dataset Summary
_ChestX-ray dataset comprises 112,120 frontal-view X-ray images of 30,805 unique patients with the text-mined fourteen disease image labels (where each image can have multi-labels), mined from the associated radiological reports using natural language processing. Fourteen common thoracic pathologies include Atelectasis, Consolidation, Infiltration, Pneumothorax, Edema, Emphysema, Fibrosis, Effusion, Pneumonia, Pleural_thickening, Cardiomegaly, Nodule, Mass and Hernia, which is an extension of the 8 common disease patterns listed in our CVPR2017 paper. Note that original radiology reports (associated with these chest x-ray studies) are not meant to be publicly shared for many reasons. The text-mined disease labels are expected to have accuracy >90%.Please find more details and benchmark performance of trained models based on 14 disease labels in our arxiv paper: [1705.02315](https://arxiv.org/abs/1705.02315)_
## Dataset Structure
### Data Instances
A sample from the training set is provided below:
```
{'image_file_path': '/root/.cache/huggingface/datasets/downloads/extracted/95db46f21d556880cf0ecb11d45d5ba0b58fcb113c9a0fff2234eba8f74fe22a/images/00000798_022.png',
'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=1024x1024 at 0x7F2151B144D0>,
'labels': [9, 3]}
```
### Data Fields
The data instances have the following fields:
- `image_file_path` a `str` with the image path
- `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`.
- `labels`: an `int` classification label.
<details>
<summary>Class Label Mappings</summary>
```json
{
"No Finding": 0,
"Atelectasis": 1,
"Cardiomegaly": 2,
"Effusion": 3,
"Infiltration": 4,
"Mass": 5,
"Nodule": 6,
"Pneumonia": 7,
"Pneumothorax": 8,
"Consolidation": 9,
"Edema": 10,
"Emphysema": 11,
"Fibrosis": 12,
"Pleural_Thickening": 13,
"Hernia": 14
}
```
</details>
**Label distribution on the dataset:**
| labels | obs | freq |
|:-------------------|------:|-----------:|
| No Finding | 60361 | 0.426468 |
| Infiltration | 19894 | 0.140557 |
| Effusion | 13317 | 0.0940885 |
| Atelectasis | 11559 | 0.0816677 |
| Nodule | 6331 | 0.0447304 |
| Mass | 5782 | 0.0408515 |
| Pneumothorax | 5302 | 0.0374602 |
| Consolidation | 4667 | 0.0329737 |
| Pleural_Thickening | 3385 | 0.023916 |
| Cardiomegaly | 2776 | 0.0196132 |
| Emphysema | 2516 | 0.0177763 |
| Edema | 2303 | 0.0162714 |
| Fibrosis | 1686 | 0.0119121 |
| Pneumonia | 1431 | 0.0101104 |
| Hernia | 227 | 0.00160382 |
### Data Splits
| |train| test|
|-------------|----:|----:|
|# of examples|86524|25596|
**Label distribution by dataset split:**
| labels | ('Train', 'obs') | ('Train', 'freq') | ('Test', 'obs') | ('Test', 'freq') |
|:-------------------|-------------------:|--------------------:|------------------:|-------------------:|
| No Finding | 50500 | 0.483392 | 9861 | 0.266032 |
| Infiltration | 13782 | 0.131923 | 6112 | 0.164891 |
| Effusion | 8659 | 0.082885 | 4658 | 0.125664 |
| Atelectasis | 8280 | 0.0792572 | 3279 | 0.0884614 |
| Nodule | 4708 | 0.0450656 | 1623 | 0.0437856 |
| Mass | 4034 | 0.038614 | 1748 | 0.0471578 |
| Consolidation | 2852 | 0.0272997 | 1815 | 0.0489654 |
| Pneumothorax | 2637 | 0.0252417 | 2665 | 0.0718968 |
| Pleural_Thickening | 2242 | 0.0214607 | 1143 | 0.0308361 |
| Cardiomegaly | 1707 | 0.0163396 | 1069 | 0.0288397 |
| Emphysema | 1423 | 0.0136211 | 1093 | 0.0294871 |
| Edema | 1378 | 0.0131904 | 925 | 0.0249548 |
| Fibrosis | 1251 | 0.0119747 | 435 | 0.0117355 |
| Pneumonia | 876 | 0.00838518 | 555 | 0.0149729 |
| Hernia | 141 | 0.00134967 | 86 | 0.00232012 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### License and attribution
There are no restrictions on the use of the NIH chest x-ray images. However, the dataset has the following attribution requirements:
- Provide a link to the NIH download site: https://nihcc.app.box.com/v/ChestXray-NIHCC
- Include a citation to the CVPR 2017 paper (see Citation information section)
- Acknowledge that the NIH Clinical Center is the data provider
### Citation Information
```
@inproceedings{Wang_2017,
doi = {10.1109/cvpr.2017.369},
url = {https://doi.org/10.1109%2Fcvpr.2017.369},
year = 2017,
month = {jul},
publisher = {{IEEE}
},
author = {Xiaosong Wang and Yifan Peng and Le Lu and Zhiyong Lu and Mohammadhadi Bagheri and Ronald M. Summers},
title = {{ChestX}-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases},
booktitle = {2017 {IEEE} Conference on Computer Vision and Pattern Recognition ({CVPR})}
}
```
### Contributions
Thanks to [@alcazar90](https://github.com/alcazar90) for adding this dataset.
|