Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Sub-tasks:
natural-language-inference
Languages:
Polish
Size:
10K - 100K
License:
Update README.md
Browse files
README.md
CHANGED
@@ -33,18 +33,23 @@ Although the SICK corpus inspires the main design of the dataset, it differs in
|
|
33 |
|
34 |
The entailment relation between two sentences is labeled with *entailment*, *contradiction*, or *neutral*. The task is to predict if the premise entails the hypothesis (entailment), negates the hypothesis (contradiction), or is unrelated (neutral).
|
35 |
|
|
|
|
|
36 |
**Input**: ('sentence_A', 'sentence_B'): sentence pair
|
37 |
|
38 |
**Output** ('entailment_judgment' column): one of the possible entailment relations (*entailment*, *contradiction*, *neutral*)
|
39 |
|
40 |
**Domain:** image captions
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
Żaden mężczyzna nie stoi na przystanku autobusowym. (Eng. No man standing at the bus stop.) vs. Mężczyzna z żółtą i białą reklamówką w ręce stoi na przystanku obok autobusu. (Eng. A man with a yellow and white commercial in his hand stands at a bus stop next to a bus.) → **entailment**
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
48 |
|
49 |
## Data splits
|
50 |
|
|
|
33 |
|
34 |
The entailment relation between two sentences is labeled with *entailment*, *contradiction*, or *neutral*. The task is to predict if the premise entails the hypothesis (entailment), negates the hypothesis (contradiction), or is unrelated (neutral).
|
35 |
|
36 |
+
b **entails** a (a **wynika z** b) – if a situation or an event described by sentence b occurs, it is recognized that a situation or an event described by a occurs as well, i.e., a and b refer to the same event or the same situation;
|
37 |
+
|
38 |
**Input**: ('sentence_A', 'sentence_B'): sentence pair
|
39 |
|
40 |
**Output** ('entailment_judgment' column): one of the possible entailment relations (*entailment*, *contradiction*, *neutral*)
|
41 |
|
42 |
**Domain:** image captions
|
43 |
|
44 |
+
**Measurements**: Accuracy
|
45 |
|
46 |
+
**Example:**
|
|
|
47 |
|
48 |
+
Input: `Żaden mężczyzna nie stoi na przystanku autobusowym.` ; `Mężczyzna z żółtą i białą reklamówką w ręce stoi na przystanku obok autobusu.`
|
49 |
+
|
50 |
+
Input (translated by DeepL): `No man standing at the bus stop.` ; `A man with a yellow and white bag in his hand stands at a bus stop next to a bus.`
|
51 |
+
|
52 |
+
Output: `entailment`
|
53 |
|
54 |
## Data splits
|
55 |
|