first upload
Browse files- csabstruct.py +121 -0
csabstruct.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Dataset from https://github.com/allenai/sequential_sentence_classification
|
3 |
+
|
4 |
+
Dataset maintainer: @soldni
|
5 |
+
"""
|
6 |
+
|
7 |
+
|
8 |
+
import json
|
9 |
+
from typing import Iterable, Sequence, Tuple
|
10 |
+
|
11 |
+
import datasets
|
12 |
+
from datasets.builder import BuilderConfig, GeneratorBasedBuilder
|
13 |
+
from datasets.info import DatasetInfo
|
14 |
+
from datasets.splits import Split, SplitGenerator
|
15 |
+
from datasets.utils.logging import get_logger
|
16 |
+
|
17 |
+
LOGGER = get_logger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
_NAME = "CSAbstruct"
|
21 |
+
_CITATION = """\
|
22 |
+
@inproceedings{Cohan2019EMNLP,
|
23 |
+
title={Pretrained Language Models for Sequential Sentence Classification},
|
24 |
+
author={Arman Cohan, Iz Beltagy, Daniel King, Bhavana Dalvi, Dan Weld},
|
25 |
+
year={2019},
|
26 |
+
booktitle={EMNLP},
|
27 |
+
}
|
28 |
+
"""
|
29 |
+
_LICENSE = "Apache License 2.0"
|
30 |
+
_DESCRIPTION = """\
|
31 |
+
As a step toward better document-level understanding, we explore \
|
32 |
+
classification of a sequence of sentences into their corresponding \
|
33 |
+
categories, a task that requires understanding sentences in context \
|
34 |
+
of the document. Recent successful models for this task have used \
|
35 |
+
hierarchical models to contextualize sentence representations, and \
|
36 |
+
Conditional Random Fields (CRFs) to incorporate dependencies between \
|
37 |
+
subsequent labels. In this work, we show that pretrained language \
|
38 |
+
models, BERT (Devlin et al., 2018) in particular, can be used for \
|
39 |
+
this task to capture contextual dependencies without the need for \
|
40 |
+
hierarchical encoding nor a CRF. Specifically, we construct a joint \
|
41 |
+
sentence representation that allows BERT Transformer layers to \
|
42 |
+
directly utilize contextual information from all words in all \
|
43 |
+
sentences. Our approach achieves state-of-the-art results on four \
|
44 |
+
datasets, including a new dataset of structured scientific abstracts.
|
45 |
+
"""
|
46 |
+
_HOMEPAGE = "https://github.com/allenai/sequential_sentence_classification"
|
47 |
+
_VERSION = "1.0.0"
|
48 |
+
|
49 |
+
_URL = (
|
50 |
+
"https://raw.githubusercontent.com/allenai/"
|
51 |
+
"sequential_sentence_classification/master/"
|
52 |
+
)
|
53 |
+
|
54 |
+
_SPLITS = {
|
55 |
+
Split.TRAIN: _URL + "data/CSAbstruct/train.jsonl",
|
56 |
+
Split.VALIDATION: _URL + "data/CSAbstruct/dev.jsonl",
|
57 |
+
Split.TEST: _URL + "data/CSAbstruct/test.jsonl",
|
58 |
+
}
|
59 |
+
|
60 |
+
|
61 |
+
class CSAbstruct(GeneratorBasedBuilder):
|
62 |
+
"""CSAbstruct"""
|
63 |
+
|
64 |
+
BUILDER_CONFIGS = [
|
65 |
+
BuilderConfig(
|
66 |
+
name=_NAME,
|
67 |
+
version=datasets.Version(_VERSION),
|
68 |
+
description=_DESCRIPTION,
|
69 |
+
)
|
70 |
+
]
|
71 |
+
|
72 |
+
def _info(self) -> DatasetInfo:
|
73 |
+
class_labels = ["background", "method", "objective", "other", "result"]
|
74 |
+
|
75 |
+
features = datasets.Features(
|
76 |
+
{
|
77 |
+
"abstract_id": datasets.Value("string"),
|
78 |
+
"sentences": [datasets.Value("string")],
|
79 |
+
"labels": [datasets.ClassLabel(names=class_labels)],
|
80 |
+
"confs": [datasets.Value("float")],
|
81 |
+
}
|
82 |
+
)
|
83 |
+
|
84 |
+
return DatasetInfo(
|
85 |
+
description=_DESCRIPTION,
|
86 |
+
features=features,
|
87 |
+
supervised_keys=None,
|
88 |
+
homepage=_HOMEPAGE,
|
89 |
+
license=_LICENSE,
|
90 |
+
citation=_CITATION,
|
91 |
+
)
|
92 |
+
|
93 |
+
def _split_generators(
|
94 |
+
self, dl_manager: datasets.DownloadManager
|
95 |
+
) -> Sequence[SplitGenerator]:
|
96 |
+
archive = dl_manager.download(_SPLITS)
|
97 |
+
|
98 |
+
return [
|
99 |
+
SplitGenerator(
|
100 |
+
name=split_name, # type: ignore
|
101 |
+
gen_kwargs={
|
102 |
+
"split_name": split_name,
|
103 |
+
"filepath": archive[split_name], # type: ignore
|
104 |
+
},
|
105 |
+
)
|
106 |
+
for split_name in _SPLITS
|
107 |
+
]
|
108 |
+
|
109 |
+
def _generate_examples(
|
110 |
+
self, split_name: str, filepath: str
|
111 |
+
) -> Iterable[Tuple[str, dict]]:
|
112 |
+
"""This function returns the examples in the raw (text) form."""
|
113 |
+
|
114 |
+
LOGGER.info(f"generating examples from documents in {filepath}...")
|
115 |
+
|
116 |
+
with open(filepath, mode="r", encoding="utf-8") as f:
|
117 |
+
data = [json.loads(ln) for ln in f]
|
118 |
+
|
119 |
+
for i, row in enumerate(data):
|
120 |
+
row["abstract_id"] = f"{split_name}_{i:04d}"
|
121 |
+
yield row["abstract_id"], row
|