Datasets:
File size: 4,835 Bytes
3c125d3 c56ecb2 7da0b42 c56ecb2 1eb0631 7da0b42 3c125d3 c56ecb2 1eb0631 c56ecb2 7da0b42 3c125d3 c56ecb2 1eb0631 7da0b42 3c125d3 c56ecb2 7d5c7f2 c56ecb2 7d5c7f2 1eb0631 7da0b42 7d5c7f2 c56ecb2 1eb0631 c56ecb2 1eb0631 c56ecb2 1eb0631 c56ecb2 3c125d3 c56ecb2 7da0b42 c56ecb2 7da0b42 c56ecb2 7da0b42 c56ecb2 7da0b42 c56ecb2 7da0b42 c56ecb2 1eb0631 c56ecb2 7da0b42 c56ecb2 7da0b42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# Copyright 2024 Allen Institute for AI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research"""
import gzip
import json
import os
from typing import List
import datasets
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research
"""
_URL_LISTS = {
"v1": "urls/v1.txt",
"v1_5": "urls/v1_5.txt",
"v1_5-sample": "urls/v1_5-sample.txt",
"v1_6": "urls/v1_6.txt",
"v1_6-sample": "urls/v1_6-sample.txt",
"v1_7": "urls/v1_7.txt",
}
_VERSIONS = {
"v1": "1.0.0",
"v1_5": "1.5.0",
"v1_5-sample": "1.5.0",
"v1_6": "1.6.0",
"v1_6-sample": "1.6.0",
"v1_7": "1.7.0",
}
_DATES = {
"v1": "(Aug 2023)",
"v1_5": "(Oct 2023)",
"v1_5-sample": "(Oct 2023)",
"v1_6": "(Jan 2024)",
"v1_6-sample": "(Jan 2024)",
"v1_7": "(Apr 2024)",
}
_BASE_URL = "https://olmo-data.org"
_DATA_DIR = os.environ.get("DOLMA_DATA_DIR", None)
_CITATION = """\
@article{dolma,
title = {{Dolma: An Open Corpus of Three Trillion Tokens for Language Model Pretraining Research}},
author = {
Luca Soldaini and Rodney Kinney and Akshita Bhagia and Dustin Schwenk and David Atkinson and
Russell Authur and Ben Bogin and Khyathi Chandu and Jennifer Dumas and Yanai Elazar and
Valentin Hofmann and Ananya Harsh Jha and Sachin Kumar and Li Lucy and Xinxi Lyu and Ian Magnusson and
Jacob Morrison and Niklas Muennighoff and Aakanksha Naik and Crystal Nam and Matthew E. Peters and
Abhilasha Ravichander and Kyle Richardson and Zejiang Shen and Emma Strubell and Nishant Subramani and
Oyvind Tafjord and Evan Pete Walsh and Hannaneh Hajishirzi and Noah A. Smith and Luke Zettlemoyer and
Iz Beltagy and Dirk Groeneveld and Jesse Dodge and Kyle Lo
},
year = {2024},
journal={arXiv preprint},
}
"""
class Dolma(datasets.GeneratorBasedBuilder):
"""Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research"""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=name,
version=_VERSIONS[name],
description=f"{_DESCRIPTION} {_DATES[name]}",
)
for name in _URL_LISTS.keys()
]
DEFAULT_CONFIG_NAME = "v1_7"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
# "metadata": datasets.Value("string"),
"added": datasets.Value("string"),
"created": datasets.Value("string"),
"source": datasets.Value("string"),
}
),
supervised_keys=None,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
path = dl_manager.download(_URL_LISTS[self.config.name])
with open(path, mode="rt", encoding="utf-8") as f: # type: ignore[no-untyped-call]
subset_urls = f.read().splitlines()
if _DATA_DIR is not None:
subset_files = [os.path.join(_DATA_DIR, url.replace(_BASE_URL, "").lstrip("/")) for url in subset_urls]
else:
subset_files = dl_manager.download(subset_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, # type: ignore[assignment]
gen_kwargs={"files": subset_files},
)
]
def _generate_examples(self, files: List[str]):
"""This function returns the examples in the raw (text) form."""
for fn in files:
logger.info("generating examples from = %s", fn)
with gzip.open(fn, mode="rt", encoding="utf-8") as f:
for line in f:
row = json.loads(line)
yield row["id"], {
"id": row["id"],
"text": row["text"],
"added": row.get("added", ""),
"created": row.get("created", ""),
"source": row.get("source", ""),
}
|