Datasets:

Languages:
English
Size:
n>1T
ArXiv:
License:
File size: 8,485 Bytes
351aa33
ce7a052
37f853d
b959d5c
 
 
 
 
 
 
 
 
 
 
351aa33
b959d5c
7d5c7f2
b959d5c
e45a74c
b959d5c
ce7a052
b959d5c
 
 
c0c59ef
b959d5c
617eae1
b959d5c
e45a74c
 
37f853d
 
ce7a052
 
b959d5c
7da0b42
b959d5c
37f853d
b959d5c
7da0b42
 
37f853d
 
7da0b42
 
 
 
e5f2715
 
37f853d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f2715
 
37f853d
 
7da0b42
 
 
 
 
 
 
 
 
 
e5f2715
 
37f853d
 
e5f2715
7da0b42
e5f2715
7da0b42
 
e5f2715
7da0b42
 
 
 
e5f2715
7da0b42
 
e5f2715
a78b99d
7da0b42
 
a78b99d
7da0b42
a78b99d
 
 
7da0b42
a78b99d
7da0b42
 
a78b99d
 
ce7a052
 
 
 
 
c564bd5
 
 
 
7da0b42
c564bd5
03bbd48
 
7da0b42
 
03bbd48
 
 
 
 
 
7d5c7f2
c564bd5
 
7d5c7f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
---
license: odc-by
viewer: false
task_categories:
- text-generation
language:
- en
tags:
- language-modeling
- casual-lm
- llm
pretty_name: Dolma
size_categories:
- n>1T
---

# Dolma

<img alt="Dolma's official logo. It's dolma written in yellow, round lowercase letters over a blue background." src="https://raw.githubusercontent.com/allenai/dolma/main/docs/assets/AI2_Blog_1400x685_2x.webp" width="100%">

Dolma is a dataset of 3 trillion tokens from a diverse mix of web content, academic publications, code, books, and encyclopedic materials.

More information:

- Read Dolma **manuscript** and its **Data Sheet** [on ArXiv](https://arxiv.org/abs/2402.00159);
- Explore the [**open source tools**](https://github.com/allenai/dolma) we created to curate Dolma.
- Want to request removal of personal data? Use [this form](https://forms.gle/q4BNUUxUxKwKkfdT6) to notify us of documents containing PII about a specific user.

To learn more about the toolkit used to create Dolma, including how to replicate this dataset, head over our [GitHub project page](https://github.com/allenai/dolma/tree/main/docs)!

**2024-04-17: Dolma v1.7 Release.** We have released an updated version of Dolma that we used to train our latest [OLMo 7B-v1.7](https://huggingface.co/allenai/OLMo-7b-v1.7) model.

**2024-04-15: License Change.** We have updated the license of Dolma to [ODC-BY](https://opendatacommons.org/licenses/by/1-0/). Please see this [blog post](https://blog.allenai.org/making-a-switch-dolma-moves-to-odc-by-8f0e73852f44) for more information.


## Versions

At the moment, there are six versions of Dolma available:

| **Version** | **Default?** | **Release Date** | **Size** (gzip) | **Description** |
|--|:--:|--|--|--|
| `v1_7` | ✅ | 2024-04-15 | 4.5 TB | Used to train [OLMo-7B-v1.7](https://huggingface.co/allenai/OLMo-7b-v1.7). |
| `v1_6` |  | 2024-01-31 | 5.4 TB | An update to v1.5 with some bug-fixes. |
| `v1_6-sample` | | 2024-01-31 | 16.4 GB | A smaller sample of Dolma, with roughly 10 billion tokens. Useful for data exploration. |
| `v1_5` | | 2023-10-31 | 6.4 TB | The version of Dolma used to train [OLMo-1B](https://huggingface.co/allenai/OLMo-1B). Roughly 3 trillion tokens. |
| `v1_5-sample` | | 2023-10-31 | 2.9 TB | A sample of roughly 1.9 trillion tokens used to train [OLMo-7B](https://huggingface.co/allenai/OLMo-7B) |
| `v1` | | 2023-08-18 | 6.0 TB | The first version of Dolma. |


## Summary Statistics (v1.7)

| **Source** | **Provenance** | **New?** | **Documents** (millions) |  **OLMo tokens** (billions) | **Sample Proportion** | **Cutoff Date** | **Processing**
|--|--|--|--|--|--|--|--|
| Dolma's CC | [Common Crawl](https://commoncrawl.org/) via Dolma v1.6 | Updated | 875.2 | 1,195.5 | 50% | Mar 2023 | Extracted using the Dolma pipeline; new quality filtering and deduplication steps. |
| Refined Web | [Refined Web](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) | Yes | 664.0 | 456.4  | 100% | Feb 2023 | Filtered using the Dolma pipeline; new quality filtering and deduplication steps.  |
| StarCoder | [StarCoder](https://huggingface.co/blog/starcoder) | Yes |  206.6 | 263.8  | 100% | May 2023 | No further processing. |
| C4 | [C4](https://huggingface.co/datasets/c4) via Dolma v1.6 | Updated | 249.9 | 138.4 | 50% | Apr 2019 | Filtered using the Dolma pipeline; new quality filtering and deduplication steps. |
| Reddit | [PushShift API](https://github.com/pushshift/api) | Updated | 377.4 | 79.9 | 100% | Mar 2023 | Extracted using the Dolma pipeline; new quality filtering and deduplication steps. |
| Semantic Scholar ([S2ORC](https://aclanthology.org/2020.acl-main.447/) & [S2AG](https://www.semanticscholar.org/product/api)) | [peS2o](https://huggingface.co/datasets/allenai/peS2o) via Dolma v1.6 | No | 38.8  | 57.2 | 100% | Mar 2023 | Same as Dolma v1.6 |
| arXiv | [RedPajama v1](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) | Yes | 1.5 | 28.0 | 100% | Mar 2023 | No further processing. |
| StackExchange | [RedPajama v1](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) | Yes | 29.3 | 19.6 | 100%  | Mar 2023  | No further processing.  |
| Flan | [Flan](https://arxiv.org/abs/2301.13688) via [Tulu](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture)  | Yes | 52.1 | 16.5 | 100%  | Mar 2023  |  |
| CC News | [Common Crawl](https://commoncrawl.org/blog/news-dataset-available) | Yes | 22.0 | 14.3  | 100%  | Mar 2023  | Extracted using the Dolma pipeline; new quality filtering and deduplication steps. |
| OpenWebMath | [OpenWebMath](https://huggingface.co/datasets/open-web-math/open-web-math) via [Proof Pile II](https://huggingface.co/datasets/EleutherAI/proof-pile-2) | Yes | 2.9 |  12.6 | 100% | Oct 2023 | Training subset; no further processing. |
| Algebraic Stack | [Proof Pile II](https://huggingface.co/datasets/EleutherAI/proof-pile-2) | Yes | 2.8 |  12.6 | 100% | Oct 2023 | Training subset; no further processing. |
| Project Gutenberg | [Project Gutenberg](https://www.gutenberg.org) via Dolma v1.6 | No |  0.0556 | 5.3 | 100% | Mar 2023 | Same as Dolma v1.6 |
| MegaWika | [MetaWika](https://huggingface.co/datasets/hltcoe/megawika) | Yes | 3.2 | 4.6 | 100%  | Jul 2023  | English web pages cited from Wikipedia; curated using the full Dolma pipeline.  |
| Wikipedia & Wikibooks | [Wikimedia](https://dumps.wikimedia.org) via Dolma v1.6 | No |  6.2 |  3.7 | 200%  | Mar 2023 |  Same as Dolma v1.6 |
| **Total** | | |  | **2,308.5** | **1,715.1** | | |

(A subset of total data was used for training of OLMo 7B-v1.7. The token counts are based on the full dataset, whereas taking into account sampling proportion gives the final actual token counts used for training --- 1.715 trillion tokens.)


## Summary Statistics (v1.6)

| **Source** | **Doc Type** | **UTF-8 bytes** (GB) | **Documents** (millions) | **Unicode words** (billions) | **Llama tokens** (billions) |
|--|--|--|--|--|--|
| Common Crawl | web pages | 9,022 | 3,370 | 1,775 | 2,281 |
| The Stack | code| 1,043| 210 | 260| 411 |
| C4 | web pages | 790 | 364 | 153| 198 |
| Reddit| social media| 339 | 377| 72| 89 |
| PeS2o | STEM papers| 268 | 38.8| 50| 70 |
| Project Gutenberg | books | 20.4 | 0.056 | 4.0 | 6.0 |
| Wikipedia, Wikibooks | encyclopedic | 16.2 | 6.2 | 3.7 | 4.3 |
| **Total** | | **11,519** | **4,367** | **2,318** | **3,059** |


(Size difference between `v1_6` and `v1_5` is due to different set of metadata included in files: we removed redundant metadata in `v1_6`.)


## Download

The fastest way to download Dolma is to clone this repository and use the files in the `url` directory.
We recommend using wget in parallel mode to download the files. For example:

```bash
DATA_DIR="<path_to_your_data_directory>"
PARALLEL_DOWNLOADS="<number_of_parallel_downloads>"
DOLMA_VERSION="<version_of_dolma_to_download>"

git clone https://huggingface.co/datasets/allenai/dolma
mkdir -p "${DATA_DIR}"


cat "dolma/urls/${DOLMA_VERSION}.txt" | xargs -n 1 -P "${PARALLEL_DOWNLOADS}" wget -q -P "$DATA_DIR"
```

Then, to load this data using HuggingFace's `datasets` library, you can use the following code:

```python
import os
from datasets import load_dataset

os.environ["DATA_DIR"] = "<path_to_your_data_directory>"
dataset = load_dataset("allenai/dolma", split="train")
```

### Licensing Information

We are releasing this dataset under the terms of [ODC-BY](https://opendatacommons.org/licenses/by/1-0/).
By using this dataset, you are also bound any license agreements and terms of use of the original data sources.

## Bibtex

If you use our dataset or tooling, please cite us at:

```bibtex
@article{dolma,
  title = {{Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research}},
  author={
    Luca Soldaini and Rodney Kinney and Akshita Bhagia and Dustin Schwenk and David Atkinson and
    Russell Authur and Ben Bogin and Khyathi Chandu and Jennifer Dumas and Yanai Elazar and
    Valentin Hofmann and Ananya Harsh Jha and Sachin Kumar and Li Lucy and Xinxi Lyu and
    Nathan Lambert and Ian Magnusson and Jacob Morrison and Niklas Muennighoff and Aakanksha Naik and
    Crystal Nam and Matthew E. Peters and Abhilasha Ravichander and Kyle Richardson and Zejiang Shen and
    Emma Strubell and Nishant Subramani and Oyvind Tafjord and Pete Walsh and Luke Zettlemoyer and
    Noah A. Smith and Hannaneh Hajishirzi and Iz Beltagy and Dirk Groeneveld and Jesse Dodge and Kyle Lo
  },
  year = {2024},
  journal={arXiv preprint},
}
```