# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """No Language Left Behind (NLLB) The "No Language Left Behind" paper is a dataset with translation examples across 200 languages. This paper reuses prior work, and for some language pairs is just reusing CC-Matrix published on statmt.org. Depending on the language pair chosen, this script will fetch either the original version from statmt.org, or the new one from AllenAI. """ import datasets import typing as tp _CITATION = ( "@article{team2022NoLL," "title={No Language Left Behind: Scaling Human-Centered Machine Translation}," r"author={Nllb team and Marta Ruiz Costa-juss{\`a} and James Cross and Onur Celebi and Maha Elbayad and Kenneth Heafield and Kevin Heffernan and Elahe Kalbassi and Janice Lam and Daniel Licht and Jean Maillard and Anna Sun and Skyler Wang and Guillaume Wenzek and Alison Youngblood and Bapi Akula and Lo{\"i}c Barrault and Gabriel Mejia Gonzalez and Prangthip Hansanti and John Hoffman and Semarley Jarrett and Kaushik Ram Sadagopan and Dirk Rowe and Shannon L. Spruit and C. Tran and Pierre Andrews and Necip Fazil Ayan and Shruti Bhosale and Sergey Edunov and Angela Fan and Cynthia Gao and Vedanuj Goswami and Francisco Guzm'an and Philipp Koehn and Alexandre Mourachko and Christophe Ropers and Safiyyah Saleem and Holger Schwenk and Jeff Wang}," "journal={ArXiv}," "year={2022}," "volume={abs/2207.04672}" "}" ) _DESCRIPTION = "" # TODO _HOMEPAGE = "" # TODO _LICENSE = "https://opendatacommons.org/licenses/by/1-0/" from .nllb_lang_pairs import LANG_PAIRS as _LANGUAGE_PAIRS from .ccmatrix_lang_pairs import PAIRS as CCMATRIX_PAIRS from .ccmatrix_lang_pairs import MAPPING as CCMATRIX_MAPPING _ALLENAI_URL = "https://storage.googleapis.com/allennlp-data-bucket/nllb/" _STATMT_URL = "http://data.statmt.org/cc-matrix/" class NLLBTaskConfig(datasets.BuilderConfig): """BuilderConfig for No Language Left Behind Dataset.""" def __init__(self, src_lg, tgt_lg, url, **kwargs): super(NLLBTaskConfig, self).__init__(**kwargs) self.src_lg = src_lg self.tgt_lg = tgt_lg self.url = url self.source = "statmt" if url.startswith(_STATMT_URL) else "allenai" def _builder_configs() -> tp.List[NLLBTaskConfig]: """ Note we always return data from AllenAI if possible because CC-Matrix data is older, and most language pairs have been improved between the two versions. """ configs = {} for (src, tgt) in CCMATRIX_PAIRS: src_lg = CCMATRIX_MAPPING[src] tgt_lg = CCMATRIX_MAPPING[tgt] if not src_lg or not tgt_lg: continue configs[(src_lg, tgt_lg)] = NLLBTaskConfig( name=f"{src_lg}-{tgt_lg}", version=datasets.Version("1.0.0"), description=f"No Language Left Behind (NLLB): {src_lg} - {tgt_lg}", src_lg=src_lg, tgt_lg=tgt_lg, # Use CCMatrix language code to fetch from statmt url = f"{_STATMT_URL}{src}-{tgt}.bitextf.tsv.gz" ) for (src_lg, tgt_lg) in _LANGUAGE_PAIRS: configs[(src_lg, tgt_lg)] = NLLBTaskConfig( name=f"{src_lg}-{tgt_lg}", version=datasets.Version("1.0.0"), description=f"No Language Left Behind (NLLB): {src_lg} - {tgt_lg}", src_lg=src_lg, tgt_lg=tgt_lg, url = f"{_ALLENAI_URL}{src_lg}-{tgt_lg}.gz" ) return list(configs.values()) class NLLB(datasets.GeneratorBasedBuilder): """No Language Left Behind Dataset.""" BUILDER_CONFIGS = _builder_configs() BUILDER_CONFIG_CLASS = NLLBTaskConfig def _info(self): # define feature types features = datasets.Features( { "translation": datasets.Translation( languages=(self.config.src_lg, self.config.tgt_lg) ), "laser_score": datasets.Value("float32"), "source_sentence_lid": datasets.Value("float32"), "target_sentence_lid": datasets.Value("float32"), "source_sentence_source": datasets.Value("string"), "source_sentence_url": datasets.Value("string"), "target_sentence_source": datasets.Value("string"), "target_sentence_url": datasets.Value("string"), } ) if self.config.source == "statmt": # MT stats didn't published all the metadata features = datasets.Features( { "translation": datasets.Translation( languages=(self.config.src_lg, self.config.tgt_lg) ), "laser_score": datasets.Value("float32"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns one training generator. NLLB200 is meant for training. If you're interested in evaluation look at https://huggingface.co/datasets/facebook/flores """ local_file = dl_manager.download_and_extract(self.config.url) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": local_file, "source_lg": self.config.src_lg, "target_lg": self.config.tgt_lg, }, ) ] def _generate_examples(self, filepath, source_lg, target_lg): if self.config.source == "statmt": # MT stats didn't published all the metadata return self._generate_minimal_examples(filepath, source_lg, target_lg) return self._generate_full_examples(filepath, source_lg, target_lg) def _generate_full_examples(self, filepath, source_lg, target_lg): with open(filepath, encoding="utf-8") as f: # reader = csv.reader(f, delimiter="\t") for id_, example in enumerate(f): try: datarow = example.split("\t") row = {} # create translation json row["translation"] = { source_lg: datarow[0], target_lg: datarow[1], } row["laser_score"] = float(datarow[2]) row["source_sentence_lid"] = float(datarow[3]) row["target_sentence_lid"] = float(datarow[4]) row["source_sentence_source"] = datarow[5] row["source_sentence_url"] = datarow[6] row["target_sentence_source"] = datarow[7] row["target_sentence_url"] = datarow[8] # replace empty values row = {k: None if not v else v for k, v in row.items()} except: print(datarow) raise yield id_, row def _generate_minimal_examples(self, filepath, source_lg, target_lg): with open(filepath, encoding="utf-8") as f: for i, example in enumerate(f): try: (score, src, tgt) = example.rstrip("\n").split("\t") row = { "translation": { source_lg: src, target_lg: tgt, }, "laser_score": score, } except: print(example) raise yield i, row # to test the script, go to the root folder of the repo (nllb) and run: # datasets-cli test nllb --save_infos --all_configs