Datasets:
File size: 6,577 Bytes
f8ad3fd e2763d6 f8ad3fd cbf601c f8ad3fd 5c5cb2b f8ad3fd e2763d6 f8ad3fd cbf601c 787e75b e2763d6 f8ad3fd e2763d6 f8ad3fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import gzip
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_HOMEPAGE = "https://github.com/allenai/peS2o"
_DESCRIPTION = "\
The peS2o dataset is a collection of ~40M creative commmon licensed academic \
papers, cleaned, filtered, and formatted for pre-training of language models. \
It is derived from the Semantic Scholar Open Research Corpus(Lo et al, 2020), \
or S2ORC.\
"
_LICENSE = "odc-by"
_VARIANTS = {
"v1": {
"version": "1.0.0",
"download_size": 100702002904,
"dataset_size": 67787014,
"splits": {
"train": {
"num_bytes": 100145555091,
"num_examples": 67624463,
"files": [
"data/v1/train-00000-of-00020.json.gz",
"data/v1/train-00001-of-00020.json.gz",
"data/v1/train-00002-of-00020.json.gz",
"data/v1/train-00003-of-00020.json.gz",
"data/v1/train-00004-of-00020.json.gz",
"data/v1/train-00005-of-00020.json.gz",
"data/v1/train-00006-of-00020.json.gz",
"data/v1/train-00007-of-00020.json.gz",
"data/v1/train-00008-of-00020.json.gz",
"data/v1/train-00009-of-00020.json.gz",
"data/v1/train-00010-of-00020.json.gz",
"data/v1/train-00011-of-00020.json.gz",
"data/v1/train-00012-of-00020.json.gz",
"data/v1/train-00013-of-00020.json.gz",
"data/v1/train-00014-of-00020.json.gz",
"data/v1/train-00015-of-00020.json.gz",
"data/v1/train-00016-of-00020.json.gz",
"data/v1/train-00017-of-00020.json.gz",
"data/v1/train-00018-of-00020.json.gz",
"data/v1/train-00019-of-00020.json.gz",
],
},
"validation": {
"num_bytes": 556447813,
"num_examples": 162551,
"files": [
"data/v1/validation-00000-of-00002.json.gz",
"data/v1/validation-00001-of-00002.json.gz",
],
},
},
},
"v2": {
"version": "1.0.0",
"download_size": 87129236480,
"dataset_size": 38972211,
"splits": {
"train": {
"num_bytes": 86572382178,
"num_examples": 38811179,
"files": [
"data/v2/train-00000-of-00020.json.gz",
"data/v2/train-00001-of-00020.json.gz",
"data/v2/train-00002-of-00020.json.gz",
"data/v2/train-00003-of-00020.json.gz",
"data/v2/train-00004-of-00020.json.gz",
"data/v2/train-00005-of-00020.json.gz",
"data/v2/train-00006-of-00020.json.gz",
"data/v2/train-00007-of-00020.json.gz",
"data/v2/train-00008-of-00020.json.gz",
"data/v2/train-00009-of-00020.json.gz",
"data/v2/train-00010-of-00020.json.gz",
"data/v2/train-00011-of-00020.json.gz",
"data/v2/train-00012-of-00020.json.gz",
"data/v2/train-00013-of-00020.json.gz",
"data/v2/train-00014-of-00020.json.gz",
"data/v2/train-00015-of-00020.json.gz",
"data/v2/train-00016-of-00020.json.gz",
"data/v2/train-00017-of-00020.json.gz",
"data/v2/train-00018-of-00020.json.gz",
"data/v2/train-00019-of-00020.json.gz",
],
},
"validation": {
"num_bytes": 556854302,
"num_examples": 161032,
"files": [
"data/v2/validation-00000-of-00002.json.gz",
"data/v2/validation-00001-of-00002.json.gz",
],
},
},
},
}
_FEATURES = datasets.Features(
added=datasets.Value("string"),
created=datasets.Value("string"),
id=datasets.Value("string"),
source=datasets.Value("string"),
text=datasets.Value("string"),
version=datasets.Value("string"),
)
_CITATION = """\
@techreport{peS2o,
author = {Luca Soldaini and Kyle Lo},
year = 2023,
title = {{peS2o (Pretraining Efficiently on S2ORC) Dataset}},
institution = {{Allen Institute for AI}},
note = {ODC-By, \url{https://github.com/allenai/pes2o}}
}
"""
class PeS2o(datasets.GeneratorBasedBuilder):
"""Pretraining Efficiently on S2ORC!"""
BUILDER_CONFIGS = [
datasets.BuilderConfig(name=name, version=config["version"])
for name, config in _VARIANTS.items()
]
DEFAULT_CONFIG_NAME = "v2"
def _info(self):
"""Give information and typings for the dataset."""
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=_FEATURES,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
dataset_size=_VARIANTS[self.config.name]["dataset_size"],
download_size=_VARIANTS[self.config.name]["download_size"],
)
def _split_generators(self, dl_manager):
train_downloaded_files = dl_manager.download(
_VARIANTS[self.config.name]["splits"]["train"]["files"]
)
validation_downloaded_files = dl_manager.download(
_VARIANTS[self.config.name]["splits"]["validation"]["files"]
)
return [
datasets.SplitGenerator(
name=str(datasets.Split.TRAIN),
gen_kwargs={"filepaths": train_downloaded_files},
),
datasets.SplitGenerator(
name=str(datasets.Split.VALIDATION),
gen_kwargs={"filepaths": validation_downloaded_files},
),
]
def _generate_examples(self, filepaths):
"""This function returns the examples in the raw (text) form by
iterating on all the files."""
id_ = 0
for filepath in filepaths:
logger.info("generating examples from = %s", filepath)
with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
for line in f:
if line:
example = json.loads(line)
yield id_, example
id_ += 1
|