|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications""" |
|
|
|
|
|
import glob |
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{kang18naacl, |
|
title = {A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications}, |
|
author = {Dongyeop Kang and Waleed Ammar and Bhavana Dalvi and Madeleine van Zuylen and Sebastian Kohlmeier and Eduard Hovy and Roy Schwartz}, |
|
booktitle = {Meeting of the North American Chapter of the Association for Computational Linguistics (NAACL)}, |
|
address = {New Orleans, USA}, |
|
month = {June}, |
|
url = {https://arxiv.org/abs/1804.09635}, |
|
year = {2018} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
PearRead is a dataset of scientific peer reviews available to help researchers study this important artifact. The dataset consists of over 14K paper drafts and the corresponding accept/reject decisions in top-tier venues including ACL, NIPS and ICLR, as well as over 10K textual peer reviews written by experts for a subset of the papers. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/allenai/PeerRead" |
|
|
|
_LICENSE = "Creative Commons Public License" |
|
|
|
_URLs = { |
|
"dataset_repo": "https://github.com/allenai/PeerRead/archive/master.zip", |
|
} |
|
|
|
|
|
class PeerRead(datasets.GeneratorBasedBuilder): |
|
"""A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="parsed_pdfs", |
|
version=VERSION, |
|
description="Research paper drafts", |
|
), |
|
datasets.BuilderConfig( |
|
name="reviews", |
|
version=VERSION, |
|
description="Accept/reject decisions in top-tier venues including ACL, NIPS and ICLR", |
|
), |
|
] |
|
|
|
@staticmethod |
|
def _get_paths(data_dir, domain): |
|
paths = {"train": [], "test": [], "dev": []} |
|
conference_paths = glob.glob(os.path.join(data_dir, "PeerRead-master/data/*")) |
|
for conference_path in conference_paths: |
|
for dtype in ["test", "train", "dev"]: |
|
file_paths = glob.glob(os.path.join(conference_path, dtype, domain, "*.json")) |
|
for file_path in file_paths: |
|
paths[dtype].append(file_path) |
|
return paths |
|
|
|
@staticmethod |
|
def _parse_histories(histories): |
|
if histories is None: |
|
return [[]] |
|
if isinstance(histories, str): |
|
return [[histories]] |
|
return histories |
|
|
|
@staticmethod |
|
def _parse_reviews(data): |
|
reviews = [] |
|
for review in data.get("metadata", {}).get("reviews", []): |
|
if isinstance(review, dict): |
|
reviews.append( |
|
{ |
|
"date": str(review.get("date", "")), |
|
"title": str(review.get("title", "")), |
|
"other_keys": str(review.get("other_keys", "")), |
|
"originality": str(review.get("originality", "")), |
|
"comments": str(review.get("comments", "")), |
|
"is_meta_review": str(review.get("is_meta_review", "")), |
|
"is_annotated": str(review.get("is_annotated", "")), |
|
"recommendation": str(review.get("recommendation", "")), |
|
"replicability": str(review.get("replicability", "")), |
|
"presentation_format": str(review.get("presentation_format", "")), |
|
"clarity": str(review.get("clarity", "")), |
|
"meaningful_comparison": str(review.get("meaningful_comparison", "")), |
|
"substance": str(review.get("substance", "")), |
|
"reviewer_confidence": str(review.get("reviewer_confidence", "")), |
|
"soundness_correctness": str(review.get("soundness_correctness", "")), |
|
"appropriateness": str(review.get("appropriateness", "")), |
|
"impact": str(review.get("impact")), |
|
} |
|
) |
|
return reviews |
|
|
|
@staticmethod |
|
def _decode(text): |
|
return str(text).encode("utf-8", "replace").decode("utf-8") |
|
|
|
def _info(self): |
|
if ( |
|
self.config.name == "parsed_pdfs" |
|
): |
|
features = datasets.Features( |
|
{ |
|
"name": datasets.Value("string"), |
|
"metadata": { |
|
"source": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"authors": datasets.features.Sequence(datasets.Value("string")), |
|
"emails": datasets.features.Sequence(datasets.Value("string")), |
|
"sections": datasets.features.Sequence( |
|
{ |
|
"heading": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
), |
|
"references": datasets.features.Sequence( |
|
{ |
|
"title": datasets.Value("string"), |
|
"author": datasets.features.Sequence(datasets.Value("string")), |
|
"venue": datasets.Value("string"), |
|
"citeRegEx": datasets.Value("string"), |
|
"shortCiteRegEx": datasets.Value("string"), |
|
"year": datasets.Value("int32"), |
|
} |
|
), |
|
"referenceMentions": datasets.features.Sequence( |
|
{ |
|
"referenceID": datasets.Value("int32"), |
|
"context": datasets.Value("string"), |
|
"startOffset": datasets.Value("int32"), |
|
"endOffset": datasets.Value("int32"), |
|
} |
|
), |
|
"year": datasets.Value("int32"), |
|
"abstractText": datasets.Value("string"), |
|
"creator": datasets.Value("string"), |
|
}, |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"conference": datasets.Value("string"), |
|
"comments": datasets.Value("string"), |
|
"subjects": datasets.Value("string"), |
|
"version": datasets.Value("string"), |
|
"date_of_submission": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"authors": datasets.features.Sequence(datasets.Value("string")), |
|
"accepted": datasets.Value("bool"), |
|
"abstract": datasets.Value("string"), |
|
"histories": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))), |
|
"reviews": datasets.features.Sequence( |
|
{ |
|
"date": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"other_keys": datasets.Value("string"), |
|
"originality": datasets.Value("string"), |
|
"comments": datasets.Value("string"), |
|
"is_meta_review": datasets.Value("bool"), |
|
"is_annotated": datasets.Value("bool"), |
|
"recommendation": datasets.Value("string"), |
|
"replicability": datasets.Value("string"), |
|
"presentation_format": datasets.Value("string"), |
|
"clarity": datasets.Value("string"), |
|
"meaningful_comparison": datasets.Value("string"), |
|
"substance": datasets.Value("string"), |
|
"reviewer_confidence": datasets.Value("string"), |
|
"soundness_correctness": datasets.Value("string"), |
|
"appropriateness": datasets.Value("string"), |
|
"impact": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
url = _URLs["dataset_repo"] |
|
data_dir = dl_manager.download_and_extract(url) |
|
paths = self._get_paths( |
|
data_dir=data_dir, |
|
domain=self.config.name, |
|
) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepaths": paths["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepaths": paths["test"], "split": "test"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepaths": paths["dev"], |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepaths, split): |
|
"""Yields examples.""" |
|
for id_, filepath in enumerate(sorted(filepaths)): |
|
with open(filepath, encoding="utf-8", errors="replace") as f: |
|
data = json.load(f) |
|
if self.config.name == "parsed_pdfs": |
|
metadata = data.get( |
|
"metadata", |
|
{ |
|
"source": "", |
|
"authors": [], |
|
"title": [], |
|
"sections": [], |
|
"references": [], |
|
"referenceMentions": [], |
|
"year": "", |
|
"abstractText": "", |
|
"creator": "", |
|
}, |
|
) |
|
metadata["sections"] = [] if metadata["sections"] is None else metadata["sections"] |
|
metadata["sections"] = [ |
|
{ |
|
"heading": self._decode(section.get("heading", "")), |
|
"text": self._decode(section.get("text", "")), |
|
} |
|
for section in metadata["sections"] |
|
] |
|
metadata["references"] = [] if metadata["references"] is None else metadata["references"] |
|
metadata["references"] = [ |
|
{ |
|
"title": reference.get("title", ""), |
|
"author": reference.get("author", []), |
|
"venue": reference.get("venue", ""), |
|
"citeRegEx": reference.get("citeRegEx", ""), |
|
"shortCiteRegEx": reference.get("shortCiteRegEx", ""), |
|
"year": reference.get("year", ""), |
|
} |
|
for reference in metadata["references"] |
|
] |
|
metadata["referenceMentions"] = ( |
|
[] if metadata["referenceMentions"] is None else metadata["referenceMentions"] |
|
) |
|
metadata["referenceMentions"] = [ |
|
{ |
|
"referenceID": self._decode(reference_mention.get("referenceID", "")), |
|
"context": self._decode(reference_mention.get("context", "")), |
|
"startOffset": self._decode(reference_mention.get("startOffset", "")), |
|
"endOffset": self._decode(reference_mention.get("endOffset", "")), |
|
} |
|
for reference_mention in metadata["referenceMentions"] |
|
] |
|
|
|
yield id_, { |
|
"name": data.get("name", ""), |
|
"metadata": metadata, |
|
} |
|
elif self.config.name == "reviews": |
|
yield id_, { |
|
"id": str(data.get("id", "")), |
|
"conference": str(data.get("conference", "")), |
|
"comments": str(data.get("comments", "")), |
|
"subjects": str(data.get("subjects", "")), |
|
"version": str(data.get("version", "")), |
|
"date_of_submission": str(data.get("date_of_submission", "")), |
|
"title": str(data.get("title", "")), |
|
"authors": data.get("authors", []) |
|
if isinstance(data.get("authors"), list) |
|
else ([data.get("authors")] if data.get("authors") else []), |
|
"accepted": str(data.get("accepted", "")), |
|
"abstract": str(data.get("abstract", "")), |
|
"histories": self._parse_histories(data.get("histories", [])), |
|
"reviews": self._parse_reviews(data), |
|
} |
|
|