Update files from the datasets library (from 1.16.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.16.0
- README.md +1 -0
- scifact.py +56 -39
README.md
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
---
|
|
|
2 |
languages:
|
3 |
- en
|
4 |
paperswithcode_id: null
|
|
|
1 |
---
|
2 |
+
pretty_name: SciFact
|
3 |
languages:
|
4 |
- en
|
5 |
paperswithcode_id: null
|
scifact.py
CHANGED
@@ -3,7 +3,6 @@ using evidence from the cited abstracts."""
|
|
3 |
|
4 |
|
5 |
import json
|
6 |
-
import os
|
7 |
|
8 |
import datasets
|
9 |
|
@@ -89,14 +88,18 @@ class Scifact(datasets.GeneratorBasedBuilder):
|
|
89 |
# TODO(scifact): Downloads the data and defines the splits
|
90 |
# dl_manager is a datasets.download.DownloadManager that can be used to
|
91 |
# download and extract URLs
|
92 |
-
|
93 |
|
94 |
if self.config.name == "corpus":
|
95 |
return [
|
96 |
datasets.SplitGenerator(
|
97 |
name=datasets.Split.TRAIN,
|
98 |
# These kwargs will be passed to _generate_examples
|
99 |
-
gen_kwargs={
|
|
|
|
|
|
|
|
|
100 |
),
|
101 |
]
|
102 |
else:
|
@@ -104,62 +107,76 @@ class Scifact(datasets.GeneratorBasedBuilder):
|
|
104 |
datasets.SplitGenerator(
|
105 |
name=datasets.Split.TRAIN,
|
106 |
# These kwargs will be passed to _generate_examples
|
107 |
-
gen_kwargs={
|
|
|
|
|
|
|
|
|
108 |
),
|
109 |
datasets.SplitGenerator(
|
110 |
name=datasets.Split.TEST,
|
111 |
# These kwargs will be passed to _generate_examples
|
112 |
-
gen_kwargs={
|
|
|
|
|
|
|
|
|
113 |
),
|
114 |
datasets.SplitGenerator(
|
115 |
name=datasets.Split.VALIDATION,
|
116 |
# These kwargs will be passed to _generate_examples
|
117 |
-
gen_kwargs={
|
|
|
|
|
|
|
|
|
118 |
),
|
119 |
]
|
120 |
|
121 |
-
def _generate_examples(self, filepath, split):
|
122 |
"""Yields examples."""
|
123 |
# TODO(scifact): Yields (key, example) tuples from the dataset
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
"doc_id": int(data["doc_id"]),
|
130 |
-
"title": data["title"],
|
131 |
-
"abstract": data["abstract"],
|
132 |
-
"structured": data["structured"],
|
133 |
-
}
|
134 |
-
else:
|
135 |
-
if split == "test":
|
136 |
yield id_, {
|
137 |
-
"
|
138 |
-
"
|
139 |
-
"
|
140 |
-
"
|
141 |
-
"evidence_sentences": [],
|
142 |
-
"cited_doc_ids": [],
|
143 |
}
|
144 |
else:
|
145 |
-
|
146 |
-
if evidences:
|
147 |
-
for id1, doc_id in enumerate(evidences):
|
148 |
-
for id2, evidence in enumerate(evidences[doc_id]):
|
149 |
-
yield str(id_) + "_" + str(id1) + "_" + str(id2), {
|
150 |
-
"id": data["id"],
|
151 |
-
"claim": data["claim"],
|
152 |
-
"evidence_doc_id": doc_id,
|
153 |
-
"evidence_label": evidence["label"],
|
154 |
-
"evidence_sentences": evidence["sentences"],
|
155 |
-
"cited_doc_ids": data.get("cited_doc_ids", []),
|
156 |
-
}
|
157 |
-
else:
|
158 |
yield id_, {
|
159 |
"id": data["id"],
|
160 |
"claim": data["claim"],
|
161 |
"evidence_doc_id": "",
|
162 |
"evidence_label": "",
|
163 |
"evidence_sentences": [],
|
164 |
-
"cited_doc_ids":
|
165 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
|
5 |
import json
|
|
|
6 |
|
7 |
import datasets
|
8 |
|
|
|
88 |
# TODO(scifact): Downloads the data and defines the splits
|
89 |
# dl_manager is a datasets.download.DownloadManager that can be used to
|
90 |
# download and extract URLs
|
91 |
+
archive = dl_manager.download(_URL)
|
92 |
|
93 |
if self.config.name == "corpus":
|
94 |
return [
|
95 |
datasets.SplitGenerator(
|
96 |
name=datasets.Split.TRAIN,
|
97 |
# These kwargs will be passed to _generate_examples
|
98 |
+
gen_kwargs={
|
99 |
+
"filepath": "data/corpus.jsonl",
|
100 |
+
"split": "train",
|
101 |
+
"files": dl_manager.iter_archive(archive),
|
102 |
+
},
|
103 |
),
|
104 |
]
|
105 |
else:
|
|
|
107 |
datasets.SplitGenerator(
|
108 |
name=datasets.Split.TRAIN,
|
109 |
# These kwargs will be passed to _generate_examples
|
110 |
+
gen_kwargs={
|
111 |
+
"filepath": "data/claims_train.jsonl",
|
112 |
+
"split": "train",
|
113 |
+
"files": dl_manager.iter_archive(archive),
|
114 |
+
},
|
115 |
),
|
116 |
datasets.SplitGenerator(
|
117 |
name=datasets.Split.TEST,
|
118 |
# These kwargs will be passed to _generate_examples
|
119 |
+
gen_kwargs={
|
120 |
+
"filepath": "data/claims_test.jsonl",
|
121 |
+
"split": "test",
|
122 |
+
"files": dl_manager.iter_archive(archive),
|
123 |
+
},
|
124 |
),
|
125 |
datasets.SplitGenerator(
|
126 |
name=datasets.Split.VALIDATION,
|
127 |
# These kwargs will be passed to _generate_examples
|
128 |
+
gen_kwargs={
|
129 |
+
"filepath": "data/claims_dev.jsonl",
|
130 |
+
"split": "dev",
|
131 |
+
"files": dl_manager.iter_archive(archive),
|
132 |
+
},
|
133 |
),
|
134 |
]
|
135 |
|
136 |
+
def _generate_examples(self, filepath, split, files):
|
137 |
"""Yields examples."""
|
138 |
# TODO(scifact): Yields (key, example) tuples from the dataset
|
139 |
+
for path, f in files:
|
140 |
+
if path == filepath:
|
141 |
+
for id_, row in enumerate(f):
|
142 |
+
data = json.loads(row.decode("utf-8"))
|
143 |
+
if self.config.name == "corpus":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
yield id_, {
|
145 |
+
"doc_id": int(data["doc_id"]),
|
146 |
+
"title": data["title"],
|
147 |
+
"abstract": data["abstract"],
|
148 |
+
"structured": data["structured"],
|
|
|
|
|
149 |
}
|
150 |
else:
|
151 |
+
if split == "test":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
yield id_, {
|
153 |
"id": data["id"],
|
154 |
"claim": data["claim"],
|
155 |
"evidence_doc_id": "",
|
156 |
"evidence_label": "",
|
157 |
"evidence_sentences": [],
|
158 |
+
"cited_doc_ids": [],
|
159 |
}
|
160 |
+
else:
|
161 |
+
evidences = data["evidence"]
|
162 |
+
if evidences:
|
163 |
+
for id1, doc_id in enumerate(evidences):
|
164 |
+
for id2, evidence in enumerate(evidences[doc_id]):
|
165 |
+
yield str(id_) + "_" + str(id1) + "_" + str(id2), {
|
166 |
+
"id": data["id"],
|
167 |
+
"claim": data["claim"],
|
168 |
+
"evidence_doc_id": doc_id,
|
169 |
+
"evidence_label": evidence["label"],
|
170 |
+
"evidence_sentences": evidence["sentences"],
|
171 |
+
"cited_doc_ids": data.get("cited_doc_ids", []),
|
172 |
+
}
|
173 |
+
else:
|
174 |
+
yield id_, {
|
175 |
+
"id": data["id"],
|
176 |
+
"claim": data["claim"],
|
177 |
+
"evidence_doc_id": "",
|
178 |
+
"evidence_label": "",
|
179 |
+
"evidence_sentences": [],
|
180 |
+
"cited_doc_ids": data.get("cited_doc_ids", []),
|
181 |
+
}
|
182 |
+
break
|