aps6992 commited on
Commit
81f8ab6
·
verified ·
1 Parent(s): 7bc7128

Delete the script

Browse files
Files changed (1) hide show
  1. scirepeval.py +0 -199
scirepeval.py DELETED
@@ -1,199 +0,0 @@
1
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # TODO: Address all TODOs and remove all explanatory comments
15
- """TODO: Add a description here."""
16
-
17
-
18
- import csv
19
- import json
20
- import os
21
- import glob
22
-
23
- import datasets
24
- from datasets.data_files import DataFilesDict
25
- from .scirepeval_configs import SCIREPEVAL_CONFIGS
26
- #from datasets.packaged_modules.json import json
27
- from datasets.utils.logging import get_logger
28
-
29
-
30
- logger = get_logger(__name__)
31
- # TODO: Add BibTeX citation
32
- # Find for instance the citation on arxiv or on the dataset repo/website
33
- _CITATION = """\
34
- @InProceedings{huggingface:dataset,
35
- title = {A great new dataset},
36
- author={huggingface, Inc.
37
- },
38
- year={2021}
39
- }
40
- """
41
-
42
- # TODO: Add description of the dataset here
43
- # You can copy an official description
44
- _DESCRIPTION = """\
45
- This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
46
- """
47
-
48
- # TODO: Add a link to an official homepage for the dataset here
49
- _HOMEPAGE = ""
50
-
51
- # TODO: Add the licence for the dataset here if you can find it
52
- _LICENSE = ""
53
-
54
- # TODO: Add link to the official dataset URLs here
55
- # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
56
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
57
- _URLS = {
58
- "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
59
- "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
60
- }
61
-
62
-
63
-
64
- # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
65
- class Scirepeval(datasets.GeneratorBasedBuilder):
66
- """TODO: Short description of my dataset."""
67
-
68
- VERSION = datasets.Version("1.1.0")
69
-
70
- # This is an example of a dataset with multiple configurations.
71
- # If you don't want/need to define several sub-sets in your dataset,
72
- # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
73
-
74
- # If you need to make complex sub-parts in the datasets with configurable options
75
- # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
76
- # BUILDER_CONFIG_CLASS = MyBuilderConfig
77
-
78
- # You will be able to load one or the other configurations in the following list with
79
- # data = datasets.load_dataset('my_dataset', 'first_domain')
80
- # data = datasets.load_dataset('my_dataset', 'second_domain')
81
- BUILDER_CONFIGS = SCIREPEVAL_CONFIGS
82
-
83
- def _info(self):
84
- return datasets.DatasetInfo(
85
- # This is the description that will appear on the datasets page.
86
- description=self.config.description,
87
- # This defines the different columns of the dataset and their types
88
- features=datasets.Features(self.config.features), # Here we define them above because they are different between the two configurations
89
- # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
90
- # specify them. They'll be used if as_supervised=True in builder.as_dataset.
91
- # supervised_keys=("sentence", "label"),
92
- # Homepage of the dataset for documentation
93
- homepage="",
94
- # License for the dataset if available
95
- license=self.config.license,
96
- # Citation for the dataset
97
- citation=self.config.citation,
98
- )
99
-
100
- def _split_generators(self, dl_manager):
101
- # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
102
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
103
- base_url = "https://ai2-s2-research-public.s3.us-west-2.amazonaws.com/scirepeval"
104
- data_urls = dict()
105
- data_dir = self.config.url if self.config.url else self.config.name
106
- if self.config.is_training:
107
- data_urls = {"train": f"{base_url}/train/{data_dir}/train.jsonl"}
108
-
109
- if "refresh" not in self.config.name:
110
- data_urls.update({"val": f"{base_url}/train/{data_dir}/val.jsonl"})
111
-
112
- if "cite_prediction" not in self.config.name:
113
- data_urls.update({"test": f"{base_url}/test/{data_dir}/meta.jsonl"})
114
- # print(data_urls)
115
- downloaded_files = dl_manager.download_and_extract(data_urls)
116
- # print(downloaded_files)
117
- splits = []
118
- if "test" in downloaded_files:
119
- splits = [datasets.SplitGenerator(
120
- name=datasets.Split("evaluation"),
121
- # These kwargs will be passed to _generate_examples
122
- gen_kwargs={
123
- "filepath": downloaded_files["test"],
124
- "split": "evaluation"
125
- },
126
- ),
127
- ]
128
-
129
- if "train" in downloaded_files:
130
- splits.append(
131
- datasets.SplitGenerator(
132
- name=datasets.Split.TRAIN,
133
- # These kwargs will be passed to _generate_examples
134
- gen_kwargs={
135
- "filepath": downloaded_files["train"],
136
- "split": "train",
137
- },
138
- ))
139
- if "val" in downloaded_files:
140
- splits.append(datasets.SplitGenerator(
141
- name=datasets.Split.VALIDATION,
142
- # These kwargs will be passed to _generate_examples
143
- gen_kwargs={
144
- "filepath": downloaded_files["val"],
145
- "split": "validation",
146
- }))
147
- return splits
148
-
149
-
150
- # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
151
- def _generate_examples(self, filepath, split):
152
- def read_data(data_path):
153
- task_data = []
154
- try:
155
- task_data = json.load(open(data_path, "r", encoding="utf-8"))
156
- except:
157
- with open(data_path) as f:
158
- task_data = [json.loads(line) for line in f]
159
- if type(task_data) == dict:
160
- task_data = list(task_data.values())
161
- return task_data
162
- # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
163
- # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
164
- # data = read_data(filepath)
165
- seen_keys = set()
166
- IGNORE=set(["n_key_citations", "session_id", "user_id", "user"])
167
- logger.warning(filepath)
168
- with open(filepath, encoding="utf-8") as f:
169
- for line in f:
170
- d = json.loads(line)
171
- d = {k:v for k,v in d.items() if k not in IGNORE}
172
- key="doc_id" if "cite_prediction_" not in self.config.name else "corpus_id"
173
- if self.config.task_type == "proximity":
174
- if "cite_prediction" in self.config.name:
175
- if "arxiv_id" in d["query"]:
176
- for item in ["query", "pos", "neg"]:
177
- del d[item]["arxiv_id"]
178
- del d[item]["doi"]
179
- if "fos" in d["query"]:
180
- del d["query"]["fos"]
181
- if "score" in d["pos"]:
182
- del d["pos"]["score"]
183
- yield str(d["query"][key]) + str(d["pos"][key]) + str(d["neg"][key]), d
184
- else:
185
- if d["query"][key] not in seen_keys:
186
- seen_keys.add(d["query"][key])
187
- yield str(d["query"][key]), d
188
- else:
189
- if d[key] not in seen_keys:
190
- seen_keys.add(d[key])
191
- if self.config.task_type != "search":
192
- if "corpus_id" not in d:
193
- d["corpus_id"] = None
194
- if "scidocs" in self.config.name:
195
- if "cited by" not in d:
196
- d["cited_by"] = []
197
- if type(d["corpus_id"]) == str:
198
- d["corpus_id"] = None
199
- yield d[key], d