Datasets:

Languages:
English
ArXiv:
rishabbala commited on
Commit
06f1eec
1 Parent(s): 25a83ff

Delete loading script

Browse files
Files changed (1) hide show
  1. wiqa.py +0 -113
wiqa.py DELETED
@@ -1,113 +0,0 @@
1
- """TODO(wiqa): Add a description here."""
2
-
3
-
4
- import json
5
- import os
6
-
7
- import datasets
8
-
9
-
10
- # TODO(wiqa): BibTeX citation
11
- _CITATION = """\
12
- @article{wiqa,
13
- author = {Niket Tandon and Bhavana Dalvi Mishra and Keisuke Sakaguchi and Antoine Bosselut and Peter Clark}
14
- title = {WIQA: A dataset for "What if..." reasoning over procedural text},
15
- journal = {arXiv:1909.04739v1},
16
- year = {2019},
17
- }
18
- """
19
-
20
- # TODO(wiqa):
21
- _DESCRIPTION = """\
22
- The WIQA dataset V1 has 39705 questions containing a perturbation and a possible effect in the context of a paragraph.
23
- The dataset is split into 29808 train questions, 6894 dev questions and 3003 test questions.
24
- """
25
- _URL = "https://public-aristo-processes.s3-us-west-2.amazonaws.com/wiqa_dataset_no_explanation_v2/wiqa-dataset-v2-october-2019.zip"
26
- URl = "s3://ai2-s2-research-public/open-corpus/2020-04-10/"
27
-
28
-
29
- class Wiqa(datasets.GeneratorBasedBuilder):
30
- """TODO(wiqa): Short description of my dataset."""
31
-
32
- # TODO(wiqa): Set up version.
33
- VERSION = datasets.Version("0.1.0")
34
-
35
- def _info(self):
36
- # TODO(wiqa): Specifies the datasets.DatasetInfo object
37
- return datasets.DatasetInfo(
38
- # This is the description that will appear on the datasets page.
39
- description=_DESCRIPTION,
40
- # datasets.features.FeatureConnectors
41
- features=datasets.Features(
42
- {
43
- # These are the features of your dataset like images, labels ...
44
- "question_stem": datasets.Value("string"),
45
- "question_para_step": datasets.features.Sequence(datasets.Value("string")),
46
- "answer_label": datasets.Value("string"),
47
- "answer_label_as_choice": datasets.Value("string"),
48
- "choices": datasets.features.Sequence(
49
- {"text": datasets.Value("string"), "label": datasets.Value("string")}
50
- ),
51
- "metadata_question_id": datasets.Value("string"),
52
- "metadata_graph_id": datasets.Value("string"),
53
- "metadata_para_id": datasets.Value("string"),
54
- "metadata_question_type": datasets.Value("string"),
55
- "metadata_path_len": datasets.Value("int32"),
56
- }
57
- ),
58
- # If there's a common (input, target) tuple from the features,
59
- # specify them here. They'll be used if as_supervised=True in
60
- # builder.as_dataset.
61
- supervised_keys=None,
62
- # Homepage of the dataset for documentation
63
- homepage="https://allenai.org/data/wiqa",
64
- citation=_CITATION,
65
- )
66
-
67
- def _split_generators(self, dl_manager):
68
- """Returns SplitGenerators."""
69
- # TODO(wiqa): Downloads the data and defines the splits
70
- # dl_manager is a datasets.download.DownloadManager that can be used to
71
- # download and extract URLs
72
- dl_dir = dl_manager.download_and_extract(_URL)
73
-
74
- return [
75
- datasets.SplitGenerator(
76
- name=datasets.Split.TRAIN,
77
- # These kwargs will be passed to _generate_examples
78
- gen_kwargs={"filepath": os.path.join(dl_dir, "train.jsonl")},
79
- ),
80
- datasets.SplitGenerator(
81
- name=datasets.Split.TEST,
82
- # These kwargs will be passed to _generate_examples
83
- gen_kwargs={"filepath": os.path.join(dl_dir, "test.jsonl")},
84
- ),
85
- datasets.SplitGenerator(
86
- name=datasets.Split.VALIDATION,
87
- # These kwargs will be passed to _generate_examples
88
- gen_kwargs={"filepath": os.path.join(dl_dir, "dev.jsonl")},
89
- ),
90
- ]
91
-
92
- def _generate_examples(self, filepath):
93
- """Yields examples."""
94
- # TODO(wiqa): Yields (key, example) tuples from the dataset
95
- with open(filepath, encoding="utf-8") as f:
96
- for id_, row in enumerate(f):
97
- data = json.loads(row)
98
-
99
- yield id_, {
100
- "question_stem": data["question"]["stem"],
101
- "question_para_step": data["question"]["para_steps"],
102
- "answer_label": data["question"]["answer_label"],
103
- "answer_label_as_choice": data["question"]["answer_label_as_choice"],
104
- "choices": {
105
- "text": [choice["text"] for choice in data["question"]["choices"]],
106
- "label": [choice["label"] for choice in data["question"]["choices"]],
107
- },
108
- "metadata_question_id": data["metadata"]["ques_id"],
109
- "metadata_graph_id": data["metadata"]["graph_id"],
110
- "metadata_para_id": data["metadata"]["para_id"],
111
- "metadata_question_type": data["metadata"]["question_type"],
112
- "metadata_path_len": data["metadata"]["path_len"],
113
- }