ameerazam08
commited on
Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +5 -0
- .gitignore +2 -0
- DEMO/00018.png +3 -0
- DEMO/2.mp4 +0 -0
- DEMO/AdamKinzinger2_3.mp4 +3 -0
- DEMO/BobCorker_0.mp4 +3 -0
- DEMO/demo_img_1.jpg +3 -0
- DEMO/demo_img_2.jpg +3 -0
- DEMO/demo_img_3.jpg +3 -0
- DEMO/demo_img_4.jpg +3 -0
- DEMO/demo_img_5.jpg +3 -0
- DEMO/demo_video_1.mp4 +0 -0
- DEMO/demo_video_2.mp4 +0 -0
- DEMO/kohli.mp4 +3 -0
- DEMO/reference_frame.png +3 -0
- DEMO/salma.jpg +3 -0
- README.md +77 -0
- __pycache__/animate.cpython-38.pyc +0 -0
- __pycache__/logger.cpython-38.pyc +0 -0
- animate.py +34 -0
- augmentation.py +345 -0
- config/mix-resolution.yml +89 -0
- crop_portrait.py +145 -0
- demo.py +313 -0
- environment.yaml +106 -0
- frames_dataset.py +280 -0
- logger.py +194 -0
- media/Teaser_video.png +3 -0
- modules/__pycache__/dense_motion.cpython-36.pyc +0 -0
- modules/__pycache__/dense_motion.cpython-37.pyc +0 -0
- modules/__pycache__/dense_motion.cpython-38.pyc +0 -0
- modules/__pycache__/discriminator.cpython-36.pyc +0 -0
- modules/__pycache__/discriminator.cpython-37.pyc +0 -0
- modules/__pycache__/discriminator.cpython-38.pyc +0 -0
- modules/__pycache__/generator.cpython-36.pyc +0 -0
- modules/__pycache__/generator.cpython-37.pyc +0 -0
- modules/__pycache__/generator.cpython-38.pyc +0 -0
- modules/__pycache__/hopenet.cpython-36.pyc +0 -0
- modules/__pycache__/hopenet.cpython-37.pyc +0 -0
- modules/__pycache__/hopenet.cpython-38.pyc +0 -0
- modules/__pycache__/keypoint_detector.cpython-36.pyc +0 -0
- modules/__pycache__/keypoint_detector.cpython-37.pyc +0 -0
- modules/__pycache__/keypoint_detector.cpython-38.pyc +0 -0
- modules/__pycache__/model.cpython-36.pyc +0 -0
- modules/__pycache__/model.cpython-37.pyc +0 -0
- modules/__pycache__/model.cpython-38.pyc +0 -0
- modules/__pycache__/util.cpython-36.pyc +0 -0
- modules/__pycache__/util.cpython-37.pyc +0 -0
- modules/__pycache__/util.cpython-38.pyc +0 -0
- modules/dense_motion.py +128 -0
.gitattributes
CHANGED
@@ -53,3 +53,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
56 |
+
DEMO/AdamKinzinger2_3.mp4 filter=lfs diff=lfs merge=lfs -text
|
57 |
+
DEMO/BobCorker_0.mp4 filter=lfs diff=lfs merge=lfs -text
|
58 |
+
DEMO/kohli.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
+
upsampler/data/390.mp4 filter=lfs diff=lfs merge=lfs -text
|
60 |
+
upsampler/data/684.mp4 filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
checkpoints/mix-train.pth.tar
|
2 |
+
results_hq.mp4
|
DEMO/00018.png
ADDED
Git LFS Details
|
DEMO/2.mp4
ADDED
Binary file (479 kB). View file
|
|
DEMO/AdamKinzinger2_3.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36d57156a133df0384ac8fb0e68ec26f46f4f11e35dde6f51feee1b549fd2430
|
3 |
+
size 2357112
|
DEMO/BobCorker_0.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba7cda063d4b56b57da8af68412a705f27da2a66d81e572edb673400cbb6a4fd
|
3 |
+
size 7693563
|
DEMO/demo_img_1.jpg
ADDED
Git LFS Details
|
DEMO/demo_img_2.jpg
ADDED
Git LFS Details
|
DEMO/demo_img_3.jpg
ADDED
Git LFS Details
|
DEMO/demo_img_4.jpg
ADDED
Git LFS Details
|
DEMO/demo_img_5.jpg
ADDED
Git LFS Details
|
DEMO/demo_video_1.mp4
ADDED
Binary file (579 kB). View file
|
|
DEMO/demo_video_2.mp4
ADDED
Binary file (799 kB). View file
|
|
DEMO/kohli.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d53528539cdc2332468ebd10234d7e6831be176fe7e93505f6beec2420e4c22e
|
3 |
+
size 1678730
|
DEMO/reference_frame.png
ADDED
Git LFS Details
|
DEMO/salma.jpg
ADDED
Git LFS Details
|
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adaptive Super Resolution For One-Shot Talking-Head Generation
|
2 |
+
The repository for ICASSP2024 Adaptive Super Resolution For One-Shot Talking-Head Generation (AdaSR TalkingHead)
|
3 |
+
|
4 |
+
## Abstract
|
5 |
+
The one-shot talking-head generation learns to synthesize a talking-head video with one source portrait image under the driving of same or different identity video. Usually these methods require plane-based pixel transformations via Jacobin matrices or facial image warps for novel poses generation. The constraints of using a single image source and pixel displacements often compromise the clarity of the synthesized images. Some methods try to improve the quality of synthesized videos by introducing additional super-resolution modules, but this will undoubtedly increase computational consumption and destroy the original data distribution. In this work, we propose an adaptive high-quality talking-head video generation method, which synthesizes high-resolution video without additional pre-trained modules. Specifically, inspired by existing super-resolution methods, we down-sample the one-shot source image, and then adaptively reconstruct high-frequency details via an encoder-decoder module, resulting in enhanced video clarity. Our method consistently improves the quality of generated videos through a straightforward yet effective strategy, substantiated by quantitative and qualitative evaluations. The code and demo video are available on: https://github.com/Songluchuan/AdaSR-TalkingHead/
|
6 |
+
|
7 |
+
## Updates
|
8 |
+
|
9 |
+
- [03/2024] Inference code and pretrained model are released.
|
10 |
+
- [03/2024] Arxiv Link: https://arxiv.org/abs/2403.15944.
|
11 |
+
- [COMING] Super-resolution model (based on StyleGANEX and ESRGAN).
|
12 |
+
- [COMING] Train code and processed datasets.
|
13 |
+
|
14 |
+
|
15 |
+
## Installation
|
16 |
+
|
17 |
+
**Clone this repo:**
|
18 |
+
```bash
|
19 |
+
git clone git@github.com:Songluchuan/AdaSR-TalkingHead.git
|
20 |
+
cd AdaSR-TalkingHead
|
21 |
+
```
|
22 |
+
**Dependencies:**
|
23 |
+
|
24 |
+
We have tested on:
|
25 |
+
- CUDA 11.3-11.6
|
26 |
+
- PyTorch 1.10.1
|
27 |
+
- Matplotlib 3.4.3; Matplotlib 3.4.2; opencv-python 4.7.0; scikit-learn 1.0; tqdm 4.62.3
|
28 |
+
|
29 |
+
## Inference Code
|
30 |
+
|
31 |
+
|
32 |
+
1. Download the pretrained model on google drive: https://drive.google.com/file/d/1g58uuAyZFdny9_twvbv0AHxB9-03koko/view?usp=sharing (it is trained on the HDTF dataset), and put it under checkpoints/<br>
|
33 |
+
|
34 |
+
|
35 |
+
2. The demo video and reference image are under ```DEMO/```
|
36 |
+
|
37 |
+
|
38 |
+
3. The inference code is in the ```run_demo.sh```, please run it with
|
39 |
+
|
40 |
+
```
|
41 |
+
bash run_demo.sh
|
42 |
+
```
|
43 |
+
|
44 |
+
4. You can set different demo image and driven video in the ```run_demo.sh```
|
45 |
+
```
|
46 |
+
--source_image DEMO/demo_img_3.jpg
|
47 |
+
```
|
48 |
+
and
|
49 |
+
```
|
50 |
+
--driving_video DEMO/demo_video_1.mp4
|
51 |
+
```
|
52 |
+
|
53 |
+
|
54 |
+
## Video
|
55 |
+
<div align="center">
|
56 |
+
<a href="https://www.youtube.com/watch?v=B_-3F51QmKE" target="_blank">
|
57 |
+
<img src="media/Teaser_video.png" alt="AdaSR Talking-Head" width="1120" style="height: auto;" />
|
58 |
+
</a>
|
59 |
+
</div>
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
## Citation
|
64 |
+
|
65 |
+
```bibtex
|
66 |
+
@inproceedings{song2024adaptive,
|
67 |
+
title={Adaptive Super Resolution for One-Shot Talking Head Generation},
|
68 |
+
author={Song, Luchuan and Liu, Pinxin and Yin, Guojun and Xu, Chenliang},
|
69 |
+
year={2024},
|
70 |
+
organization={IEEE International Conference on Acoustics, Speech, and Signal Processing}
|
71 |
+
}
|
72 |
+
```
|
73 |
+
|
74 |
+
## Acknowledgments
|
75 |
+
|
76 |
+
The code is mainly developed based on [styleGANEX](https://github.com/williamyang1991/StyleGANEX), [ESRGAN](https://github.com/xinntao/ESRGAN) and [unofficial face2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis). Thanks to the authors contribution.
|
77 |
+
|
__pycache__/animate.cpython-38.pyc
ADDED
Binary file (1.22 kB). View file
|
|
__pycache__/logger.cpython-38.pyc
ADDED
Binary file (7.28 kB). View file
|
|
animate.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from tqdm import tqdm
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.utils.data import DataLoader
|
6 |
+
|
7 |
+
from logger import Logger, Visualizer
|
8 |
+
import imageio
|
9 |
+
from scipy.spatial import ConvexHull
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from sync_batchnorm import DataParallelWithCallback
|
13 |
+
|
14 |
+
def normalize_kp(kp_source, kp_driving, kp_driving_initial, adapt_movement_scale=False,
|
15 |
+
use_relative_movement=False, use_relative_jacobian=False):
|
16 |
+
if adapt_movement_scale:
|
17 |
+
source_area = ConvexHull(kp_source['value'][0].data.cpu().numpy()).volume
|
18 |
+
driving_area = ConvexHull(kp_driving_initial['value'][0].data.cpu().numpy()).volume
|
19 |
+
adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area)
|
20 |
+
else:
|
21 |
+
adapt_movement_scale = 1
|
22 |
+
|
23 |
+
kp_new = {k: v for k, v in kp_driving.items()}
|
24 |
+
|
25 |
+
if use_relative_movement:
|
26 |
+
kp_value_diff = (kp_driving['value'] - kp_driving_initial['value'])
|
27 |
+
kp_value_diff *= adapt_movement_scale
|
28 |
+
kp_new['value'] = kp_value_diff + kp_source['value']
|
29 |
+
|
30 |
+
if use_relative_jacobian:
|
31 |
+
jacobian_diff = torch.matmul(kp_driving['jacobian'], torch.inverse(kp_driving_initial['jacobian']))
|
32 |
+
kp_new['jacobian'] = torch.matmul(jacobian_diff, kp_source['jacobian'])
|
33 |
+
|
34 |
+
return kp_new
|
augmentation.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Code from https://github.com/hassony2/torch_videovision
|
3 |
+
"""
|
4 |
+
|
5 |
+
import numbers
|
6 |
+
|
7 |
+
import random
|
8 |
+
import numpy as np
|
9 |
+
import PIL
|
10 |
+
|
11 |
+
from skimage.transform import resize, rotate
|
12 |
+
from skimage.util import pad
|
13 |
+
import torchvision
|
14 |
+
|
15 |
+
import warnings
|
16 |
+
|
17 |
+
from skimage import img_as_ubyte, img_as_float
|
18 |
+
|
19 |
+
|
20 |
+
def crop_clip(clip, min_h, min_w, h, w):
|
21 |
+
if isinstance(clip[0], np.ndarray):
|
22 |
+
cropped = [img[min_h:min_h + h, min_w:min_w + w, :] for img in clip]
|
23 |
+
|
24 |
+
elif isinstance(clip[0], PIL.Image.Image):
|
25 |
+
cropped = [
|
26 |
+
img.crop((min_w, min_h, min_w + w, min_h + h)) for img in clip
|
27 |
+
]
|
28 |
+
else:
|
29 |
+
raise TypeError('Expected numpy.ndarray or PIL.Image' +
|
30 |
+
'but got list of {0}'.format(type(clip[0])))
|
31 |
+
return cropped
|
32 |
+
|
33 |
+
|
34 |
+
def pad_clip(clip, h, w):
|
35 |
+
im_h, im_w = clip[0].shape[:2]
|
36 |
+
pad_h = (0, 0) if h < im_h else ((h - im_h) // 2, (h - im_h + 1) // 2)
|
37 |
+
pad_w = (0, 0) if w < im_w else ((w - im_w) // 2, (w - im_w + 1) // 2)
|
38 |
+
|
39 |
+
return pad(clip, ((0, 0), pad_h, pad_w, (0, 0)), mode='edge')
|
40 |
+
|
41 |
+
|
42 |
+
def resize_clip(clip, size, interpolation='bilinear'):
|
43 |
+
if isinstance(clip[0], np.ndarray):
|
44 |
+
if isinstance(size, numbers.Number):
|
45 |
+
im_h, im_w, im_c = clip[0].shape
|
46 |
+
# Min spatial dim already matches minimal size
|
47 |
+
if (im_w <= im_h and im_w == size) or (im_h <= im_w
|
48 |
+
and im_h == size):
|
49 |
+
return clip
|
50 |
+
new_h, new_w = get_resize_sizes(im_h, im_w, size)
|
51 |
+
size = (new_w, new_h)
|
52 |
+
else:
|
53 |
+
size = size[1], size[0]
|
54 |
+
|
55 |
+
scaled = [
|
56 |
+
resize(img, size, order=1 if interpolation == 'bilinear' else 0, preserve_range=True,
|
57 |
+
mode='constant', anti_aliasing=True) for img in clip
|
58 |
+
]
|
59 |
+
elif isinstance(clip[0], PIL.Image.Image):
|
60 |
+
if isinstance(size, numbers.Number):
|
61 |
+
im_w, im_h = clip[0].size
|
62 |
+
# Min spatial dim already matches minimal size
|
63 |
+
if (im_w <= im_h and im_w == size) or (im_h <= im_w
|
64 |
+
and im_h == size):
|
65 |
+
return clip
|
66 |
+
new_h, new_w = get_resize_sizes(im_h, im_w, size)
|
67 |
+
size = (new_w, new_h)
|
68 |
+
else:
|
69 |
+
size = size[1], size[0]
|
70 |
+
if interpolation == 'bilinear':
|
71 |
+
pil_inter = PIL.Image.NEAREST
|
72 |
+
else:
|
73 |
+
pil_inter = PIL.Image.BILINEAR
|
74 |
+
scaled = [img.resize(size, pil_inter) for img in clip]
|
75 |
+
else:
|
76 |
+
raise TypeError('Expected numpy.ndarray or PIL.Image' +
|
77 |
+
'but got list of {0}'.format(type(clip[0])))
|
78 |
+
return scaled
|
79 |
+
|
80 |
+
|
81 |
+
def get_resize_sizes(im_h, im_w, size):
|
82 |
+
if im_w < im_h:
|
83 |
+
ow = size
|
84 |
+
oh = int(size * im_h / im_w)
|
85 |
+
else:
|
86 |
+
oh = size
|
87 |
+
ow = int(size * im_w / im_h)
|
88 |
+
return oh, ow
|
89 |
+
|
90 |
+
|
91 |
+
class RandomFlip(object):
|
92 |
+
def __init__(self, time_flip=False, horizontal_flip=False):
|
93 |
+
self.time_flip = time_flip
|
94 |
+
self.horizontal_flip = horizontal_flip
|
95 |
+
|
96 |
+
def __call__(self, clip):
|
97 |
+
if random.random() < 0.5 and self.time_flip:
|
98 |
+
return clip[::-1]
|
99 |
+
if random.random() < 0.5 and self.horizontal_flip:
|
100 |
+
return [np.fliplr(img) for img in clip]
|
101 |
+
|
102 |
+
return clip
|
103 |
+
|
104 |
+
|
105 |
+
class RandomResize(object):
|
106 |
+
"""Resizes a list of (H x W x C) numpy.ndarray to the final size
|
107 |
+
The larger the original image is, the more times it takes to
|
108 |
+
interpolate
|
109 |
+
Args:
|
110 |
+
interpolation (str): Can be one of 'nearest', 'bilinear'
|
111 |
+
defaults to nearest
|
112 |
+
size (tuple): (widht, height)
|
113 |
+
"""
|
114 |
+
|
115 |
+
def __init__(self, ratio=(3. / 4., 4. / 3.), interpolation='nearest'):
|
116 |
+
self.ratio = ratio
|
117 |
+
self.interpolation = interpolation
|
118 |
+
|
119 |
+
def __call__(self, clip):
|
120 |
+
scaling_factor = random.uniform(self.ratio[0], self.ratio[1])
|
121 |
+
|
122 |
+
if isinstance(clip[0], np.ndarray):
|
123 |
+
im_h, im_w, im_c = clip[0].shape
|
124 |
+
elif isinstance(clip[0], PIL.Image.Image):
|
125 |
+
im_w, im_h = clip[0].size
|
126 |
+
|
127 |
+
new_w = int(im_w * scaling_factor)
|
128 |
+
new_h = int(im_h * scaling_factor)
|
129 |
+
new_size = (new_w, new_h)
|
130 |
+
resized = resize_clip(
|
131 |
+
clip, new_size, interpolation=self.interpolation)
|
132 |
+
|
133 |
+
return resized
|
134 |
+
|
135 |
+
|
136 |
+
class RandomCrop(object):
|
137 |
+
"""Extract random crop at the same location for a list of videos
|
138 |
+
Args:
|
139 |
+
size (sequence or int): Desired output size for the
|
140 |
+
crop in format (h, w)
|
141 |
+
"""
|
142 |
+
|
143 |
+
def __init__(self, size):
|
144 |
+
if isinstance(size, numbers.Number):
|
145 |
+
size = (size, size)
|
146 |
+
|
147 |
+
self.size = size
|
148 |
+
|
149 |
+
def __call__(self, clip):
|
150 |
+
"""
|
151 |
+
Args:
|
152 |
+
img (PIL.Image or numpy.ndarray): List of videos to be cropped
|
153 |
+
in format (h, w, c) in numpy.ndarray
|
154 |
+
Returns:
|
155 |
+
PIL.Image or numpy.ndarray: Cropped list of videos
|
156 |
+
"""
|
157 |
+
h, w = self.size
|
158 |
+
if isinstance(clip[0], np.ndarray):
|
159 |
+
im_h, im_w, im_c = clip[0].shape
|
160 |
+
elif isinstance(clip[0], PIL.Image.Image):
|
161 |
+
im_w, im_h = clip[0].size
|
162 |
+
else:
|
163 |
+
raise TypeError('Expected numpy.ndarray or PIL.Image' +
|
164 |
+
'but got list of {0}'.format(type(clip[0])))
|
165 |
+
|
166 |
+
clip = pad_clip(clip, h, w)
|
167 |
+
im_h, im_w = clip.shape[1:3]
|
168 |
+
x1 = 0 if h == im_h else random.randint(0, im_w - w)
|
169 |
+
y1 = 0 if w == im_w else random.randint(0, im_h - h)
|
170 |
+
cropped = crop_clip(clip, y1, x1, h, w)
|
171 |
+
|
172 |
+
return cropped
|
173 |
+
|
174 |
+
|
175 |
+
class RandomRotation(object):
|
176 |
+
"""Rotate entire clip randomly by a random angle within
|
177 |
+
given bounds
|
178 |
+
Args:
|
179 |
+
degrees (sequence or int): Range of degrees to select from
|
180 |
+
If degrees is a number instead of sequence like (min, max),
|
181 |
+
the range of degrees, will be (-degrees, +degrees).
|
182 |
+
"""
|
183 |
+
|
184 |
+
def __init__(self, degrees):
|
185 |
+
if isinstance(degrees, numbers.Number):
|
186 |
+
if degrees < 0:
|
187 |
+
raise ValueError('If degrees is a single number,'
|
188 |
+
'must be positive')
|
189 |
+
degrees = (-degrees, degrees)
|
190 |
+
else:
|
191 |
+
if len(degrees) != 2:
|
192 |
+
raise ValueError('If degrees is a sequence,'
|
193 |
+
'it must be of len 2.')
|
194 |
+
|
195 |
+
self.degrees = degrees
|
196 |
+
|
197 |
+
def __call__(self, clip):
|
198 |
+
"""
|
199 |
+
Args:
|
200 |
+
img (PIL.Image or numpy.ndarray): List of videos to be cropped
|
201 |
+
in format (h, w, c) in numpy.ndarray
|
202 |
+
Returns:
|
203 |
+
PIL.Image or numpy.ndarray: Cropped list of videos
|
204 |
+
"""
|
205 |
+
angle = random.uniform(self.degrees[0], self.degrees[1])
|
206 |
+
if isinstance(clip[0], np.ndarray):
|
207 |
+
rotated = [rotate(image=img, angle=angle, preserve_range=True) for img in clip]
|
208 |
+
elif isinstance(clip[0], PIL.Image.Image):
|
209 |
+
rotated = [img.rotate(angle) for img in clip]
|
210 |
+
else:
|
211 |
+
raise TypeError('Expected numpy.ndarray or PIL.Image' +
|
212 |
+
'but got list of {0}'.format(type(clip[0])))
|
213 |
+
|
214 |
+
return rotated
|
215 |
+
|
216 |
+
|
217 |
+
class ColorJitter(object):
|
218 |
+
"""Randomly change the brightness, contrast and saturation and hue of the clip
|
219 |
+
Args:
|
220 |
+
brightness (float): How much to jitter brightness. brightness_factor
|
221 |
+
is chosen uniformly from [max(0, 1 - brightness), 1 + brightness].
|
222 |
+
contrast (float): How much to jitter contrast. contrast_factor
|
223 |
+
is chosen uniformly from [max(0, 1 - contrast), 1 + contrast].
|
224 |
+
saturation (float): How much to jitter saturation. saturation_factor
|
225 |
+
is chosen uniformly from [max(0, 1 - saturation), 1 + saturation].
|
226 |
+
hue(float): How much to jitter hue. hue_factor is chosen uniformly from
|
227 |
+
[-hue, hue]. Should be >=0 and <= 0.5.
|
228 |
+
"""
|
229 |
+
|
230 |
+
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
|
231 |
+
self.brightness = brightness
|
232 |
+
self.contrast = contrast
|
233 |
+
self.saturation = saturation
|
234 |
+
self.hue = hue
|
235 |
+
|
236 |
+
def get_params(self, brightness, contrast, saturation, hue):
|
237 |
+
if brightness > 0:
|
238 |
+
brightness_factor = random.uniform(
|
239 |
+
max(0, 1 - brightness), 1 + brightness)
|
240 |
+
else:
|
241 |
+
brightness_factor = None
|
242 |
+
|
243 |
+
if contrast > 0:
|
244 |
+
contrast_factor = random.uniform(
|
245 |
+
max(0, 1 - contrast), 1 + contrast)
|
246 |
+
else:
|
247 |
+
contrast_factor = None
|
248 |
+
|
249 |
+
if saturation > 0:
|
250 |
+
saturation_factor = random.uniform(
|
251 |
+
max(0, 1 - saturation), 1 + saturation)
|
252 |
+
else:
|
253 |
+
saturation_factor = None
|
254 |
+
|
255 |
+
if hue > 0:
|
256 |
+
hue_factor = random.uniform(-hue, hue)
|
257 |
+
else:
|
258 |
+
hue_factor = None
|
259 |
+
return brightness_factor, contrast_factor, saturation_factor, hue_factor
|
260 |
+
|
261 |
+
def __call__(self, clip):
|
262 |
+
"""
|
263 |
+
Args:
|
264 |
+
clip (list): list of PIL.Image
|
265 |
+
Returns:
|
266 |
+
list PIL.Image : list of transformed PIL.Image
|
267 |
+
"""
|
268 |
+
if isinstance(clip[0], np.ndarray):
|
269 |
+
brightness, contrast, saturation, hue = self.get_params(
|
270 |
+
self.brightness, self.contrast, self.saturation, self.hue)
|
271 |
+
|
272 |
+
# Create img transform function sequence
|
273 |
+
img_transforms = []
|
274 |
+
if brightness is not None:
|
275 |
+
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_brightness(img, brightness))
|
276 |
+
if saturation is not None:
|
277 |
+
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_saturation(img, saturation))
|
278 |
+
if hue is not None:
|
279 |
+
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_hue(img, hue))
|
280 |
+
if contrast is not None:
|
281 |
+
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_contrast(img, contrast))
|
282 |
+
random.shuffle(img_transforms)
|
283 |
+
img_transforms = [img_as_ubyte, torchvision.transforms.ToPILImage()] + img_transforms + [np.array,
|
284 |
+
img_as_float]
|
285 |
+
|
286 |
+
with warnings.catch_warnings():
|
287 |
+
warnings.simplefilter("ignore")
|
288 |
+
jittered_clip = []
|
289 |
+
for img in clip:
|
290 |
+
jittered_img = img
|
291 |
+
for func in img_transforms:
|
292 |
+
jittered_img = func(jittered_img)
|
293 |
+
jittered_clip.append(jittered_img.astype('float32'))
|
294 |
+
elif isinstance(clip[0], PIL.Image.Image):
|
295 |
+
brightness, contrast, saturation, hue = self.get_params(
|
296 |
+
self.brightness, self.contrast, self.saturation, self.hue)
|
297 |
+
|
298 |
+
# Create img transform function sequence
|
299 |
+
img_transforms = []
|
300 |
+
if brightness is not None:
|
301 |
+
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_brightness(img, brightness))
|
302 |
+
if saturation is not None:
|
303 |
+
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_saturation(img, saturation))
|
304 |
+
if hue is not None:
|
305 |
+
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_hue(img, hue))
|
306 |
+
if contrast is not None:
|
307 |
+
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_contrast(img, contrast))
|
308 |
+
random.shuffle(img_transforms)
|
309 |
+
|
310 |
+
# Apply to all videos
|
311 |
+
jittered_clip = []
|
312 |
+
for img in clip:
|
313 |
+
for func in img_transforms:
|
314 |
+
jittered_img = func(img)
|
315 |
+
jittered_clip.append(jittered_img)
|
316 |
+
|
317 |
+
else:
|
318 |
+
raise TypeError('Expected numpy.ndarray or PIL.Image' +
|
319 |
+
'but got list of {0}'.format(type(clip[0])))
|
320 |
+
return jittered_clip
|
321 |
+
|
322 |
+
|
323 |
+
class AllAugmentationTransform:
|
324 |
+
def __init__(self, resize_param=None, rotation_param=None, flip_param=None, crop_param=None, jitter_param=None):
|
325 |
+
self.transforms = []
|
326 |
+
|
327 |
+
if flip_param is not None:
|
328 |
+
self.transforms.append(RandomFlip(**flip_param))
|
329 |
+
|
330 |
+
if rotation_param is not None:
|
331 |
+
self.transforms.append(RandomRotation(**rotation_param))
|
332 |
+
|
333 |
+
if resize_param is not None:
|
334 |
+
self.transforms.append(RandomResize(**resize_param))
|
335 |
+
|
336 |
+
if crop_param is not None:
|
337 |
+
self.transforms.append(RandomCrop(**crop_param))
|
338 |
+
|
339 |
+
if jitter_param is not None:
|
340 |
+
self.transforms.append(ColorJitter(**jitter_param))
|
341 |
+
|
342 |
+
def __call__(self, clip):
|
343 |
+
for t in self.transforms:
|
344 |
+
clip = t(clip)
|
345 |
+
return clip
|
config/mix-resolution.yml
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_params:
|
2 |
+
root_dir: ../../../train/cropped_clips_512_vid/
|
3 |
+
frame_shape: [512, 512, 3]
|
4 |
+
id_sampling: True
|
5 |
+
pairs_list: None
|
6 |
+
augmentation_params:
|
7 |
+
flip_param:
|
8 |
+
horizontal_flip: True
|
9 |
+
time_flip: True
|
10 |
+
jitter_param:
|
11 |
+
brightness: 0.1
|
12 |
+
contrast: 0.1
|
13 |
+
saturation: 0.1
|
14 |
+
hue: 0.1
|
15 |
+
|
16 |
+
|
17 |
+
model_params:
|
18 |
+
common_params:
|
19 |
+
num_kp: 15
|
20 |
+
image_channel: 3
|
21 |
+
feature_channel: 32
|
22 |
+
estimate_jacobian: False
|
23 |
+
kp_detector_params:
|
24 |
+
temperature: 0.1
|
25 |
+
block_expansion: 32
|
26 |
+
max_features: 1024
|
27 |
+
scale_factor: 0.25
|
28 |
+
num_blocks: 5
|
29 |
+
reshape_channel: 16384 # 16384 = 1024 * 16
|
30 |
+
reshape_depth: 16
|
31 |
+
he_estimator_params:
|
32 |
+
block_expansion: 64
|
33 |
+
max_features: 2048
|
34 |
+
num_bins: 66
|
35 |
+
generator_params:
|
36 |
+
block_expansion: 64
|
37 |
+
max_features: 512
|
38 |
+
num_down_blocks: 2
|
39 |
+
reshape_channel: 32
|
40 |
+
reshape_depth: 16 # 512 = 32 * 16
|
41 |
+
num_resblocks: 6
|
42 |
+
estimate_occlusion_map: True
|
43 |
+
dense_motion_params:
|
44 |
+
block_expansion: 32
|
45 |
+
max_features: 1024
|
46 |
+
num_blocks: 5
|
47 |
+
# reshape_channel: 32
|
48 |
+
reshape_depth: 16
|
49 |
+
compress: 4
|
50 |
+
discriminator_params:
|
51 |
+
scales: [1]
|
52 |
+
block_expansion: 32
|
53 |
+
max_features: 512
|
54 |
+
num_blocks: 4
|
55 |
+
sn: True
|
56 |
+
|
57 |
+
train_params:
|
58 |
+
num_epochs: 200
|
59 |
+
num_repeats: 5
|
60 |
+
num_worker: 8
|
61 |
+
epoch_milestones: [16,]
|
62 |
+
lr_generator: 2.0e-4
|
63 |
+
lr_discriminator: 2.0e-4
|
64 |
+
lr_kp_detector: 2.0e-4
|
65 |
+
lr_he_estimator: 2.0e-4
|
66 |
+
gan_mode: 'hinge' # hinge or ls
|
67 |
+
batch_size: 4
|
68 |
+
scales: [1, 0.5, 0.25, 0.125]
|
69 |
+
checkpoint_freq: 1
|
70 |
+
hopenet_snapshot: './checkpoints/hopenet_robust_alpha1.pkl'
|
71 |
+
transform_params:
|
72 |
+
sigma_affine: 0.05
|
73 |
+
sigma_tps: 0.005
|
74 |
+
points_tps: 5
|
75 |
+
loss_weights:
|
76 |
+
generator_gan: 1
|
77 |
+
discriminator_gan: 1
|
78 |
+
feature_matching: [10, 10, 10, 10]
|
79 |
+
perceptual: [10, 10, 10, 10, 10]
|
80 |
+
equivariance_value: 10
|
81 |
+
equivariance_jacobian: 0
|
82 |
+
keypoint: 10
|
83 |
+
headpose: 20
|
84 |
+
expression: 5
|
85 |
+
|
86 |
+
visualizer_params:
|
87 |
+
kp_size: 5
|
88 |
+
draw_border: True
|
89 |
+
colormap: 'gist_rainbow'
|
crop_portrait.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# """
|
2 |
+
# Crop upper boddy in every video frame, square bounding box is averaged among all frames and fixed.
|
3 |
+
# """
|
4 |
+
|
5 |
+
# import os
|
6 |
+
# import cv2
|
7 |
+
# import argparse
|
8 |
+
# from tqdm import tqdm
|
9 |
+
# import face_recognition
|
10 |
+
# import torch
|
11 |
+
# import util
|
12 |
+
# import numpy as np
|
13 |
+
# import face_detection
|
14 |
+
|
15 |
+
# def crop_per_image(data_dir, dest_size, crop_level):
|
16 |
+
# fa = face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False, device='cuda')
|
17 |
+
|
18 |
+
# image_list = util.get_file_list(os.path.join(data_dir, 'full'))
|
19 |
+
# batch_size = 5
|
20 |
+
# frames = []
|
21 |
+
|
22 |
+
# for i in tqdm(range(len(image_list))):
|
23 |
+
# frame = face_recognition.load_image_file(image_list[i])
|
24 |
+
# frames.append(frame)
|
25 |
+
|
26 |
+
# H, W, _ = frames[0].shape
|
27 |
+
|
28 |
+
# batches = [frames[i:i + batch_size] for i in range(0, len(frames), batch_size)]
|
29 |
+
|
30 |
+
# for idx in tqdm(range(len(batches))):
|
31 |
+
# fb = batches[idx]
|
32 |
+
# preds = fa.get_detections_for_batch(np.asarray(fb))
|
33 |
+
|
34 |
+
# for j, f in enumerate(preds):
|
35 |
+
# if f is None:
|
36 |
+
# print('no face in image {}'.format(idx * batch_size + j))
|
37 |
+
# else:
|
38 |
+
# left, top, right, bottom = f
|
39 |
+
|
40 |
+
|
41 |
+
# height = bottom - top
|
42 |
+
# width = right - left
|
43 |
+
# crop_size = int(height * crop_level)
|
44 |
+
|
45 |
+
# horizontal_delta = (crop_size - width) // 2
|
46 |
+
# vertical_delta = (crop_size - height) // 2
|
47 |
+
|
48 |
+
# left = max(left - horizontal_delta, 0)
|
49 |
+
# right = min(right + horizontal_delta, W)
|
50 |
+
# top = max(top - int(vertical_delta * 0.5), 0)
|
51 |
+
# bottom = min(bottom + int(vertical_delta * 1.5), H)
|
52 |
+
|
53 |
+
# crop_f = cv2.imread(image_list[idx * batch_size + j])
|
54 |
+
# crop_f = crop_f[top:bottom, left:right]
|
55 |
+
# crop_f = cv2.resize(crop_f, (dest_size, dest_size), interpolation=cv2.INTER_AREA)
|
56 |
+
# cv2.imwrite(os.path.join(data_dir, 'crop', os.path.basename(image_list[idx * batch_size + j])), crop_f)
|
57 |
+
|
58 |
+
|
59 |
+
# if __name__ == '__main__':
|
60 |
+
# parser = argparse.ArgumentParser(description='Process some integers.')
|
61 |
+
# parser.add_argument('--data_dir', type=str, default=None)
|
62 |
+
# parser.add_argument('--dest_size', type=int, default=256)
|
63 |
+
# parser.add_argument('--crop_level', type=float, default=1.0, help='Adjust crop image size.')
|
64 |
+
# parser.add_argument('--vertical_adjust', type=float, default=0.3, help='Adjust vertical location of portrait in image.')
|
65 |
+
# args = parser.parse_args()
|
66 |
+
# util.create_dir(os.path.join(args.data_dir,'crop'))
|
67 |
+
# util.create_dir(os.path.join(args.data_dir, 'crop_region'))
|
68 |
+
# crop_per_image(args.data_dir, dest_size=args.dest_size, crop_level=args.crop_level)
|
69 |
+
|
70 |
+
|
71 |
+
import os
|
72 |
+
import cv2
|
73 |
+
import argparse
|
74 |
+
from tqdm import tqdm
|
75 |
+
import face_recognition
|
76 |
+
import numpy as np
|
77 |
+
import face_detection
|
78 |
+
import util
|
79 |
+
|
80 |
+
def crop_per_frame_and_make_video(data_dir, dest_size, crop_level, video_out_path, fps=30):
|
81 |
+
# Initialize face alignment
|
82 |
+
fa = face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False, device='cuda')
|
83 |
+
|
84 |
+
# Get list of images (frames)
|
85 |
+
image_list = util.get_file_list(os.path.join(data_dir, 'full'))
|
86 |
+
batch_size = 5
|
87 |
+
frames = []
|
88 |
+
|
89 |
+
# Load frames
|
90 |
+
for image_path in tqdm(image_list, desc='Loading images'):
|
91 |
+
frame = cv2.imread(image_path)
|
92 |
+
frames.append(frame)
|
93 |
+
|
94 |
+
H, W, _ = frames[0].shape
|
95 |
+
batches = [frames[i:i + batch_size] for i in range(0, len(frames), batch_size)]
|
96 |
+
cropped_frames = []
|
97 |
+
|
98 |
+
for idx, fb in enumerate(tqdm(batches, desc='Processing batches')):
|
99 |
+
preds = fa.get_detections_for_batch(np.asarray(fb))
|
100 |
+
|
101 |
+
for j, f in enumerate(preds):
|
102 |
+
if f is None:
|
103 |
+
print(f'No face in image {idx * batch_size + j}')
|
104 |
+
continue # Skip frames with no detected face
|
105 |
+
|
106 |
+
left, top, right, bottom = f
|
107 |
+
height = bottom - top
|
108 |
+
width = right - left
|
109 |
+
crop_size = int(height * crop_level)
|
110 |
+
|
111 |
+
horizontal_delta = (crop_size - width) // 2
|
112 |
+
vertical_delta = (crop_size - height) // 2
|
113 |
+
|
114 |
+
left = max(left - horizontal_delta, 0)
|
115 |
+
right = min(right + horizontal_delta, W)
|
116 |
+
top = max(top - int(vertical_delta * 0.5), 0)
|
117 |
+
bottom = min(bottom + int(vertical_delta * 1.5), H)
|
118 |
+
|
119 |
+
crop_f = fb[j][top:bottom, left:right]
|
120 |
+
crop_f = cv2.resize(crop_f, (dest_size, dest_size), interpolation=cv2.INTER_AREA)
|
121 |
+
cropped_frames.append(crop_f)
|
122 |
+
|
123 |
+
# Define the codec and create VideoWriter object
|
124 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
125 |
+
out = cv2.VideoWriter(video_out_path, fourcc, fps, (dest_size, dest_size))
|
126 |
+
|
127 |
+
# Write frames to video
|
128 |
+
for frame in tqdm(cropped_frames, desc='Compiling video'):
|
129 |
+
out.write(frame)
|
130 |
+
|
131 |
+
# Release everything when job is finished
|
132 |
+
out.release()
|
133 |
+
cv2.destroyAllWindows()
|
134 |
+
|
135 |
+
if __name__ == '__main__':
|
136 |
+
parser = argparse.ArgumentParser(description='Crop video frames and compile into a video.')
|
137 |
+
parser.add_argument('--data_dir', type=str, required=True, help='Directory with video frames to process.')
|
138 |
+
parser.add_argument('--dest_size', type=int, default=256, help='Destination size of cropped images.')
|
139 |
+
parser.add_argument('--crop_level', type=float, default=1.0, help='Adjust crop size relative to face detection.')
|
140 |
+
parser.add_argument('--video_out_path', type=str, required=True, help='Output path for the resulting video.')
|
141 |
+
parser.add_argument('--fps', type=int, default=30, help='Frames per second for the output video.')
|
142 |
+
args = parser.parse_args()
|
143 |
+
|
144 |
+
util.create_dir(os.path.join(args.data_dir, 'crop'))
|
145 |
+
crop_per_frame_and_make_video(args.data_dir, dest_size=args.dest_size, crop_level=args.crop_level, video_out_path=args.video_out_path, fps=args.fps)
|
demo.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# python demo.py --config config/vox-256-spade.yml --checkpoint checkpoints/00000189-checkpoint.pth.tar --source_image /home/cxu-serve/p61/rzhu14/lsong11_workspace/Thin-Plate-Spline-Motion-Model/assets/test.png --driving_video /home/cxu-serve/p61/rzhu14/lsong11_workspace/Thin-Plate-Spline-Motion-Model/assets/driving.mp4 --relative --adapt_scale --find_best_frame --gen spade
|
2 |
+
import matplotlib
|
3 |
+
matplotlib.use('Agg')
|
4 |
+
import os, sys
|
5 |
+
import yaml
|
6 |
+
from argparse import ArgumentParser
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
import imageio
|
10 |
+
import numpy as np
|
11 |
+
from skimage.transform import resize
|
12 |
+
from skimage import img_as_ubyte
|
13 |
+
import torch
|
14 |
+
import torch.nn.functional as F
|
15 |
+
from sync_batchnorm import DataParallelWithCallback
|
16 |
+
|
17 |
+
from modules.generator import OcclusionAwareGenerator, OcclusionAwareSPADEGenerator
|
18 |
+
from modules.keypoint_detector import KPDetector, HEEstimator
|
19 |
+
from animate import normalize_kp
|
20 |
+
from scipy.spatial import ConvexHull
|
21 |
+
import warnings
|
22 |
+
warnings.filterwarnings("ignore")
|
23 |
+
|
24 |
+
|
25 |
+
if sys.version_info[0] < 3:
|
26 |
+
raise Exception("You must use Python 3 or higher. Recommended version is Python 3.7")
|
27 |
+
|
28 |
+
def load_checkpoints(config_path, checkpoint_path, gen, cpu=False):
|
29 |
+
|
30 |
+
with open(config_path) as f:
|
31 |
+
config = yaml.load(f)
|
32 |
+
|
33 |
+
if gen == 'original':
|
34 |
+
generator = OcclusionAwareGenerator(**config['model_params']['generator_params'],
|
35 |
+
**config['model_params']['common_params'])
|
36 |
+
elif gen == 'spade':
|
37 |
+
generator = OcclusionAwareSPADEGenerator(**config['model_params']['generator_params'],
|
38 |
+
**config['model_params']['common_params'])
|
39 |
+
|
40 |
+
if not cpu:
|
41 |
+
generator.cuda()
|
42 |
+
|
43 |
+
kp_detector = KPDetector(**config['model_params']['kp_detector_params'],
|
44 |
+
**config['model_params']['common_params'])
|
45 |
+
if not cpu:
|
46 |
+
kp_detector.cuda()
|
47 |
+
|
48 |
+
he_estimator = HEEstimator(**config['model_params']['he_estimator_params'],
|
49 |
+
**config['model_params']['common_params'])
|
50 |
+
if not cpu:
|
51 |
+
he_estimator.cuda()
|
52 |
+
|
53 |
+
if cpu:
|
54 |
+
checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
|
55 |
+
else:
|
56 |
+
checkpoint = torch.load(checkpoint_path)
|
57 |
+
|
58 |
+
generator.load_state_dict(checkpoint['generator'])
|
59 |
+
kp_detector.load_state_dict(checkpoint['kp_detector'])
|
60 |
+
he_estimator.load_state_dict(checkpoint['he_estimator'])
|
61 |
+
|
62 |
+
if not cpu:
|
63 |
+
generator = DataParallelWithCallback(generator)
|
64 |
+
kp_detector = DataParallelWithCallback(kp_detector)
|
65 |
+
he_estimator = DataParallelWithCallback(he_estimator)
|
66 |
+
|
67 |
+
generator.eval()
|
68 |
+
kp_detector.eval()
|
69 |
+
he_estimator.eval()
|
70 |
+
|
71 |
+
return generator, kp_detector, he_estimator
|
72 |
+
|
73 |
+
|
74 |
+
def headpose_pred_to_degree(pred):
|
75 |
+
device = pred.device
|
76 |
+
idx_tensor = [idx for idx in range(66)]
|
77 |
+
idx_tensor = torch.FloatTensor(idx_tensor).to(device)
|
78 |
+
pred = F.softmax(pred)
|
79 |
+
degree = torch.sum(pred*idx_tensor, axis=1) * 3 - 99
|
80 |
+
|
81 |
+
return degree
|
82 |
+
|
83 |
+
'''
|
84 |
+
# beta version
|
85 |
+
def get_rotation_matrix(yaw, pitch, roll):
|
86 |
+
yaw = yaw / 180 * 3.14
|
87 |
+
pitch = pitch / 180 * 3.14
|
88 |
+
roll = roll / 180 * 3.14
|
89 |
+
|
90 |
+
roll = roll.unsqueeze(1)
|
91 |
+
pitch = pitch.unsqueeze(1)
|
92 |
+
yaw = yaw.unsqueeze(1)
|
93 |
+
|
94 |
+
roll_mat = torch.cat([torch.ones_like(roll), torch.zeros_like(roll), torch.zeros_like(roll),
|
95 |
+
torch.zeros_like(roll), torch.cos(roll), -torch.sin(roll),
|
96 |
+
torch.zeros_like(roll), torch.sin(roll), torch.cos(roll)], dim=1)
|
97 |
+
roll_mat = roll_mat.view(roll_mat.shape[0], 3, 3)
|
98 |
+
|
99 |
+
pitch_mat = torch.cat([torch.cos(pitch), torch.zeros_like(pitch), torch.sin(pitch),
|
100 |
+
torch.zeros_like(pitch), torch.ones_like(pitch), torch.zeros_like(pitch),
|
101 |
+
-torch.sin(pitch), torch.zeros_like(pitch), torch.cos(pitch)], dim=1)
|
102 |
+
pitch_mat = pitch_mat.view(pitch_mat.shape[0], 3, 3)
|
103 |
+
|
104 |
+
yaw_mat = torch.cat([torch.cos(yaw), -torch.sin(yaw), torch.zeros_like(yaw),
|
105 |
+
torch.sin(yaw), torch.cos(yaw), torch.zeros_like(yaw),
|
106 |
+
torch.zeros_like(yaw), torch.zeros_like(yaw), torch.ones_like(yaw)], dim=1)
|
107 |
+
yaw_mat = yaw_mat.view(yaw_mat.shape[0], 3, 3)
|
108 |
+
|
109 |
+
rot_mat = torch.einsum('bij,bjk,bkm->bim', roll_mat, pitch_mat, yaw_mat)
|
110 |
+
|
111 |
+
return rot_mat
|
112 |
+
|
113 |
+
'''
|
114 |
+
def get_rotation_matrix(yaw, pitch, roll):
|
115 |
+
yaw = yaw / 180 * 3.14
|
116 |
+
pitch = pitch / 180 * 3.14
|
117 |
+
roll = roll / 180 * 3.14
|
118 |
+
|
119 |
+
roll = roll.unsqueeze(1)
|
120 |
+
pitch = pitch.unsqueeze(1)
|
121 |
+
yaw = yaw.unsqueeze(1)
|
122 |
+
|
123 |
+
pitch_mat = torch.cat([torch.ones_like(pitch), torch.zeros_like(pitch), torch.zeros_like(pitch),
|
124 |
+
torch.zeros_like(pitch), torch.cos(pitch), -torch.sin(pitch),
|
125 |
+
torch.zeros_like(pitch), torch.sin(pitch), torch.cos(pitch)], dim=1)
|
126 |
+
pitch_mat = pitch_mat.view(pitch_mat.shape[0], 3, 3)
|
127 |
+
|
128 |
+
yaw_mat = torch.cat([torch.cos(yaw), torch.zeros_like(yaw), torch.sin(yaw),
|
129 |
+
torch.zeros_like(yaw), torch.ones_like(yaw), torch.zeros_like(yaw),
|
130 |
+
-torch.sin(yaw), torch.zeros_like(yaw), torch.cos(yaw)], dim=1)
|
131 |
+
yaw_mat = yaw_mat.view(yaw_mat.shape[0], 3, 3)
|
132 |
+
|
133 |
+
roll_mat = torch.cat([torch.cos(roll), -torch.sin(roll), torch.zeros_like(roll),
|
134 |
+
torch.sin(roll), torch.cos(roll), torch.zeros_like(roll),
|
135 |
+
torch.zeros_like(roll), torch.zeros_like(roll), torch.ones_like(roll)], dim=1)
|
136 |
+
roll_mat = roll_mat.view(roll_mat.shape[0], 3, 3)
|
137 |
+
|
138 |
+
rot_mat = torch.einsum('bij,bjk,bkm->bim', pitch_mat, yaw_mat, roll_mat)
|
139 |
+
|
140 |
+
return rot_mat
|
141 |
+
|
142 |
+
def keypoint_transformation(kp_canonical, he, estimate_jacobian=True, free_view=False, yaw=0, pitch=0, roll=0):
|
143 |
+
kp = kp_canonical['value']
|
144 |
+
if not free_view:
|
145 |
+
yaw, pitch, roll = he['yaw'], he['pitch'], he['roll']
|
146 |
+
yaw = headpose_pred_to_degree(yaw)
|
147 |
+
pitch = headpose_pred_to_degree(pitch)
|
148 |
+
roll = headpose_pred_to_degree(roll)
|
149 |
+
else:
|
150 |
+
if yaw is not None:
|
151 |
+
yaw = torch.tensor([yaw]).cuda()
|
152 |
+
else:
|
153 |
+
yaw = he['yaw']
|
154 |
+
yaw = headpose_pred_to_degree(yaw)
|
155 |
+
if pitch is not None:
|
156 |
+
pitch = torch.tensor([pitch]).cuda()
|
157 |
+
else:
|
158 |
+
pitch = he['pitch']
|
159 |
+
pitch = headpose_pred_to_degree(pitch)
|
160 |
+
if roll is not None:
|
161 |
+
roll = torch.tensor([roll]).cuda()
|
162 |
+
else:
|
163 |
+
roll = he['roll']
|
164 |
+
roll = headpose_pred_to_degree(roll)
|
165 |
+
|
166 |
+
t, exp = he['t'], he['exp']
|
167 |
+
|
168 |
+
rot_mat = get_rotation_matrix(yaw, pitch, roll)
|
169 |
+
|
170 |
+
# keypoint rotation
|
171 |
+
kp_rotated = torch.einsum('bmp,bkp->bkm', rot_mat, kp)
|
172 |
+
|
173 |
+
# keypoint translation
|
174 |
+
t = t.unsqueeze_(1).repeat(1, kp.shape[1], 1)
|
175 |
+
kp_t = kp_rotated + t
|
176 |
+
|
177 |
+
# add expression deviation
|
178 |
+
exp = exp.view(exp.shape[0], -1, 3)
|
179 |
+
kp_transformed = kp_t + exp
|
180 |
+
|
181 |
+
if estimate_jacobian:
|
182 |
+
jacobian = kp_canonical['jacobian']
|
183 |
+
jacobian_transformed = torch.einsum('bmp,bkps->bkms', rot_mat, jacobian)
|
184 |
+
else:
|
185 |
+
jacobian_transformed = None
|
186 |
+
|
187 |
+
return {'value': kp_transformed, 'jacobian': jacobian_transformed}
|
188 |
+
|
189 |
+
def make_animation(source_image, driving_video, generator, kp_detector, he_estimator, relative=True, adapt_movement_scale=True, estimate_jacobian=True, cpu=False, free_view=False, yaw=0, pitch=0, roll=0):
|
190 |
+
with torch.no_grad():
|
191 |
+
predictions = []
|
192 |
+
source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
|
193 |
+
if not cpu:
|
194 |
+
source = source.cuda()
|
195 |
+
driving = torch.tensor(np.array(driving_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3)
|
196 |
+
kp_canonical = kp_detector(source)
|
197 |
+
he_source = he_estimator(source)
|
198 |
+
he_driving_initial = he_estimator(driving[:, :, 0])
|
199 |
+
|
200 |
+
kp_source = keypoint_transformation(kp_canonical, he_source, estimate_jacobian)
|
201 |
+
kp_driving_initial = keypoint_transformation(kp_canonical, he_driving_initial, estimate_jacobian)
|
202 |
+
# kp_driving_initial = keypoint_transformation(kp_canonical, he_driving_initial, free_view=free_view, yaw=yaw, pitch=pitch, roll=roll)
|
203 |
+
|
204 |
+
for frame_idx in tqdm(range(driving.shape[2])):
|
205 |
+
driving_frame = driving[:, :, frame_idx]
|
206 |
+
if not cpu:
|
207 |
+
driving_frame = driving_frame.cuda()
|
208 |
+
he_driving = he_estimator(driving_frame)
|
209 |
+
kp_driving = keypoint_transformation(kp_canonical, he_driving, estimate_jacobian, free_view=free_view, yaw=yaw, pitch=pitch, roll=roll)
|
210 |
+
|
211 |
+
# np.save('all_kps/%05d.npy'%frame_idx, kp_driving['value'].cpu().detach().numpy())
|
212 |
+
# import pdb; pdb.set_trace()
|
213 |
+
kp_norm = normalize_kp(kp_source=kp_source, kp_driving=kp_driving,
|
214 |
+
kp_driving_initial=kp_driving_initial, use_relative_movement=relative,
|
215 |
+
use_relative_jacobian=estimate_jacobian, adapt_movement_scale=adapt_movement_scale)
|
216 |
+
out = generator(source, frame_idx, kp_source=kp_source, kp_driving=kp_norm)
|
217 |
+
|
218 |
+
predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
|
219 |
+
return predictions
|
220 |
+
|
221 |
+
def find_best_frame(source, driving, cpu=False):
|
222 |
+
import face_alignment
|
223 |
+
|
224 |
+
def normalize_kp(kp):
|
225 |
+
kp = kp - kp.mean(axis=0, keepdims=True)
|
226 |
+
area = ConvexHull(kp[:, :2]).volume
|
227 |
+
area = np.sqrt(area)
|
228 |
+
kp[:, :2] = kp[:, :2] / area
|
229 |
+
return kp
|
230 |
+
|
231 |
+
# fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=True,
|
232 |
+
# device='cpu' if cpu else 'cuda')
|
233 |
+
|
234 |
+
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=True,
|
235 |
+
device='cpu' if cpu else 'cuda')
|
236 |
+
kp_source = fa.get_landmarks(255 * source)[0]
|
237 |
+
kp_source = normalize_kp(kp_source)
|
238 |
+
norm = float('inf')
|
239 |
+
frame_num = 0
|
240 |
+
for i, image in tqdm(enumerate(driving)):
|
241 |
+
kp_driving = fa.get_landmarks(255 * image)[0]
|
242 |
+
kp_driving = normalize_kp(kp_driving)
|
243 |
+
new_norm = (np.abs(kp_source - kp_driving) ** 2).sum()
|
244 |
+
if new_norm < norm:
|
245 |
+
norm = new_norm
|
246 |
+
frame_num = i
|
247 |
+
return frame_num
|
248 |
+
|
249 |
+
if __name__ == "__main__":
|
250 |
+
parser = ArgumentParser()
|
251 |
+
parser.add_argument("--config", default='config/vox-256.yaml', help="path to config")
|
252 |
+
parser.add_argument("--checkpoint", default='', help="path to checkpoint to restore")
|
253 |
+
|
254 |
+
parser.add_argument("--source_image", default='', help="path to source image")
|
255 |
+
parser.add_argument("--driving_video", default='', help="path to driving video")
|
256 |
+
parser.add_argument("--result_video", default='./results_hq.mp4', help="path to output")
|
257 |
+
|
258 |
+
parser.add_argument("--gen", default="spade", choices=["original", "spade"])
|
259 |
+
|
260 |
+
parser.add_argument("--relative", dest="relative", action="store_true", help="use relative or absolute keypoint coordinates")
|
261 |
+
parser.add_argument("--adapt_scale", dest="adapt_scale", action="store_true", help="adapt movement scale based on convex hull of keypoints")
|
262 |
+
|
263 |
+
parser.add_argument("--find_best_frame", dest="find_best_frame", action="store_true",
|
264 |
+
help="Generate from the frame that is the most alligned with source. (Only for faces, requires face_aligment lib)")
|
265 |
+
|
266 |
+
parser.add_argument("--best_frame", dest="best_frame", type=int, default=None,
|
267 |
+
help="Set frame to start from.")
|
268 |
+
|
269 |
+
parser.add_argument("--cpu", dest="cpu", action="store_true", help="cpu mode.")
|
270 |
+
|
271 |
+
parser.add_argument("--free_view", dest="free_view", action="store_true", help="control head pose")
|
272 |
+
parser.add_argument("--yaw", dest="yaw", type=int, default=None, help="yaw")
|
273 |
+
parser.add_argument("--pitch", dest="pitch", type=int, default=None, help="pitch")
|
274 |
+
parser.add_argument("--roll", dest="roll", type=int, default=None, help="roll")
|
275 |
+
|
276 |
+
|
277 |
+
parser.set_defaults(relative=False)
|
278 |
+
parser.set_defaults(adapt_scale=False)
|
279 |
+
parser.set_defaults(free_view=False)
|
280 |
+
|
281 |
+
opt = parser.parse_args()
|
282 |
+
|
283 |
+
source_image = imageio.imread(opt.source_image)
|
284 |
+
reader = imageio.get_reader(opt.driving_video)
|
285 |
+
fps = reader.get_meta_data()['fps']
|
286 |
+
driving_video = []
|
287 |
+
try:
|
288 |
+
for im in reader:
|
289 |
+
driving_video.append(im)
|
290 |
+
except RuntimeError:
|
291 |
+
pass
|
292 |
+
reader.close()
|
293 |
+
|
294 |
+
source_image = resize(source_image, (512, 512))[..., :3]
|
295 |
+
driving_video = [resize(frame, (512, 512))[..., :3] for frame in driving_video]
|
296 |
+
generator, kp_detector, he_estimator = load_checkpoints(config_path=opt.config, checkpoint_path=opt.checkpoint, gen=opt.gen, cpu=opt.cpu)
|
297 |
+
|
298 |
+
with open(opt.config) as f:
|
299 |
+
config = yaml.load(f)
|
300 |
+
estimate_jacobian = config['model_params']['common_params']['estimate_jacobian']
|
301 |
+
print(f'estimate jacobian: {estimate_jacobian}')
|
302 |
+
|
303 |
+
if opt.find_best_frame or opt.best_frame is not None:
|
304 |
+
i = opt.best_frame if opt.best_frame is not None else find_best_frame(source_image, driving_video, cpu=opt.cpu)
|
305 |
+
print ("Best frame: " + str(i))
|
306 |
+
driving_forward = driving_video[i:]
|
307 |
+
driving_backward = driving_video[:(i+1)][::-1]
|
308 |
+
predictions_forward = make_animation(source_image, driving_forward, generator, kp_detector, he_estimator, relative=opt.relative, adapt_movement_scale=opt.adapt_scale, estimate_jacobian=estimate_jacobian, cpu=opt.cpu, free_view=opt.free_view, yaw=opt.yaw, pitch=opt.pitch, roll=opt.roll)
|
309 |
+
predictions_backward = make_animation(source_image, driving_backward, generator, kp_detector, he_estimator, relative=opt.relative, adapt_movement_scale=opt.adapt_scale, estimate_jacobian=estimate_jacobian, cpu=opt.cpu, free_view=opt.free_view, yaw=opt.yaw, pitch=opt.pitch, roll=opt.roll)
|
310 |
+
predictions = predictions_backward[::-1] + predictions_forward[1:]
|
311 |
+
else:
|
312 |
+
predictions = make_animation(source_image, driving_video, generator, kp_detector, he_estimator, relative=opt.relative, adapt_movement_scale=opt.adapt_scale, estimate_jacobian=estimate_jacobian, cpu=opt.cpu, free_view=opt.free_view, yaw=opt.yaw, pitch=opt.pitch, roll=opt.roll)
|
313 |
+
imageio.mimsave(opt.result_video, [img_as_ubyte(frame) for frame in predictions], fps=fps)
|
environment.yaml
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: mesh-video
|
2 |
+
channels:
|
3 |
+
- pytorch
|
4 |
+
- conda-forge
|
5 |
+
- defaults
|
6 |
+
dependencies:
|
7 |
+
- _libgcc_mutex=0.1=main
|
8 |
+
- _openmp_mutex=5.1=1_gnu
|
9 |
+
- blas=1.0=mkl
|
10 |
+
- bzip2=1.0.8=h7b6447c_0
|
11 |
+
- ca-certificates=2023.01.10=h06a4308_0
|
12 |
+
- certifi=2022.12.7=py38h06a4308_0
|
13 |
+
- cudatoolkit=11.3.1=h9edb442_10
|
14 |
+
- flit-core=3.8.0=py38h06a4308_0
|
15 |
+
- freetype=2.12.1=h4a9f257_0
|
16 |
+
- giflib=5.2.1=h5eee18b_3
|
17 |
+
- gmp=6.2.1=h295c915_3
|
18 |
+
- gnutls=3.6.15=he1e5248_0
|
19 |
+
- intel-openmp=2021.4.0=h06a4308_3561
|
20 |
+
- jpeg=9e=h5eee18b_1
|
21 |
+
- lame=3.100=h7b6447c_0
|
22 |
+
- lcms2=2.12=h3be6417_0
|
23 |
+
- lerc=3.0=h295c915_0
|
24 |
+
- libdeflate=1.17=h5eee18b_0
|
25 |
+
- libedit=3.1.20221030=h5eee18b_0
|
26 |
+
- libffi=3.2.1=hf484d3e_1007
|
27 |
+
- libgcc-ng=11.2.0=h1234567_1
|
28 |
+
- libgomp=11.2.0=h1234567_1
|
29 |
+
- libidn2=2.3.2=h7f8727e_0
|
30 |
+
- libopus=1.3.1=h7b6447c_0
|
31 |
+
- libpng=1.6.39=h5eee18b_0
|
32 |
+
- libstdcxx-ng=11.2.0=h1234567_1
|
33 |
+
- libtasn1=4.19.0=h5eee18b_0
|
34 |
+
- libtiff=4.5.0=h6a678d5_2
|
35 |
+
- libunistring=0.9.10=h27cfd23_0
|
36 |
+
- libuv=1.44.2=h5eee18b_0
|
37 |
+
- libvpx=1.7.0=h439df22_0
|
38 |
+
- libwebp=1.2.4=h11a3e52_1
|
39 |
+
- libwebp-base=1.2.4=h5eee18b_1
|
40 |
+
- lz4-c=1.9.4=h6a678d5_0
|
41 |
+
- mkl=2021.4.0=h06a4308_640
|
42 |
+
- mkl-service=2.4.0=py38h7f8727e_0
|
43 |
+
- mkl_fft=1.3.1=py38hd3c417c_0
|
44 |
+
- mkl_random=1.2.2=py38h51133e4_0
|
45 |
+
- ncurses=6.4=h6a678d5_0
|
46 |
+
- nettle=3.7.3=hbbd107a_1
|
47 |
+
- numpy-base=1.23.5=py38h31eccc5_0
|
48 |
+
- openh264=2.1.1=h4ff587b_0
|
49 |
+
- openssl=1.1.1t=h7f8727e_0
|
50 |
+
- pillow=9.4.0=py38h6a678d5_0
|
51 |
+
- pip=23.0.1=py38h06a4308_0
|
52 |
+
- python=3.8.0=h0371630_2
|
53 |
+
- pytorch=1.10.1=py3.8_cuda11.3_cudnn8.2.0_0
|
54 |
+
- pytorch-mutex=1.0=cuda
|
55 |
+
- readline=7.0=h7b6447c_5
|
56 |
+
- setuptools=65.6.3=py38h06a4308_0
|
57 |
+
- six=1.16.0=pyhd3eb1b0_1
|
58 |
+
- sqlite=3.33.0=h62c20be_0
|
59 |
+
- tk=8.6.12=h1ccaba5_0
|
60 |
+
- torchaudio=0.10.1=py38_cu113
|
61 |
+
- torchvision=0.11.2=py38_cu113
|
62 |
+
- typing_extensions=4.4.0=py38h06a4308_0
|
63 |
+
- wheel=0.38.4=py38h06a4308_0
|
64 |
+
- x264=1!157.20191217=h7b6447c_0
|
65 |
+
- xz=5.2.10=h5eee18b_1
|
66 |
+
- zlib=1.2.13=h5eee18b_0
|
67 |
+
- zstd=1.5.4=hc292b87_0
|
68 |
+
- pip:
|
69 |
+
- cffi==1.14.6
|
70 |
+
- cycler==0.10.0
|
71 |
+
- decorator==5.1.0
|
72 |
+
- face-alignment==1.3.5
|
73 |
+
- ffmpeg==1.4
|
74 |
+
- imageio==2.9.0
|
75 |
+
- imageio-ffmpeg==0.4.5
|
76 |
+
- importlib-metadata==6.0.0
|
77 |
+
- joblib==1.2.0
|
78 |
+
- kiwisolver==1.3.2
|
79 |
+
- llvmlite==0.39.1
|
80 |
+
- matplotlib==3.4.3
|
81 |
+
- networkx==2.6.3
|
82 |
+
- numba==0.56.4
|
83 |
+
- numpy==1.20.3
|
84 |
+
- nvidia-cublas-cu11==11.10.3.66
|
85 |
+
- nvidia-cuda-nvrtc-cu11==11.7.99
|
86 |
+
- nvidia-cuda-runtime-cu11==11.7.99
|
87 |
+
- nvidia-cudnn-cu11==8.5.0.96
|
88 |
+
- opencv-python==4.7.0.72
|
89 |
+
- pandas==1.3.3
|
90 |
+
- pycparser==2.20
|
91 |
+
- pyparsing==2.4.7
|
92 |
+
- python-dateutil==2.8.2
|
93 |
+
- pytube==12.1.3
|
94 |
+
- pytz==2021.1
|
95 |
+
- pywavelets==1.1.1
|
96 |
+
- pyyaml==5.4.1
|
97 |
+
- scikit-image==0.18.3
|
98 |
+
- scikit-learn==1.0
|
99 |
+
- scipy==1.7.1
|
100 |
+
- threadpoolctl==3.1.0
|
101 |
+
- tifffile==2023.2.28
|
102 |
+
- torch==1.13.1
|
103 |
+
- tqdm==4.62.3
|
104 |
+
- typing-extensions==4.5.0
|
105 |
+
- zipp==3.15.0
|
106 |
+
prefix: /home/songlc/miniconda3/envs/mesh-video
|
frames_dataset.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#CUDA_VISIBLE_DEVICES=1 python run.py --config log_TH1K/finetune-th1k-spade.yml --device_ids 0 --checkpoint log_TH1K/00000001-checkpoint.pth.tar
|
2 |
+
import os
|
3 |
+
from skimage import io, img_as_float32
|
4 |
+
from skimage.color import gray2rgb
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from imageio import mimread
|
7 |
+
from functools import partial
|
8 |
+
from skimage.transform import resize
|
9 |
+
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import random
|
13 |
+
import numpy as np
|
14 |
+
from torch.utils.data import Dataset
|
15 |
+
import pandas as pd
|
16 |
+
from augmentation import AllAugmentationTransform
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
|
20 |
+
import pickle
|
21 |
+
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
|
22 |
+
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
def read_video(name, frame_shape):
|
27 |
+
"""
|
28 |
+
Read video which can be:
|
29 |
+
- an image of concatenated frames
|
30 |
+
- '.mp4' and'.gif'
|
31 |
+
- folder with videos
|
32 |
+
"""
|
33 |
+
|
34 |
+
if os.path.isdir(name):
|
35 |
+
|
36 |
+
frames = sorted(os.listdir(name))
|
37 |
+
num_frames = len(frames)
|
38 |
+
video_array = np.array(
|
39 |
+
[img_as_float32(io.imread(os.path.join(name, frames[idx]))) for idx in range(num_frames)])
|
40 |
+
elif name.lower().endswith('.png') or name.lower().endswith('.jpg'):
|
41 |
+
image = io.imread(name)
|
42 |
+
|
43 |
+
if len(image.shape) == 2 or image.shape[2] == 1:
|
44 |
+
image = gray2rgb(image)
|
45 |
+
|
46 |
+
if image.shape[2] == 4:
|
47 |
+
image = image[..., :3]
|
48 |
+
|
49 |
+
image = img_as_float32(image)
|
50 |
+
|
51 |
+
video_array = np.moveaxis(image, 1, 0)
|
52 |
+
|
53 |
+
video_array = video_array.reshape((-1,) + frame_shape)
|
54 |
+
video_array = np.moveaxis(video_array, 1, 2)
|
55 |
+
|
56 |
+
elif name.lower().endswith('.gif') or name.lower().endswith('.mp4') or name.lower().endswith('.mov'):
|
57 |
+
video = np.array(mimread(name))
|
58 |
+
if len(video.shape) == 3:
|
59 |
+
video = np.array([gray2rgb(frame) for frame in video])
|
60 |
+
if video.shape[-1] == 4:
|
61 |
+
video = video[..., :3]
|
62 |
+
video_array = img_as_float32(video)
|
63 |
+
else:
|
64 |
+
raise Exception("Unknown file extensions %s" % name)
|
65 |
+
|
66 |
+
return video_array
|
67 |
+
|
68 |
+
|
69 |
+
class FramesDataset(Dataset):
|
70 |
+
"""
|
71 |
+
Dataset of videos, each video can be represented as:
|
72 |
+
- an image of concatenated frames
|
73 |
+
- '.mp4' or '.gif'
|
74 |
+
- folder with all frames
|
75 |
+
"""
|
76 |
+
|
77 |
+
def __init__(self, root_dir, frame_shape=(256, 256, 3), id_sampling=False, is_train=True,
|
78 |
+
random_seed=0, pairs_list=None, augmentation_params=None):
|
79 |
+
self.root_dir = root_dir
|
80 |
+
|
81 |
+
tmp_file = open(root_dir + 'train_file_list.pickle','rb')
|
82 |
+
self.train_files_list = pickle.load(tmp_file)
|
83 |
+
|
84 |
+
self.videos = os.listdir(root_dir)
|
85 |
+
self.frame_shape = tuple(frame_shape)
|
86 |
+
self.pairs_list = pairs_list
|
87 |
+
self.id_sampling = id_sampling
|
88 |
+
if os.path.exists(os.path.join(root_dir, 'train')):
|
89 |
+
assert os.path.exists(os.path.join(root_dir, 'test'))
|
90 |
+
print("Use predefined train-test split.")
|
91 |
+
if id_sampling:
|
92 |
+
# train_videos = {os.path.basename(video).split('#')[0] for video in
|
93 |
+
# os.listdir(os.path.join(root_dir, 'train'))}
|
94 |
+
# train_videos = list(train_videos)
|
95 |
+
train_videos = list(self.train_files_list.keys())
|
96 |
+
else:
|
97 |
+
train_videos = os.listdir(os.path.join(root_dir, 'train'))
|
98 |
+
test_videos = os.listdir(os.path.join(root_dir, 'test'))
|
99 |
+
self.root_dir = os.path.join(self.root_dir, 'train' if is_train else 'test')
|
100 |
+
else:
|
101 |
+
print("Use random train-test split.")
|
102 |
+
train_videos, test_videos = train_test_split(self.videos, random_state=random_seed, test_size=0.2)
|
103 |
+
|
104 |
+
if is_train:
|
105 |
+
self.videos = train_videos
|
106 |
+
else:
|
107 |
+
self.videos = test_videos
|
108 |
+
|
109 |
+
self.is_train = is_train
|
110 |
+
|
111 |
+
if self.is_train:
|
112 |
+
self.transform = AllAugmentationTransform(**augmentation_params)
|
113 |
+
|
114 |
+
#### for degradation ####
|
115 |
+
|
116 |
+
|
117 |
+
self.kernel_range = [2 * v + 1 for v in range(1,3)]
|
118 |
+
self.pulse_tensor = torch.zeros(11, 11).float()
|
119 |
+
self.pulse_tensor[5, 5] = 1
|
120 |
+
|
121 |
+
self.resize_range = [0.15, 1.5]
|
122 |
+
|
123 |
+
# blur settings for the first degradation
|
124 |
+
self.blur_kernel_size = 7
|
125 |
+
self.kernel_list = ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
|
126 |
+
self.kernel_prob = [0.45, 0.25, 0.12, 0.03, 0.12, 0.03] # a list for each kernel probability
|
127 |
+
self.blur_sigma = [0.1, 0.5]
|
128 |
+
self.betag_range = [0.2, 1] # betag used in generalized Gaussian blur kernels
|
129 |
+
self.betap_range = [0.5, 1.2] # betap used in plateau blur kernels
|
130 |
+
self.sinc_prob = 0.1 # the probability for sinc filters
|
131 |
+
|
132 |
+
# blur settings for the second degradation
|
133 |
+
self.blur_kernel_size2 = 7
|
134 |
+
self.kernel_list2 = ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
|
135 |
+
self.kernel_prob2 = [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
|
136 |
+
self.blur_sigma2 = [0.1, 0.5]
|
137 |
+
self.betag_range2 = [0.2, 1]
|
138 |
+
self.betap_range2 = [1, 1.2]
|
139 |
+
self.sinc_prob2 = 0.1
|
140 |
+
else:
|
141 |
+
self.transform = None
|
142 |
+
|
143 |
+
def __len__(self):
|
144 |
+
return len(self.videos)
|
145 |
+
|
146 |
+
def __getitem__(self, idx):
|
147 |
+
if self.is_train and self.id_sampling:
|
148 |
+
# name = self.videos[idx]
|
149 |
+
# path = np.random.choice(glob.glob(os.path.join(self.root_dir, name + '*.mp4')))
|
150 |
+
name = self.videos[idx]
|
151 |
+
choice_list = self.train_files_list[name]
|
152 |
+
# if len(choice_list) == 0:
|
153 |
+
# name = self.videos[idx-1]
|
154 |
+
# choice_list = self.train_files_list[name]
|
155 |
+
paths = np.random.choice(choice_list)
|
156 |
+
else:
|
157 |
+
name = self.videos[idx]
|
158 |
+
paths = os.path.join(self.root_dir, name)
|
159 |
+
|
160 |
+
video_name = os.path.basename(paths)
|
161 |
+
if self.is_train and os.path.isdir(paths):
|
162 |
+
frames = os.listdir(paths)
|
163 |
+
num_frames = len(frames)
|
164 |
+
frame_idx = np.sort(np.random.choice(num_frames, replace=True, size=2))
|
165 |
+
|
166 |
+
|
167 |
+
if self.frame_shape is not None:
|
168 |
+
resize_fn = partial(resize, output_shape=self.frame_shape)
|
169 |
+
else:
|
170 |
+
resize_fn = img_as_float32
|
171 |
+
video_array = [resize_fn(img_as_float32(io.imread(paths + '/' + '%06d.jpg'%(idx) ))) for idx in frame_idx]
|
172 |
+
|
173 |
+
|
174 |
+
else:
|
175 |
+
video_array = read_video(paths, frame_shape=self.frame_shape)
|
176 |
+
num_frames = len(video_array)
|
177 |
+
frame_idx = np.sort(np.random.choice(num_frames, replace=True, size=2)) if self.is_train else range(
|
178 |
+
num_frames)
|
179 |
+
video_array = video_array[frame_idx]
|
180 |
+
|
181 |
+
if self.transform is not None:
|
182 |
+
video_array = self.transform(video_array)
|
183 |
+
|
184 |
+
out = {}
|
185 |
+
if self.is_train:
|
186 |
+
source = np.array(video_array[0], dtype='float32')
|
187 |
+
driving = np.array(video_array[1], dtype='float32')
|
188 |
+
out['driving'] = driving.transpose((2, 0, 1))
|
189 |
+
out['source'] = source.transpose((2, 0, 1))
|
190 |
+
|
191 |
+
# if self.degradation:
|
192 |
+
############ run degradation ############
|
193 |
+
# ---- Generate kernels (used in the first degradation) ---- #
|
194 |
+
kernel_size = random.choice(self.kernel_range)
|
195 |
+
if np.random.uniform() < 0.1:
|
196 |
+
# this sinc filter setting is for kernels ranging from [7, 21]
|
197 |
+
if kernel_size < 11:
|
198 |
+
omega_c = np.random.uniform(np.pi / 3, np.pi)
|
199 |
+
else:
|
200 |
+
omega_c = np.random.uniform(np.pi / 5, np.pi)
|
201 |
+
kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
|
202 |
+
else:
|
203 |
+
kernel = random_mixed_kernels(
|
204 |
+
self.kernel_list,
|
205 |
+
self.kernel_prob,
|
206 |
+
kernel_size,
|
207 |
+
self.blur_sigma,
|
208 |
+
self.blur_sigma, [-math.pi, math.pi],
|
209 |
+
self.betag_range,
|
210 |
+
self.betap_range,
|
211 |
+
noise_range=None)
|
212 |
+
# pad kernel
|
213 |
+
pad_size = (21 - kernel_size) // 2
|
214 |
+
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
|
215 |
+
|
216 |
+
|
217 |
+
# ----- Generate kernels (used in the second degradation) ---- #
|
218 |
+
kernel_size = random.choice(self.kernel_range)
|
219 |
+
if np.random.uniform() < 0.1:
|
220 |
+
if kernel_size < 13:
|
221 |
+
omega_c = np.random.uniform(np.pi / 3, np.pi)
|
222 |
+
else:
|
223 |
+
omega_c = np.random.uniform(np.pi / 5, np.pi)
|
224 |
+
kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
|
225 |
+
else:
|
226 |
+
kernel2 = random_mixed_kernels(
|
227 |
+
self.kernel_list2,
|
228 |
+
self.kernel_prob2,
|
229 |
+
kernel_size,
|
230 |
+
self.blur_sigma2,
|
231 |
+
self.blur_sigma2, [-math.pi, math.pi],
|
232 |
+
self.betag_range2,
|
233 |
+
self.betap_range2,
|
234 |
+
noise_range=None)
|
235 |
+
# pad kernel
|
236 |
+
pad_size = (21 - kernel_size) // 2
|
237 |
+
kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))
|
238 |
+
|
239 |
+
# ---- the final sinc kernel ---- #
|
240 |
+
if np.random.uniform() < 0.8:
|
241 |
+
kernel_size = random.choice(self.kernel_range)
|
242 |
+
omega_c = np.random.uniform(np.pi / 3, np.pi)
|
243 |
+
sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=11)
|
244 |
+
sinc_kernel = torch.FloatTensor(sinc_kernel)
|
245 |
+
else:
|
246 |
+
sinc_kernel = self.pulse_tensor
|
247 |
+
|
248 |
+
# BGR to RGB, HWC to CHW, numpy to tensor
|
249 |
+
# img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0]
|
250 |
+
kernel = torch.FloatTensor(kernel)
|
251 |
+
kernel2 = torch.FloatTensor(kernel2)
|
252 |
+
#########################################
|
253 |
+
|
254 |
+
out['kernel'] = kernel
|
255 |
+
out['kernel2']= kernel2
|
256 |
+
out['sinc_kernel'] = sinc_kernel
|
257 |
+
|
258 |
+
else:
|
259 |
+
video = np.array(video_array, dtype='float32')
|
260 |
+
out['video'] = video.transpose((3, 0, 1, 2))
|
261 |
+
|
262 |
+
out['name'] = video_name
|
263 |
+
|
264 |
+
return out
|
265 |
+
|
266 |
+
|
267 |
+
class DatasetRepeater(Dataset):
|
268 |
+
"""
|
269 |
+
Pass several times over the same dataset for better i/o performance
|
270 |
+
"""
|
271 |
+
|
272 |
+
def __init__(self, dataset, num_repeats=100):
|
273 |
+
self.dataset = dataset
|
274 |
+
self.num_repeats = num_repeats
|
275 |
+
|
276 |
+
def __len__(self):
|
277 |
+
return self.num_repeats * self.dataset.__len__()
|
278 |
+
|
279 |
+
def __getitem__(self, idx):
|
280 |
+
return self.dataset[idx % self.dataset.__len__()]
|
logger.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import imageio
|
5 |
+
|
6 |
+
import os
|
7 |
+
from skimage.draw import circle
|
8 |
+
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import collections
|
11 |
+
|
12 |
+
|
13 |
+
class Logger:
|
14 |
+
def __init__(self, log_dir, checkpoint_freq=100, visualizer_params=None, zfill_num=8, log_file_name='log.txt'):
|
15 |
+
|
16 |
+
self.loss_list = []
|
17 |
+
self.cpk_dir = log_dir
|
18 |
+
self.visualizations_dir = os.path.join(log_dir, 'train-vis')
|
19 |
+
if not os.path.exists(self.visualizations_dir):
|
20 |
+
os.makedirs(self.visualizations_dir)
|
21 |
+
self.log_file = open(os.path.join(log_dir, log_file_name), 'a')
|
22 |
+
self.zfill_num = zfill_num
|
23 |
+
self.visualizer = Visualizer(**visualizer_params)
|
24 |
+
self.checkpoint_freq = checkpoint_freq
|
25 |
+
self.epoch = 0
|
26 |
+
self.best_loss = float('inf')
|
27 |
+
self.names = None
|
28 |
+
|
29 |
+
def log_scores(self, loss_names):
|
30 |
+
loss_mean = np.array(self.loss_list).mean(axis=0)
|
31 |
+
|
32 |
+
loss_string = "; ".join(["%s - %.5f" % (name, value) for name, value in zip(loss_names, loss_mean)])
|
33 |
+
loss_string = str(self.epoch).zfill(self.zfill_num) + ") " + loss_string
|
34 |
+
|
35 |
+
print(loss_string, file=self.log_file)
|
36 |
+
self.loss_list = []
|
37 |
+
self.log_file.flush()
|
38 |
+
|
39 |
+
def visualize_rec(self, inp, out):
|
40 |
+
image = self.visualizer.visualize(inp['driving'], inp['source'], out)
|
41 |
+
imageio.imsave(os.path.join(self.visualizations_dir, "%s-rec.png" % str(self.epoch).zfill(self.zfill_num)), image)
|
42 |
+
|
43 |
+
def save_cpk(self, emergent=False):
|
44 |
+
cpk = {k: v.state_dict() for k, v in self.models.items()}
|
45 |
+
cpk['epoch'] = self.epoch
|
46 |
+
cpk_path = os.path.join(self.cpk_dir, '%s-checkpoint.pth.tar' % str(self.epoch + 1).zfill(self.zfill_num))
|
47 |
+
if not (os.path.exists(cpk_path) and emergent):
|
48 |
+
torch.save(cpk, cpk_path)
|
49 |
+
|
50 |
+
@staticmethod
|
51 |
+
def load_cpk(checkpoint_path, generator=None, discriminator=None, kp_detector=None, he_estimator=None,
|
52 |
+
optimizer_generator=None, optimizer_discriminator=None, optimizer_kp_detector=None, optimizer_he_estimator=None):
|
53 |
+
checkpoint = torch.load(checkpoint_path)
|
54 |
+
if generator is not None:
|
55 |
+
generator.load_state_dict(checkpoint['generator'])
|
56 |
+
if kp_detector is not None:
|
57 |
+
kp_detector.load_state_dict(checkpoint['kp_detector'])
|
58 |
+
if he_estimator is not None:
|
59 |
+
he_estimator.load_state_dict(checkpoint['he_estimator'])
|
60 |
+
if discriminator is not None:
|
61 |
+
try:
|
62 |
+
discriminator.load_state_dict(checkpoint['discriminator'])
|
63 |
+
except:
|
64 |
+
print ('No discriminator in the state-dict. Dicriminator will be randomly initialized')
|
65 |
+
if optimizer_generator is not None:
|
66 |
+
optimizer_generator.load_state_dict(checkpoint['optimizer_generator'])
|
67 |
+
if optimizer_discriminator is not None:
|
68 |
+
try:
|
69 |
+
optimizer_discriminator.load_state_dict(checkpoint['optimizer_discriminator'])
|
70 |
+
except RuntimeError as e:
|
71 |
+
print ('No discriminator optimizer in the state-dict. Optimizer will be not initialized')
|
72 |
+
if optimizer_kp_detector is not None:
|
73 |
+
optimizer_kp_detector.load_state_dict(checkpoint['optimizer_kp_detector'])
|
74 |
+
if optimizer_he_estimator is not None:
|
75 |
+
optimizer_he_estimator.load_state_dict(checkpoint['optimizer_he_estimator'])
|
76 |
+
|
77 |
+
return checkpoint['epoch']
|
78 |
+
|
79 |
+
def __enter__(self):
|
80 |
+
return self
|
81 |
+
|
82 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
83 |
+
if 'models' in self.__dict__:
|
84 |
+
self.save_cpk()
|
85 |
+
self.log_file.close()
|
86 |
+
|
87 |
+
def log_iter(self, losses):
|
88 |
+
losses = collections.OrderedDict(losses.items())
|
89 |
+
if self.names is None:
|
90 |
+
self.names = list(losses.keys())
|
91 |
+
self.loss_list.append(list(losses.values()))
|
92 |
+
|
93 |
+
def log_epoch(self, epoch, models, inp, out):
|
94 |
+
self.epoch = epoch
|
95 |
+
self.models = models
|
96 |
+
if (self.epoch + 1) % self.checkpoint_freq == 0:
|
97 |
+
self.save_cpk()
|
98 |
+
self.log_scores(self.names)
|
99 |
+
self.visualize_rec(inp, out)
|
100 |
+
|
101 |
+
|
102 |
+
class Visualizer:
|
103 |
+
def __init__(self, kp_size=5, draw_border=False, colormap='gist_rainbow'):
|
104 |
+
self.kp_size = kp_size
|
105 |
+
self.draw_border = draw_border
|
106 |
+
self.colormap = plt.get_cmap(colormap)
|
107 |
+
|
108 |
+
def draw_image_with_kp(self, image, kp_array):
|
109 |
+
image = np.copy(image)
|
110 |
+
spatial_size = np.array(image.shape[:2][::-1])[np.newaxis]
|
111 |
+
kp_array = spatial_size * (kp_array + 1) / 2
|
112 |
+
num_kp = kp_array.shape[0]
|
113 |
+
for kp_ind, kp in enumerate(kp_array):
|
114 |
+
rr, cc = circle(kp[1], kp[0], self.kp_size, shape=image.shape[:2])
|
115 |
+
image[rr, cc] = np.array(self.colormap(kp_ind / num_kp))[:3]
|
116 |
+
return image
|
117 |
+
|
118 |
+
def create_image_column_with_kp(self, images, kp):
|
119 |
+
image_array = np.array([self.draw_image_with_kp(v, k) for v, k in zip(images, kp)])
|
120 |
+
return self.create_image_column(image_array)
|
121 |
+
|
122 |
+
def create_image_column(self, images):
|
123 |
+
if self.draw_border:
|
124 |
+
images = np.copy(images)
|
125 |
+
images[:, :, [0, -1]] = (1, 1, 1)
|
126 |
+
images[:, :, [0, -1]] = (1, 1, 1)
|
127 |
+
return np.concatenate(list(images), axis=0)
|
128 |
+
|
129 |
+
def create_image_grid(self, *args):
|
130 |
+
out = []
|
131 |
+
for arg in args:
|
132 |
+
if type(arg) == tuple:
|
133 |
+
out.append(self.create_image_column_with_kp(arg[0], arg[1]))
|
134 |
+
else:
|
135 |
+
out.append(self.create_image_column(arg))
|
136 |
+
return np.concatenate(out, axis=1)
|
137 |
+
|
138 |
+
def visualize(self, driving, source, out):
|
139 |
+
images = []
|
140 |
+
|
141 |
+
# Source image with keypoints
|
142 |
+
source = source.data.cpu()
|
143 |
+
kp_source = out['kp_source']['value'][:, :, :2].data.cpu().numpy() # 3d -> 2d
|
144 |
+
source = np.transpose(source, [0, 2, 3, 1])
|
145 |
+
images.append((source, kp_source))
|
146 |
+
|
147 |
+
# Equivariance visualization
|
148 |
+
if 'transformed_frame' in out:
|
149 |
+
transformed = out['transformed_frame'].data.cpu().numpy()
|
150 |
+
transformed = np.transpose(transformed, [0, 2, 3, 1])
|
151 |
+
transformed_kp = out['transformed_kp']['value'][:, :, :2].data.cpu().numpy() # 3d -> 2d
|
152 |
+
images.append((transformed, transformed_kp))
|
153 |
+
|
154 |
+
# Driving image with keypoints
|
155 |
+
kp_driving = out['kp_driving']['value'][:, :, :2].data.cpu().numpy() # 3d -> 2d
|
156 |
+
driving = driving.data.cpu().numpy()
|
157 |
+
driving = np.transpose(driving, [0, 2, 3, 1])
|
158 |
+
images.append((driving, kp_driving))
|
159 |
+
|
160 |
+
# Result
|
161 |
+
prediction = out['prediction'].data.cpu().numpy()
|
162 |
+
prediction = np.transpose(prediction, [0, 2, 3, 1])
|
163 |
+
images.append(prediction)
|
164 |
+
|
165 |
+
## Occlusion map
|
166 |
+
if 'occlusion_map' in out:
|
167 |
+
occlusion_map = out['occlusion_map'].data.cpu().repeat(1, 3, 1, 1)
|
168 |
+
occlusion_map = F.interpolate(occlusion_map, size=source.shape[1:3]).numpy()
|
169 |
+
occlusion_map = np.transpose(occlusion_map, [0, 2, 3, 1])
|
170 |
+
images.append(occlusion_map)
|
171 |
+
|
172 |
+
## Mask
|
173 |
+
if 'mask' in out:
|
174 |
+
for i in range(out['mask'].shape[1]):
|
175 |
+
mask = out['mask'][:, i:(i+1)].data.cpu().sum(2).repeat(1, 3, 1, 1) # (n, 3, h, w)
|
176 |
+
# mask = F.softmax(mask.view(mask.shape[0], mask.shape[1], -1), dim=2).view(mask.shape)
|
177 |
+
mask = F.interpolate(mask, size=source.shape[1:3]).numpy()
|
178 |
+
mask = np.transpose(mask, [0, 2, 3, 1])
|
179 |
+
|
180 |
+
if i != 0:
|
181 |
+
color = np.array(self.colormap((i - 1) / (out['mask'].shape[1] - 1)))[:3]
|
182 |
+
else:
|
183 |
+
color = np.array((0, 0, 0))
|
184 |
+
|
185 |
+
color = color.reshape((1, 1, 1, 3))
|
186 |
+
|
187 |
+
if i != 0:
|
188 |
+
images.append(mask * color)
|
189 |
+
else:
|
190 |
+
images.append(mask)
|
191 |
+
|
192 |
+
image = self.create_image_grid(*images)
|
193 |
+
image = (255 * image).astype(np.uint8)
|
194 |
+
return image
|
media/Teaser_video.png
ADDED
Git LFS Details
|
modules/__pycache__/dense_motion.cpython-36.pyc
ADDED
Binary file (3.86 kB). View file
|
|
modules/__pycache__/dense_motion.cpython-37.pyc
ADDED
Binary file (3.82 kB). View file
|
|
modules/__pycache__/dense_motion.cpython-38.pyc
ADDED
Binary file (3.81 kB). View file
|
|
modules/__pycache__/discriminator.cpython-36.pyc
ADDED
Binary file (3.22 kB). View file
|
|
modules/__pycache__/discriminator.cpython-37.pyc
ADDED
Binary file (3.21 kB). View file
|
|
modules/__pycache__/discriminator.cpython-38.pyc
ADDED
Binary file (3.18 kB). View file
|
|
modules/__pycache__/generator.cpython-36.pyc
ADDED
Binary file (7.01 kB). View file
|
|
modules/__pycache__/generator.cpython-37.pyc
ADDED
Binary file (6.86 kB). View file
|
|
modules/__pycache__/generator.cpython-38.pyc
ADDED
Binary file (6.65 kB). View file
|
|
modules/__pycache__/hopenet.cpython-36.pyc
ADDED
Binary file (5.17 kB). View file
|
|
modules/__pycache__/hopenet.cpython-37.pyc
ADDED
Binary file (5.13 kB). View file
|
|
modules/__pycache__/hopenet.cpython-38.pyc
ADDED
Binary file (4.92 kB). View file
|
|
modules/__pycache__/keypoint_detector.cpython-36.pyc
ADDED
Binary file (4.82 kB). View file
|
|
modules/__pycache__/keypoint_detector.cpython-37.pyc
ADDED
Binary file (4.79 kB). View file
|
|
modules/__pycache__/keypoint_detector.cpython-38.pyc
ADDED
Binary file (4.78 kB). View file
|
|
modules/__pycache__/model.cpython-36.pyc
ADDED
Binary file (13 kB). View file
|
|
modules/__pycache__/model.cpython-37.pyc
ADDED
Binary file (15.3 kB). View file
|
|
modules/__pycache__/model.cpython-38.pyc
ADDED
Binary file (15.3 kB). View file
|
|
modules/__pycache__/util.cpython-36.pyc
ADDED
Binary file (15.5 kB). View file
|
|
modules/__pycache__/util.cpython-37.pyc
ADDED
Binary file (15.4 kB). View file
|
|
modules/__pycache__/util.cpython-38.pyc
ADDED
Binary file (14.5 kB). View file
|
|
modules/dense_motion.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import torch
|
4 |
+
from modules.util import Hourglass, make_coordinate_grid, kp2gaussian
|
5 |
+
|
6 |
+
from sync_batchnorm import SynchronizedBatchNorm3d as BatchNorm3d
|
7 |
+
|
8 |
+
|
9 |
+
class DenseMotionNetwork(nn.Module):
|
10 |
+
"""
|
11 |
+
Module that predicting a dense motion from sparse motion representation given by kp_source and kp_driving
|
12 |
+
"""
|
13 |
+
|
14 |
+
def __init__(self, block_expansion, num_blocks, max_features, num_kp, feature_channel, reshape_depth, compress,
|
15 |
+
estimate_occlusion_map=False):
|
16 |
+
super(DenseMotionNetwork, self).__init__()
|
17 |
+
# self.hourglass = Hourglass(block_expansion=block_expansion, in_features=(num_kp+1)*(feature_channel+1), max_features=max_features, num_blocks=num_blocks)
|
18 |
+
self.hourglass = Hourglass(block_expansion=block_expansion, in_features=(num_kp+1)*(compress+1), max_features=max_features, num_blocks=num_blocks)
|
19 |
+
|
20 |
+
self.mask = nn.Conv3d(self.hourglass.out_filters, num_kp + 1, kernel_size=7, padding=3)
|
21 |
+
|
22 |
+
self.compress = nn.Conv3d(feature_channel, compress, kernel_size=1)
|
23 |
+
self.norm = BatchNorm3d(compress, affine=True)
|
24 |
+
|
25 |
+
if estimate_occlusion_map:
|
26 |
+
# self.occlusion = nn.Conv2d(reshape_channel*reshape_depth, 1, kernel_size=7, padding=3)
|
27 |
+
self.occlusion = nn.Conv2d(self.hourglass.out_filters*reshape_depth, 1, kernel_size=7, padding=3)
|
28 |
+
else:
|
29 |
+
self.occlusion = None
|
30 |
+
|
31 |
+
self.num_kp = num_kp
|
32 |
+
|
33 |
+
|
34 |
+
def create_sparse_motions(self, feature, kp_driving, kp_source):
|
35 |
+
bs, _, d, h, w = feature.shape
|
36 |
+
identity_grid = make_coordinate_grid((d, h, w), type=kp_source['value'].type())
|
37 |
+
identity_grid = identity_grid.view(1, 1, d, h, w, 3)
|
38 |
+
coordinate_grid = identity_grid - kp_driving['value'].view(bs, self.num_kp, 1, 1, 1, 3)
|
39 |
+
|
40 |
+
k = coordinate_grid.shape[1]
|
41 |
+
|
42 |
+
# if 'jacobian' in kp_driving:
|
43 |
+
if 'jacobian' in kp_driving and kp_driving['jacobian'] is not None:
|
44 |
+
jacobian = torch.matmul(kp_source['jacobian'], torch.inverse(kp_driving['jacobian']))
|
45 |
+
jacobian = jacobian.unsqueeze(-3).unsqueeze(-3).unsqueeze(-3)
|
46 |
+
jacobian = jacobian.repeat(1, 1, d, h, w, 1, 1)
|
47 |
+
coordinate_grid = torch.matmul(jacobian, coordinate_grid.unsqueeze(-1))
|
48 |
+
coordinate_grid = coordinate_grid.squeeze(-1)
|
49 |
+
'''
|
50 |
+
if 'rot' in kp_driving:
|
51 |
+
rot_s = kp_source['rot']
|
52 |
+
rot_d = kp_driving['rot']
|
53 |
+
rot = torch.einsum('bij, bjk->bki', rot_s, torch.inverse(rot_d))
|
54 |
+
rot = rot.unsqueeze(-3).unsqueeze(-3).unsqueeze(-3).unsqueeze(-3)
|
55 |
+
rot = rot.repeat(1, k, d, h, w, 1, 1)
|
56 |
+
# print(rot.shape)
|
57 |
+
coordinate_grid = torch.matmul(rot, coordinate_grid.unsqueeze(-1))
|
58 |
+
coordinate_grid = coordinate_grid.squeeze(-1)
|
59 |
+
# print(coordinate_grid.shape)
|
60 |
+
'''
|
61 |
+
driving_to_source = coordinate_grid + kp_source['value'].view(bs, self.num_kp, 1, 1, 1, 3) # (bs, num_kp, d, h, w, 3)
|
62 |
+
|
63 |
+
#adding background feature
|
64 |
+
identity_grid = identity_grid.repeat(bs, 1, 1, 1, 1, 1)
|
65 |
+
sparse_motions = torch.cat([identity_grid, driving_to_source], dim=1)
|
66 |
+
|
67 |
+
# sparse_motions = driving_to_source
|
68 |
+
|
69 |
+
return sparse_motions
|
70 |
+
|
71 |
+
def create_deformed_feature(self, feature, sparse_motions):
|
72 |
+
bs, _, d, h, w = feature.shape
|
73 |
+
feature_repeat = feature.unsqueeze(1).unsqueeze(1).repeat(1, self.num_kp+1, 1, 1, 1, 1, 1) # (bs, num_kp+1, 1, c, d, h, w)
|
74 |
+
feature_repeat = feature_repeat.view(bs * (self.num_kp+1), -1, d, h, w) # (bs*(num_kp+1), c, d, h, w)
|
75 |
+
sparse_motions = sparse_motions.view((bs * (self.num_kp+1), d, h, w, -1)) # (bs*(num_kp+1), d, h, w, 3)
|
76 |
+
sparse_deformed = F.grid_sample(feature_repeat, sparse_motions)
|
77 |
+
sparse_deformed = sparse_deformed.view((bs, self.num_kp+1, -1, d, h, w)) # (bs, num_kp+1, c, d, h, w)
|
78 |
+
return sparse_deformed
|
79 |
+
|
80 |
+
def create_heatmap_representations(self, feature, kp_driving, kp_source):
|
81 |
+
spatial_size = feature.shape[3:]
|
82 |
+
gaussian_driving = kp2gaussian(kp_driving, spatial_size=spatial_size, kp_variance=0.01)
|
83 |
+
gaussian_source = kp2gaussian(kp_source, spatial_size=spatial_size, kp_variance=0.01)
|
84 |
+
heatmap = gaussian_driving - gaussian_source
|
85 |
+
|
86 |
+
# adding background feature
|
87 |
+
zeros = torch.zeros(heatmap.shape[0], 1, spatial_size[0], spatial_size[1], spatial_size[2]).type(heatmap.type())
|
88 |
+
heatmap = torch.cat([zeros, heatmap], dim=1)
|
89 |
+
heatmap = heatmap.unsqueeze(2) # (bs, num_kp+1, 1, d, h, w)
|
90 |
+
return heatmap
|
91 |
+
|
92 |
+
def forward(self, feature, kp_driving, kp_source):
|
93 |
+
bs, _, d, h, w = feature.shape
|
94 |
+
|
95 |
+
feature = self.compress(feature)
|
96 |
+
feature = self.norm(feature)
|
97 |
+
feature = F.relu(feature)
|
98 |
+
|
99 |
+
out_dict = dict()
|
100 |
+
sparse_motion = self.create_sparse_motions(feature, kp_driving, kp_source)
|
101 |
+
deformed_feature = self.create_deformed_feature(feature, sparse_motion)
|
102 |
+
|
103 |
+
heatmap = self.create_heatmap_representations(deformed_feature, kp_driving, kp_source)
|
104 |
+
|
105 |
+
input = torch.cat([heatmap, deformed_feature], dim=2)
|
106 |
+
input = input.view(bs, -1, d, h, w)
|
107 |
+
|
108 |
+
# input = deformed_feature.view(bs, -1, d, h, w) # (bs, num_kp+1 * c, d, h, w)
|
109 |
+
|
110 |
+
prediction = self.hourglass(input)
|
111 |
+
|
112 |
+
mask = self.mask(prediction)
|
113 |
+
mask = F.softmax(mask, dim=1)
|
114 |
+
out_dict['mask'] = mask
|
115 |
+
mask = mask.unsqueeze(2) # (bs, num_kp+1, 1, d, h, w)
|
116 |
+
sparse_motion = sparse_motion.permute(0, 1, 5, 2, 3, 4) # (bs, num_kp+1, 3, d, h, w)
|
117 |
+
deformation = (sparse_motion * mask).sum(dim=1) # (bs, 3, d, h, w)
|
118 |
+
deformation = deformation.permute(0, 2, 3, 4, 1) # (bs, d, h, w, 3)
|
119 |
+
|
120 |
+
out_dict['deformation'] = deformation
|
121 |
+
|
122 |
+
if self.occlusion:
|
123 |
+
bs, c, d, h, w = prediction.shape
|
124 |
+
prediction = prediction.view(bs, -1, h, w)
|
125 |
+
occlusion_map = torch.sigmoid(self.occlusion(prediction))
|
126 |
+
out_dict['occlusion_map'] = occlusion_map
|
127 |
+
|
128 |
+
return out_dict
|