import os #os.environ['CUDA_VISIBLE_DEVICES'] = "0" from models.psp import pSp import torch import dlib import cv2 import PIL import argparse from tqdm import tqdm import numpy as np import torch.nn.functional as F import torchvision from torchvision import transforms, utils from argparse import Namespace from datasets import augmentations from scripts.align_all_parallel import align_face from latent_optimization import latent_optimization from utils.inference_utils import save_image, load_image, visualize, get_video_crop_parameter, tensor2cv2, tensor2label, labelcolormap class TestOptions(): def __init__(self): self.parser = argparse.ArgumentParser(description="StyleGANEX Inversion") self.parser.add_argument("--data_path", type=str, default='./data/ILip77SbmOE.png', help="path of the target image") self.parser.add_argument("--ckpt", type=str, default='pretrained_models/styleganex_inversion.pt', help="path of the saved model") self.parser.add_argument("--output_path", type=str, default='./output/', help="path of the output images") self.parser.add_argument("--cpu", action="store_true", help="if true, only use cpu") def parse(self): self.opt = self.parser.parse_args() args = vars(self.opt) print('Load options') for name, value in sorted(args.items()): print('%s: %s' % (str(name), str(value))) return self.opt if __name__ == "__main__": parser = TestOptions() args = parser.parse() print('*'*98) device = "cpu" if args.cpu else "cuda" transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]), ]) ckpt = torch.load(args.ckpt, map_location='cpu') opts = ckpt['opts'] opts['checkpoint_path'] = args.ckpt opts['device'] = device opts = Namespace(**opts) pspex = pSp(opts).to(device).eval() pspex.latent_avg = pspex.latent_avg.to(device) modelname = 'pretrained_models/shape_predictor_68_face_landmarks.dat' if not os.path.exists(modelname): import wget, bz2 wget.download('http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2', modelname+'.bz2') zipfile = bz2.BZ2File(modelname+'.bz2') data = zipfile.read() open(modelname, 'wb').write(data) landmarkpredictor = dlib.shape_predictor(modelname) print('Load models successfully!') image_path = args.data_path with torch.no_grad(): frame = cv2.imread(image_path) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) paras = get_video_crop_parameter(frame, landmarkpredictor) assert paras is not None, 'StyleGANEX uses dlib.get_frontal_face_detector but sometimes it fails to detect a face. \ You can try several times or use other videos until a face is detected, \ then switch back to the original video.' h,w,top,bottom,left,right,scale = paras H, W = int(bottom-top), int(right-left) frame = cv2.resize(frame, (w, h))[top:bottom, left:right] wplus_hat, f_hat, noises_hat, _, _ = latent_optimization(frame, pspex, landmarkpredictor, step=500, device=device) with torch.no_grad(): y_hat, _ = pspex.decoder([wplus_hat], input_is_latent=True, randomize_noise=False, first_layer_feature=f_hat, noise=noises_hat) y_hat = torch.clamp(y_hat, -1, 1) save_dict = { 'wplus': wplus_hat.detach().cpu(), 'f': [f.detach().cpu() for f in f_hat], #'noise': [n.detach().cpu() for n in noises_hat], } torch.save(save_dict, '%s/%s_inversion.pt'%(args.output_path, os.path.basename(image_path).split('.')[0])) save_image(y_hat[0].cpu(), '%s/%s_inversion.jpg'%(args.output_path, os.path.basename(image_path).split('.')[0])) # how to use the saved pt ''' latents = torch.load('./output/XXXXX_inversion.pt') wplus_hat = latents['wplus'].to(device) f_hat = [latents['f'][0].to(device)] with torch.no_grad(): y_hat, _ = pspex.decoder([wplus_hat], input_is_latent=True, randomize_noise=True, first_layer_feature=f_hat, noise=None) y_hat = torch.clamp(y_hat, -1, 1) ''' print('Inversion successfully!')