diff --git a/Hotshot-XL/.gitignore b/Hotshot-XL/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..c9043211f5fd9137d916f2deba3dc8c95720ec14 --- /dev/null +++ b/Hotshot-XL/.gitignore @@ -0,0 +1,6 @@ +.DS_Store +venv +.idea +__pycache__ +build +*.egg-info diff --git a/Hotshot-XL/1.gif b/Hotshot-XL/1.gif new file mode 100644 index 0000000000000000000000000000000000000000..0109460ba2c4a5915a67b3b29c0016030981236f --- /dev/null +++ b/Hotshot-XL/1.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:eef68e44665177961530be278efcc1dca53208b3041319d502874c6592a66df9 +size 1322061 diff --git a/Hotshot-XL/2.gif b/Hotshot-XL/2.gif new file mode 100644 index 0000000000000000000000000000000000000000..37ccaea979f1ef4d24d27552c0a5ff5cf907c842 --- /dev/null +++ b/Hotshot-XL/2.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cd7cbe6d8657d604f9ea4495e51196ef91936c7bc4100752da629d79df78f26b +size 1855296 diff --git a/Hotshot-XL/LICENSE b/Hotshot-XL/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64 --- /dev/null +++ b/Hotshot-XL/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/Hotshot-XL/README.md b/Hotshot-XL/README.md new file mode 100644 index 0000000000000000000000000000000000000000..29c5ca4fe535cc0bb9ba76c5d7aefbde5daacdf3 --- /dev/null +++ b/Hotshot-XL/README.md @@ -0,0 +1,257 @@ +

logo Hotshot-XL

+ +

+ ๐ŸŒ Try it +   + ๐Ÿƒ Model card +   + ๐Ÿ’ฌ Discord +

+ +

+ a barbie doll smiling in kitchen, oven on fire, disaster, pink wes anderson vibes, cinematic +   + a teddy bear writing a letter +   + dslr photo of mark zuckerberg happy, pulling on threads, lots of threads everywhere, laughing, hd, 8k +   + a cat laughing +   +

+ +Hotshot-XL is an AI text-to-GIF model trained to work alongside [Stable Diffusion XL](https://stability.ai/stable-diffusion). + +Hotshot-XL can generate GIFs with any fine-tuned SDXL model. This means two things: +1. Youโ€™ll be able to make GIFs with any existing or newly fine-tuned SDXL model you may want to use. +2. If you'd like to make GIFs of personalized subjects, you can load your own SDXL based LORAs, and not have to worry about fine-tuning Hotshot-XL. This is awesome because itโ€™s usually much easier to find suitable images for training data than it is to find videos. It also hopefully fits into everyone's existing LORA usage/workflows :) See more [here](#text-to-gif-with-personalized-loras). + +Hotshot-XL is compatible with SDXL ControlNet to make GIFs in the composition/layout youโ€™d like. See the [ControlNet](#text-to-gif-with-controlnet) section below. + +Hotshot-XL was trained to generate 1 second GIFs at 8 FPS. + +Hotshot-XL was trained on various aspect ratios. For best results with the base Hotshot-XL model, we recommend using it with an SDXL model that has been fine-tuned with 512x512 images. You can find an SDXL model we fine-tuned for 512x512 resolutions [here](https://huggingface.co/hotshotco/SDXL-512). + +# ๐ŸŒ Try It + +Try Hotshot-XL yourself here: https://www.hotshot.co + +Or, if you'd like to run Hotshot-XL yourself locally, continue on to the sections below. + +If youโ€™re running Hotshot-XL yourself, you are going to be able to have a lot more flexibility/control with the model. As a very simple example, youโ€™ll be able to change the sampler. Weโ€™ve seen best results with Euler-A so far, but you may find interesting results with some other ones. + +# ๐Ÿ”ง Setup + +### Environment Setup +``` +pip install virtualenv --upgrade +virtualenv -p $(which python3) venv +source venv/bin/activate +pip install -r requirements.txt +``` + +### Download the Hotshot-XL Weights + +``` +# Make sure you have git-lfs installed (https://git-lfs.com) +git lfs install +git clone https://huggingface.co/hotshotco/Hotshot-XL +``` + +or visit [https://huggingface.co/hotshotco/Hotshot-XL](https://huggingface.co/hotshotco/Hotshot-XL) + +### Download our fine-tuned SDXL model (or BYOSDXL) + +- *Note*: To maximize data and training efficiency, Hotshot-XL was trained at various aspect ratios around 512x512 resolution. For best results with the base Hotshot-XL model, we recommend using it with an SDXL model that has been fine-tuned with images around the 512x512 resolution. You can download an SDXL model we trained with images at 512x512 resolution below, or bring your own SDXL base model. + +``` +# Make sure you have git-lfs installed (https://git-lfs.com) +git lfs install +git clone https://huggingface.co/hotshotco/SDXL-512 +``` + +or visit [https://huggingface.co/hotshotco/SDXL-512](https://huggingface.co/hotshotco/SDXL-512) + +# ๐Ÿ”ฎ Inference + +### Text-to-GIF +``` +python inference.py \ + --prompt="a bulldog in the captains chair of a spaceship, hd, high quality" \ + --output="output.gif" +``` + +*What to Expect:* +| **Prompt** | Sasquatch scuba diving | a camel smoking a cigarette | Ronald McDonald sitting at a vanity mirror putting on lipstick | drake licking his lips and staring through a window at a cupcake | +|-----------|----------|----------|----------|----------| +| **Output** | | | | | + +### Text-to-GIF with personalized LORAs + +``` +python inference.py \ + --prompt="a bulldog in the captains chair of a spaceship, hd, high quality" \ + --output="output.gif" \ + --spatial_unet_base="path/to/stabilityai/stable-diffusion-xl-base-1.0/unet" \ + --lora="path/to/lora" +``` + +*What to Expect:* + +*Note*: The outputs below use the DDIMScheduler. + +| **Prompt** | sks person screaming at a capri sun | sks person kissing kermit the frog | sks person wearing a tuxedo holding up a glass of champagne, fireworks in background, hd, high quality, 4K | +|-----------|----------|----------|----------| +| **Output** | | | | + +### Text-to-GIF with ControlNet +``` +python inference.py \ + --prompt="a girl jumping up and down and pumping her fist, hd, high quality" \ + --output="output.gif" \ + --control_type="depth" \ + --gif="https://media1.giphy.com/media/v1.Y2lkPTc5MGI3NjExbXNneXJicG1mOHJ2dzQ2Y2JteDY1ZWlrdjNjMjl3ZWxyeWFxY2EzdyZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/YOTAoXBgMCmFeQQzuZ/giphy.gif" +``` + +By default, Hotshot-XL will create key frames from your source gif using 8 equally spaced frames and crop the keyframes to the default aspect ratio. For finer grained control, learn how to [vary aspect ratios](#varying-aspect-ratios) and [vary frame rates/lengths](#varying-frame-rates--lengths-experimental). + +Hotshot-XL currently supports the use of one ControlNet model at a time; supporting Multi-ControlNet would be [exciting](#-further-work). + +*What to Expect:* +| **Prompt** | pixar style girl putting two thumbs up, happy, high quality, 8k, 3d, animated disney render | keanu reaves holding a sign that says "HELP", hd, high quality | a woman laughing, hd, high quality | barack obama making a rainbow with their hands, the word "MAGIC" in front of them, wearing a blue and white striped hoodie, hd, high quality | +|-----------|----------|----------|----------|----------| +| **Output** | | | | | +| **Control** | | | | | + +### Varying Aspect Ratios + +- *Note*: The base SDXL model is trained to best create images around 1024x1024 resolution. To maximize data and training efficiency, Hotshot-XL was trained at aspect ratios around 512x512 resolution. Please see [Additional Notes](#supported-aspect-ratios) for a list of aspect ratios the base Hotshot-XL model was trained with. + +Like SDXL, Hotshot-XL was trained at various aspect ratios with aspect ratio bucketing, and includes support for SDXL parameters like target-size and original-size. This means you can create GIFs at several different aspect ratios and resolutions, just with the base Hotshot-XL model. + +``` +python inference.py \ + --prompt="a bulldog in the captains chair of a spaceship, hd, high quality" \ + --output="output.gif" \ + --width= \ + --height= +``` + +*What to Expect:* +| | 512x512 | 672x384 | 384x672 | +|-----------|----------|----------|----------| +| **a monkey playing guitar, nature footage, hd, high quality** | | | | + +### Varying frame rates & lengths (*Experimental*) +By default, Hotshot-XL is trained to generate GIFs that are 1 second long with 8FPS. If you'd like to play with generating GIFs with varying frame rates and time lengths, you can try out the parameters `video_length` and `video_duration`. + +`video_length` sets the number of frames. The default value is 8. + +`video_duration` sets the runtime of the output gif in milliseconds. The default value is 1000. + +Please note that you should expect unstable/"jittery" results when modifying these parameters as the model was only trained with 1s videos @ 8fps. You'll be able to improve the stability of results for different time lengths and frame rates by [fine-tuning Hotshot-XL](#-fine-tuning). Please let us know if you do! + +``` +python inference.py \ + --prompt="a bulldog in the captains chair of a spaceship, hd, high quality" \ + --output="output.gif" \ + --video_length=16 \ + --video_duration=2000 +``` + +### Spatial Layers Only +Hotshot-XL is trained to generate GIFs alongside SDXL. If you'd like to generate just an image, you can simply set `video_length=1` in your inference call and the Hotshot-XL temporal layers will be ignored, as you'd expect. + +``` +python inference.py \ + --prompt="a bulldog in the captains chair of a spaceship, hd, high quality" \ + --output="output.jpg" \ + --video_length=1 +``` + +### Additional Notes + +#### Supported Aspect Ratios +Hotshot-XL was trained at the following aspect ratios; to reliably generate GIFs outside the range of these aspect ratios, you will want to fine-tune Hotshot-XL with videos at the resolution of your desired aspect ratio. + +| Aspect Ratio | Size | +|--------------|------| +| 0.42 |320 x 768| +| 0.57 |384 x 672| +| 0.68 |416 x 608| +| 1.00 |512 x 512| +| 1.46 |608 x 416| +| 1.75 |672 x 384| +| 2.40 |768 x 320| + + +# ๐Ÿ’ช Fine-Tuning +The following section relates to fine-tuning the Hotshot-XL temporal model with additional text/video pairs. If you're trying to generate GIFs of personalized concepts/subjects, we'd recommend not fine-tuning Hotshot-XL, but instead training your own SDXL based LORAs and [just loading those](#text-to-gif-with-personalized-loras). + +### Fine-Tuning Hotshot-XL + +#### Dataset Preparation + +The `fine_tune.py` script expects your samples to be structured like this: + +``` +fine_tune_dataset +โ”œโ”€โ”€ sample_001 +โ”‚ โ”œโ”€โ”€ 0.jpg +โ”‚ โ”œโ”€โ”€ 1.jpg +โ”‚ โ”œโ”€โ”€ 2.jpg +... +... +โ”‚ โ”œโ”€โ”€ n.jpg +โ”‚ โ””โ”€โ”€ prompt.txt +``` + +Each sample directory should contain your **n key frames** and a `prompt.txt` file which contains the prompt. +The final checkpoint will be saved to `output_dir`. +We've found it useful to send validation GIFs to [Weights & Biases](www.wandb.ai) every so often. If you choose to use validation with Weights & Biases, you can set how often this runs with the `validate_every_steps` parameter. + +``` +accelerate launch fine_tune.py \ + --output_dir="" \ + --data_dir="fine_tune_dataset" \ + --report_to="wandb" \ + --run_validation_at_start \ + --resolution=512 \ + --mixed_precision=fp16 \ + --train_batch_size=4 \ + --learning_rate=1.25e-05 \ + --lr_scheduler="constant" \ + --lr_warmup_steps=0 \ + --max_train_steps=1000 \ + --save_n_steps=20 \ + --validate_every_steps=50 \ + --vae_b16 \ + --gradient_checkpointing \ + --noise_offset=0.05 \ + --snr_gamma \ + --test_prompts="man sits at a table in a cafe, he greets another man with a smile and a handshakes" +``` + +# ๐Ÿ“ Further work +There are lots of ways we are excited about improving Hotshot-XL. For example: + +- [ ] Fine-Tuning Hotshot-XL at larger frame rates to create longer/higher frame-rate GIFs +- [ ] Fine-Tuning Hotshot-XL at larger resolutions to create higher resolution GIFs +- [ ] Training temporal layers for a latent upscaler to produce higher resolution GIFs +- [ ] Training an image conditioned "frame prediction" model for more coherent, longer GIFs +- [ ] Training temporal layers for a VAE to mitigate flickering/dithering in outputs +- [ ] Supporting Multi-ControlNet for greater control over GIF generation +- [ ] Training & integrating different ControlNet models for further control over GIF generation (finer facial expression control would be very cool) +- [ ] Moving Hotshot-XL into [AITemplate](https://github.com/facebookincubator/AITemplate) for faster inference times + +We ๐Ÿ’— contributions from the open-source community! Please let us know in the issues or PRs if you're interested in working on these improvements or anything else! + +# ๐Ÿ™ Acknowledgements +Text-to-Video models are improving quickly and the development of Hotshot-XL has been greatly inspired by the following amazing works and teams: + +- [SDXL](https://stability.ai/stable-diffusion) +- [Align Your Latents](https://research.nvidia.com/labs/toronto-ai/VideoLDM/) +- [Make-A-Video](https://makeavideo.studio/) +- [AnimateDiff](https://animatediff.github.io/) +- [Imagen Video](https://imagen.research.google/video/) + +We hope that releasing this model/codebase helps the community to continue pushing these creative tools forward in an open and responsible way. diff --git a/Hotshot-XL/build/lib/hotshot_xl/__init__.py b/Hotshot-XL/build/lib/hotshot_xl/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..090de024570c67f7182c8e5b214c81f3aaadaf6e --- /dev/null +++ b/Hotshot-XL/build/lib/hotshot_xl/__init__.py @@ -0,0 +1,25 @@ +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# + +from dataclasses import dataclass +from typing import Union + +import numpy as np +import torch + +# don't remove these imports - they are needed to load from pretrain. +from diffusers.models.modeling_utils import ModelMixin +from .models.unet import UNet3DConditionModel + +from diffusers.utils import ( + BaseOutput, +) + +@dataclass +class HotshotPipelineXLOutput(BaseOutput): + videos: Union[torch.Tensor, np.ndarray] \ No newline at end of file diff --git a/Hotshot-XL/build/lib/hotshot_xl/models/__init__.py b/Hotshot-XL/build/lib/hotshot_xl/models/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/Hotshot-XL/build/lib/hotshot_xl/models/resnet.py b/Hotshot-XL/build/lib/hotshot_xl/models/resnet.py new file mode 100644 index 0000000000000000000000000000000000000000..4b46c907610a9a4fb73288f280c79e923b86c89a --- /dev/null +++ b/Hotshot-XL/build/lib/hotshot_xl/models/resnet.py @@ -0,0 +1,134 @@ +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# + +import torch +import torch.nn as nn +from diffusers.models.resnet import Upsample2D, Downsample2D, LoRACompatibleConv +from einops import rearrange + + +class Upsample3D(Upsample2D): + def forward(self, hidden_states, output_size=None, scale: float = 1.0): + f = hidden_states.shape[2] + hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") + hidden_states = super(Upsample3D, self).forward(hidden_states, output_size, scale) + return rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f) + + +class Downsample3D(Downsample2D): + + def forward(self, hidden_states, scale: float = 1.0): + f = hidden_states.shape[2] + hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") + hidden_states = super(Downsample3D, self).forward(hidden_states, scale) + return rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f) + + +class Conv3d(LoRACompatibleConv): + def forward(self, hidden_states, scale: float = 1.0): + f = hidden_states.shape[2] + hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") + hidden_states = super().forward(hidden_states, scale) + return rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f) + + +class ResnetBlock3D(nn.Module): + def __init__( + self, + *, + in_channels, + out_channels=None, + conv_shortcut=False, + dropout=0.0, + temb_channels=512, + groups=32, + groups_out=None, + pre_norm=True, + eps=1e-6, + non_linearity="silu", + time_embedding_norm="default", + output_scale_factor=1.0, + use_in_shortcut=None, + conv_shortcut_bias: bool = True, + ): + super().__init__() + self.pre_norm = pre_norm + self.pre_norm = True + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + self.time_embedding_norm = time_embedding_norm + self.output_scale_factor = output_scale_factor + + if groups_out is None: + groups_out = groups + + self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) + self.conv1 = Conv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + + if temb_channels is not None: + if self.time_embedding_norm == "default": + time_emb_proj_out_channels = out_channels + elif self.time_embedding_norm == "scale_shift": + time_emb_proj_out_channels = out_channels * 2 + else: + raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") + + self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels) + else: + self.time_emb_proj = None + + self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = Conv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) + + assert non_linearity == "silu" + + self.nonlinearity = nn.SiLU() + + self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut + + self.conv_shortcut = None + if self.use_in_shortcut: + self.conv_shortcut = Conv3d( + in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias + ) + + def forward(self, input_tensor, temb): + hidden_states = input_tensor + + hidden_states = self.norm1(hidden_states) + hidden_states = self.nonlinearity(hidden_states) + + hidden_states = self.conv1(hidden_states) + + if temb is not None: + temb = self.nonlinearity(temb) + temb = self.time_emb_proj(temb)[:, :, None, None, None] + + if temb is not None and self.time_embedding_norm == "default": + hidden_states = hidden_states + temb + + hidden_states = self.norm2(hidden_states) + + if temb is not None and self.time_embedding_norm == "scale_shift": + scale, shift = torch.chunk(temb, 2, dim=1) + hidden_states = hidden_states * (1 + scale) + shift + + hidden_states = self.nonlinearity(hidden_states) + + hidden_states = self.dropout(hidden_states) + hidden_states = self.conv2(hidden_states) + + if self.conv_shortcut is not None: + input_tensor = self.conv_shortcut(input_tensor) + + output_tensor = (input_tensor + hidden_states) / self.output_scale_factor + + return output_tensor diff --git a/Hotshot-XL/build/lib/hotshot_xl/models/transformer_3d.py b/Hotshot-XL/build/lib/hotshot_xl/models/transformer_3d.py new file mode 100644 index 0000000000000000000000000000000000000000..169f91ee6f2bcd568141a5776820429140370f6f --- /dev/null +++ b/Hotshot-XL/build/lib/hotshot_xl/models/transformer_3d.py @@ -0,0 +1,75 @@ +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# + +from dataclasses import dataclass +from typing import Optional +import torch +from torch import nn +from diffusers.utils import BaseOutput +from diffusers.models.transformer_2d import Transformer2DModel +from einops import rearrange, repeat +from typing import Dict, Any + + +@dataclass +class Transformer3DModelOutput(BaseOutput): + """ + The output of [`Transformer3DModel`]. + + Args: + sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`: + The hidden states output conditioned on the `encoder_hidden_states` input. + """ + + sample: torch.FloatTensor + + +class Transformer3DModel(Transformer2DModel): + + def __init__(self, *args, **kwargs): + super(Transformer3DModel, self).__init__(*args, **kwargs) + nn.init.zeros_(self.proj_out.weight.data) + nn.init.zeros_(self.proj_out.bias.data) + + def forward( + self, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + timestep: Optional[torch.LongTensor] = None, + class_labels: Optional[torch.LongTensor] = None, + cross_attention_kwargs: Dict[str, Any] = None, + attention_mask: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + enable_temporal_layers: bool = True, + positional_embedding: Optional[torch.Tensor] = None, + return_dict: bool = True, + ): + + is_video = len(hidden_states.shape) == 5 + + if is_video: + f = hidden_states.shape[2] + hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") + encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=f) + + hidden_states = super(Transformer3DModel, self).forward(hidden_states, + encoder_hidden_states, + timestep, + class_labels, + cross_attention_kwargs, + attention_mask, + encoder_attention_mask, + return_dict=False)[0] + + if is_video: + hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f) + + if not return_dict: + return (hidden_states,) + + return Transformer3DModelOutput(sample=hidden_states) \ No newline at end of file diff --git a/Hotshot-XL/build/lib/hotshot_xl/models/transformer_temporal.py b/Hotshot-XL/build/lib/hotshot_xl/models/transformer_temporal.py new file mode 100644 index 0000000000000000000000000000000000000000..772e51d55da5ebf3279235b482c1db7e46e2b603 --- /dev/null +++ b/Hotshot-XL/build/lib/hotshot_xl/models/transformer_temporal.py @@ -0,0 +1,192 @@ +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# + +import torch +import math +from dataclasses import dataclass +from torch import nn +from diffusers.utils import BaseOutput +from diffusers.models.attention import Attention, FeedForward +from einops import rearrange, repeat +from typing import Optional + + +class PositionalEncoding(nn.Module): + """ + Implements positional encoding as described in "Attention Is All You Need". + Adds sinusoidal based positional encodings to the input tensor. + """ + + _SCALE_FACTOR = 10000.0 # Scale factor used in the positional encoding computation. + + def __init__(self, dim: int, dropout: float = 0.0, max_length: int = 24): + super(PositionalEncoding, self).__init__() + + self.dropout = nn.Dropout(p=dropout) + + # The size is (1, max_length, dim) to allow easy addition to input tensors. + positional_encoding = torch.zeros(1, max_length, dim) + + # Position and dim are used in the sinusoidal computation. + position = torch.arange(max_length).unsqueeze(1) + div_term = torch.exp(torch.arange(0, dim, 2) * (-math.log(self._SCALE_FACTOR) / dim)) + + positional_encoding[0, :, 0::2] = torch.sin(position * div_term) + positional_encoding[0, :, 1::2] = torch.cos(position * div_term) + + # Register the positional encoding matrix as a buffer, + # so it's part of the model's state but not the parameters. + self.register_buffer('positional_encoding', positional_encoding) + + def forward(self, hidden_states: torch.Tensor, length: int) -> torch.Tensor: + hidden_states = hidden_states + self.positional_encoding[:, :length] + return self.dropout(hidden_states) + + +class TemporalAttention(Attention): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.pos_encoder = PositionalEncoding(kwargs["query_dim"], dropout=0) + + def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, number_of_frames=8): + sequence_length = hidden_states.shape[1] + hidden_states = rearrange(hidden_states, "(b f) s c -> (b s) f c", f=number_of_frames) + hidden_states = self.pos_encoder(hidden_states, length=number_of_frames) + + if encoder_hidden_states: + encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b s) n c", s=sequence_length) + + hidden_states = super().forward(hidden_states, encoder_hidden_states, attention_mask=attention_mask) + + return rearrange(hidden_states, "(b s) f c -> (b f) s c", s=sequence_length) + + +@dataclass +class TransformerTemporalOutput(BaseOutput): + sample: torch.FloatTensor + + +class TransformerTemporal(nn.Module): + def __init__( + self, + num_attention_heads: int, + attention_head_dim: int, + in_channels: int, + num_layers: int = 1, + dropout: float = 0.0, + norm_num_groups: int = 32, + cross_attention_dim: Optional[int] = None, + attention_bias: bool = False, + activation_fn: str = "geglu", + upcast_attention: bool = False, + ): + super().__init__() + + inner_dim = num_attention_heads * attention_head_dim + + self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) + self.proj_in = nn.Linear(in_channels, inner_dim) + + self.transformer_blocks = nn.ModuleList( + [ + TransformerBlock( + dim=inner_dim, + num_attention_heads=num_attention_heads, + attention_head_dim=attention_head_dim, + dropout=dropout, + activation_fn=activation_fn, + attention_bias=attention_bias, + upcast_attention=upcast_attention, + cross_attention_dim=cross_attention_dim + ) + for _ in range(num_layers) + ] + ) + self.proj_out = nn.Linear(inner_dim, in_channels) + + def forward(self, hidden_states, encoder_hidden_states=None): + _, num_channels, f, height, width = hidden_states.shape + hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") + + skip = hidden_states + + hidden_states = self.norm(hidden_states) + hidden_states = rearrange(hidden_states, "bf c h w -> bf (h w) c") + hidden_states = self.proj_in(hidden_states) + + for block in self.transformer_blocks: + hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, number_of_frames=f) + + hidden_states = self.proj_out(hidden_states) + hidden_states = rearrange(hidden_states, "bf (h w) c -> bf c h w", h=height, w=width).contiguous() + + output = hidden_states + skip + output = rearrange(output, "(b f) c h w -> b c f h w", f=f) + + return output + + +class TransformerBlock(nn.Module): + def __init__( + self, + dim, + num_attention_heads, + attention_head_dim, + dropout=0.0, + activation_fn="geglu", + attention_bias=False, + upcast_attention=False, + depth=2, + cross_attention_dim: Optional[int] = None + ): + super().__init__() + + self.is_cross = cross_attention_dim is not None + + attention_blocks = [] + norms = [] + + for _ in range(depth): + attention_blocks.append( + TemporalAttention( + query_dim=dim, + cross_attention_dim=cross_attention_dim, + heads=num_attention_heads, + dim_head=attention_head_dim, + dropout=dropout, + bias=attention_bias, + upcast_attention=upcast_attention, + ) + ) + norms.append(nn.LayerNorm(dim)) + + self.attention_blocks = nn.ModuleList(attention_blocks) + self.norms = nn.ModuleList(norms) + + self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) + self.ff_norm = nn.LayerNorm(dim) + + def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, number_of_frames=None): + + if not self.is_cross: + encoder_hidden_states = None + + for block, norm in zip(self.attention_blocks, self.norms): + norm_hidden_states = norm(hidden_states) + hidden_states = block( + norm_hidden_states, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + number_of_frames=number_of_frames + ) + hidden_states + + norm_hidden_states = self.ff_norm(hidden_states) + hidden_states = self.ff(norm_hidden_states) + hidden_states + + output = hidden_states + return output diff --git a/Hotshot-XL/build/lib/hotshot_xl/models/unet.py b/Hotshot-XL/build/lib/hotshot_xl/models/unet.py new file mode 100644 index 0000000000000000000000000000000000000000..30b45fe9fcf7d2e0e898aa7ebd36494ee13998ef --- /dev/null +++ b/Hotshot-XL/build/lib/hotshot_xl/models/unet.py @@ -0,0 +1,975 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Modifications: +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# - Unet now supports SDXL + +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.utils.checkpoint + +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.loaders import UNet2DConditionLoadersMixin +from diffusers.utils import BaseOutput, logging +from diffusers.models.activations import get_activation +from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor +from diffusers.models.embeddings import ( + GaussianFourierProjection, + ImageHintTimeEmbedding, + ImageProjection, + ImageTimeEmbedding, + TextImageProjection, + TextImageTimeEmbedding, + TextTimeEmbedding, + TimestepEmbedding, + Timesteps, +) + +from diffusers.models.modeling_utils import ModelMixin +from diffusers.models.embeddings import TimestepEmbedding, Timesteps +from .unet_blocks import ( + CrossAttnDownBlock3D, + CrossAttnUpBlock3D, + DownBlock3D, + UNetMidBlock3DCrossAttn, + UpBlock3D, + get_down_block, + get_up_block, +) + +from .resnet import Conv3d + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +@dataclass +class UNet3DConditionOutput(BaseOutput): + """ + The output of [`UNet2DConditionModel`]. + + Args: + sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. + """ + + sample: torch.FloatTensor = None + + +class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + sample_size: Optional[int] = None, + in_channels: int = 4, + out_channels: int = 4, + center_input_sample: bool = False, + flip_sin_to_cos: bool = True, + freq_shift: int = 0, + down_block_types: Tuple[str] = ( + "CrossAttnDownBlock3D", + "CrossAttnDownBlock3D", + "DownBlock3D", + ), + mid_block_type: Optional[str] = "UNetMidBlock3DCrossAttn", + up_block_types: Tuple[str] = ( + "UpBlock3D", + "CrossAttnUpBlock3D", + "CrossAttnUpBlock3D", + ), + only_cross_attention: Union[bool, Tuple[bool]] = False, + block_out_channels: Tuple[int] = (320, 640, 1280, 1280), + layers_per_block: Union[int, Tuple[int]] = 2, + downsample_padding: int = 1, + mid_block_scale_factor: float = 1, + act_fn: str = "silu", + norm_num_groups: Optional[int] = 32, + norm_eps: float = 1e-5, + cross_attention_dim: Union[int, Tuple[int]] = 1280, + transformer_layers_per_block: Union[int, Tuple[int]] = 1, + encoder_hid_dim: Optional[int] = None, + encoder_hid_dim_type: Optional[str] = None, + attention_head_dim: Union[int, Tuple[int]] = 8, + num_attention_heads: Optional[Union[int, Tuple[int]]] = None, + dual_cross_attention: bool = False, + use_linear_projection: bool = False, + class_embed_type: Optional[str] = None, + addition_embed_type: Optional[str] = None, + addition_time_embed_dim: Optional[int] = None, + num_class_embeds: Optional[int] = None, + upcast_attention: bool = False, + resnet_time_scale_shift: str = "default", + resnet_skip_time_act: bool = False, + resnet_out_scale_factor: int = 1.0, + time_embedding_type: str = "positional", + time_embedding_dim: Optional[int] = None, + time_embedding_act_fn: Optional[str] = None, + timestep_post_act: Optional[str] = None, + time_cond_proj_dim: Optional[int] = None, + conv_in_kernel: int = 3, + conv_out_kernel: int = 3, + projection_class_embeddings_input_dim: Optional[int] = None, + class_embeddings_concat: bool = False, + mid_block_only_cross_attention: Optional[bool] = None, + cross_attention_norm: Optional[str] = None, + addition_embed_type_num_heads=64, + ): + super().__init__() + + self.sample_size = sample_size + + if num_attention_heads is not None: + raise ValueError( + "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." + ) + + # If `num_attention_heads` is not defined (which is the case for most models) + # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. + # The reason for this behavior is to correct for incorrectly named variables that were introduced + # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 + # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking + # which is why we correct for the naming here. + num_attention_heads = num_attention_heads or attention_head_dim + + # Check inputs + if len(down_block_types) != len(up_block_types): + raise ValueError( + f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." + ) + + if len(block_out_channels) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." + ) + + if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." + ) + + # input + conv_in_padding = (conv_in_kernel - 1) // 2 + + self.conv_in = Conv3d(in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding) + + # time + if time_embedding_type == "fourier": + time_embed_dim = time_embedding_dim or block_out_channels[0] * 2 + if time_embed_dim % 2 != 0: + raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.") + self.time_proj = GaussianFourierProjection( + time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos + ) + timestep_input_dim = time_embed_dim + elif time_embedding_type == "positional": + time_embed_dim = time_embedding_dim or block_out_channels[0] * 4 + + self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) + timestep_input_dim = block_out_channels[0] + else: + raise ValueError( + f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`." + ) + + self.time_embedding = TimestepEmbedding( + timestep_input_dim, + time_embed_dim, + act_fn=act_fn, + post_act_fn=timestep_post_act, + cond_proj_dim=time_cond_proj_dim, + ) + + if encoder_hid_dim_type is None and encoder_hid_dim is not None: + encoder_hid_dim_type = "text_proj" + self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) + logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") + + if encoder_hid_dim is None and encoder_hid_dim_type is not None: + raise ValueError( + f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." + ) + + if encoder_hid_dim_type == "text_proj": + self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) + elif encoder_hid_dim_type == "text_image_proj": + # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much + # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use + # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)` + self.encoder_hid_proj = TextImageProjection( + text_embed_dim=encoder_hid_dim, + image_embed_dim=cross_attention_dim, + cross_attention_dim=cross_attention_dim, + ) + elif encoder_hid_dim_type == "image_proj": + # Kandinsky 2.2 + self.encoder_hid_proj = ImageProjection( + image_embed_dim=encoder_hid_dim, + cross_attention_dim=cross_attention_dim, + ) + elif encoder_hid_dim_type is not None: + raise ValueError( + f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." + ) + else: + self.encoder_hid_proj = None + + # class embedding + if class_embed_type is None and num_class_embeds is not None: + self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) + elif class_embed_type == "timestep": + self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn) + elif class_embed_type == "identity": + self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) + elif class_embed_type == "projection": + if projection_class_embeddings_input_dim is None: + raise ValueError( + "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" + ) + # The projection `class_embed_type` is the same as the timestep `class_embed_type` except + # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings + # 2. it projects from an arbitrary input dimension. + # + # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. + # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings. + # As a result, `TimestepEmbedding` can be passed arbitrary vectors. + self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + elif class_embed_type == "simple_projection": + if projection_class_embeddings_input_dim is None: + raise ValueError( + "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set" + ) + self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim) + else: + self.class_embedding = None + + if addition_embed_type == "text": + if encoder_hid_dim is not None: + text_time_embedding_from_dim = encoder_hid_dim + else: + text_time_embedding_from_dim = cross_attention_dim + + self.add_embedding = TextTimeEmbedding( + text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads + ) + elif addition_embed_type == "text_image": + # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much + # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use + # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)` + self.add_embedding = TextImageTimeEmbedding( + text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim + ) + elif addition_embed_type == "text_time": + self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) + self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + elif addition_embed_type == "image": + # Kandinsky 2.2 + self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) + elif addition_embed_type == "image_hint": + # Kandinsky 2.2 ControlNet + self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) + elif addition_embed_type is not None: + raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") + + if time_embedding_act_fn is None: + self.time_embed_act = None + else: + self.time_embed_act = get_activation(time_embedding_act_fn) + + self.down_blocks = nn.ModuleList([]) + self.up_blocks = nn.ModuleList([]) + + if isinstance(only_cross_attention, bool): + if mid_block_only_cross_attention is None: + mid_block_only_cross_attention = only_cross_attention + + only_cross_attention = [only_cross_attention] * len(down_block_types) + + if mid_block_only_cross_attention is None: + mid_block_only_cross_attention = False + + if isinstance(num_attention_heads, int): + num_attention_heads = (num_attention_heads,) * len(down_block_types) + + if isinstance(attention_head_dim, int): + attention_head_dim = (attention_head_dim,) * len(down_block_types) + + if isinstance(cross_attention_dim, int): + cross_attention_dim = (cross_attention_dim,) * len(down_block_types) + + if isinstance(layers_per_block, int): + layers_per_block = [layers_per_block] * len(down_block_types) + + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) + + if class_embeddings_concat: + # The time embeddings are concatenated with the class embeddings. The dimension of the + # time embeddings passed to the down, middle, and up blocks is twice the dimension of the + # regular time embeddings + blocks_time_embed_dim = time_embed_dim * 2 + else: + blocks_time_embed_dim = time_embed_dim + + # down + output_channel = block_out_channels[0] + for i, down_block_type in enumerate(down_block_types): + res = 2 ** i + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + + down_block = get_down_block( + down_block_type, + num_layers=layers_per_block[i], + transformer_layers_per_block=transformer_layers_per_block[i], + in_channels=input_channel, + out_channels=output_channel, + temb_channels=blocks_time_embed_dim, + add_downsample=not is_final_block, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + cross_attention_dim=cross_attention_dim[i], + num_attention_heads=num_attention_heads[i], + downsample_padding=downsample_padding, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention[i], + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + resnet_skip_time_act=resnet_skip_time_act, + resnet_out_scale_factor=resnet_out_scale_factor, + cross_attention_norm=cross_attention_norm, + attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, + ) + self.down_blocks.append(down_block) + + # mid + if mid_block_type == "UNetMidBlock3DCrossAttn": + self.mid_block = UNetMidBlock3DCrossAttn( + transformer_layers_per_block=transformer_layers_per_block[-1], + in_channels=block_out_channels[-1], + temb_channels=blocks_time_embed_dim, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + output_scale_factor=mid_block_scale_factor, + resnet_time_scale_shift=resnet_time_scale_shift, + cross_attention_dim=cross_attention_dim[-1], + num_attention_heads=num_attention_heads[-1], + resnet_groups=norm_num_groups, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + upcast_attention=upcast_attention, + ) + elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn": + raise ValueError("UNetMidBlock2DSimpleCrossAttn not supported") + + elif mid_block_type is None: + self.mid_block = None + else: + raise ValueError(f"unknown mid_block_type : {mid_block_type}") + + # count how many layers upsample the images + self.num_upsamplers = 0 + + # up + reversed_block_out_channels = list(reversed(block_out_channels)) + reversed_num_attention_heads = list(reversed(num_attention_heads)) + reversed_layers_per_block = list(reversed(layers_per_block)) + reversed_cross_attention_dim = list(reversed(cross_attention_dim)) + reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) + only_cross_attention = list(reversed(only_cross_attention)) + + output_channel = reversed_block_out_channels[0] + for i, up_block_type in enumerate(up_block_types): + res = 2 ** (len(up_block_types) - 1 - i) + is_final_block = i == len(block_out_channels) - 1 + + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] + + # add upsample block for all BUT final layer + if not is_final_block: + add_upsample = True + self.num_upsamplers += 1 + else: + add_upsample = False + + up_block = get_up_block( + up_block_type, + num_layers=reversed_layers_per_block[i] + 1, + transformer_layers_per_block=reversed_transformer_layers_per_block[i], + in_channels=input_channel, + out_channels=output_channel, + prev_output_channel=prev_output_channel, + temb_channels=blocks_time_embed_dim, + add_upsample=add_upsample, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + cross_attention_dim=reversed_cross_attention_dim[i], + num_attention_heads=reversed_num_attention_heads[i], + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention[i], + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + resnet_skip_time_act=resnet_skip_time_act, + resnet_out_scale_factor=resnet_out_scale_factor, + cross_attention_norm=cross_attention_norm, + attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, + ) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + + # out + if norm_num_groups is not None: + self.conv_norm_out = nn.GroupNorm( + num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps + ) + + self.conv_act = get_activation(act_fn) + + else: + self.conv_norm_out = None + self.conv_act = None + + conv_out_padding = (conv_out_kernel - 1) // 2 + + self.conv_out = Conv3d(block_out_channels[0], out_channels, kernel_size=conv_out_kernel, + padding=conv_out_padding) + + def temporal_parameters(self) -> list: + output = [] + all_blocks = self.down_blocks + self.up_blocks + [self.mid_block] + for block in all_blocks: + output.extend(block.temporal_parameters()) + return output + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + return self.get_attn_processors(include_temporal_layers=False) + + def get_attn_processors(self, include_temporal_layers=True) -> Dict[str, AttentionProcessor]: + r""" + Returns: + `dict` of attention processors: A dictionary containing all attention processors used in the model with + indexed by its weight name. + """ + # set recursively + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + + if not include_temporal_layers: + if 'temporal' in name: + return processors + + if hasattr(module, "set_processor"): + processors[f"{name}.processor"] = module.processor + + for sub_name, child in module.named_children(): + fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) + + return processors + + for name, module in self.named_children(): + fn_recursive_add_processors(name, module, processors) + + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], + include_temporal_layers=False): + r""" + Sets the attention processor to use to compute attention. + + Parameters: + processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): + The instantiated processor class or a dictionary of processor classes that will be set as the processor + for **all** `Attention` layers. + + If `processor` is a dict, the key needs to define the path to the corresponding cross attention + processor. This is strongly recommended when setting trainable attention processors. + + """ + count = len(self.get_attn_processors(include_temporal_layers=include_temporal_layers).keys()) + + if isinstance(processor, dict) and len(processor) != count: + raise ValueError( + f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" + f" number of attention layers: {count}. Please make sure to pass {count} processor classes." + ) + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + + if not include_temporal_layers: + if "temporal" in name: + return + + if hasattr(module, "set_processor"): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f"{name}.processor")) + + for sub_name, child in module.named_children(): + fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) + + for name, module in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + """ + Disables custom attention processors and sets the default attention implementation. + """ + self.set_attn_processor(AttnProcessor()) + + def set_attention_slice(self, slice_size): + r""" + Enable sliced attention computation. + + When this option is enabled, the attention module splits the input tensor in slices to compute attention in + several steps. This is useful for saving some memory in exchange for a small decrease in speed. + + Args: + slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): + When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If + `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is + provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` + must be a multiple of `slice_size`. + """ + sliceable_head_dims = [] + + def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): + if hasattr(module, "set_attention_slice"): + sliceable_head_dims.append(module.sliceable_head_dim) + + for child in module.children(): + fn_recursive_retrieve_sliceable_dims(child) + + # retrieve number of attention layers + for module in self.children(): + fn_recursive_retrieve_sliceable_dims(module) + + num_sliceable_layers = len(sliceable_head_dims) + + if slice_size == "auto": + # half the attention head size is usually a good trade-off between + # speed and memory + slice_size = [dim // 2 for dim in sliceable_head_dims] + elif slice_size == "max": + # make smallest slice possible + slice_size = num_sliceable_layers * [1] + + slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size + + if len(slice_size) != len(sliceable_head_dims): + raise ValueError( + f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" + f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." + ) + + for i in range(len(slice_size)): + size = slice_size[i] + dim = sliceable_head_dims[i] + if size is not None and size > dim: + raise ValueError(f"size {size} has to be smaller or equal to {dim}.") + + # Recursively walk through all the children. + # Any children which exposes the set_attention_slice method + # gets the message + def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): + if hasattr(module, "set_attention_slice"): + module.set_attention_slice(slice_size.pop()) + + for child in module.children(): + fn_recursive_set_attention_slice(child, slice_size) + + reversed_slice_size = list(reversed(slice_size)) + for module in self.children(): + fn_recursive_set_attention_slice(module, reversed_slice_size) + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)): + module.gradient_checkpointing = value + + def forward( + self, + sample: torch.FloatTensor, + timestep: Union[torch.Tensor, float, int], + encoder_hidden_states: torch.Tensor, + class_labels: Optional[torch.Tensor] = None, + timestep_cond: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, + down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, + mid_block_additional_residual: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + return_dict: bool = True, + enable_temporal_attentions: bool = True + ) -> Union[UNet3DConditionOutput, Tuple]: + r""" + The [`UNet2DConditionModel`] forward method. + + Args: + sample (`torch.FloatTensor`): + The noisy input tensor with the following shape `(batch, channel, height, width)`. + timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. + encoder_hidden_states (`torch.FloatTensor`): + The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. + encoder_attention_mask (`torch.Tensor`): + A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If + `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, + which adds large negative values to the attention scores corresponding to "discard" tokens. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain + tuple. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the [`AttnProcessor`]. + added_cond_kwargs: (`dict`, *optional*): + A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that + are passed along to the UNet blocks. + + Returns: + [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: + If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise + a `tuple` is returned where the first element is the sample tensor. + """ + # By default samples have to be AT least a multiple of the overall upsampling factor. + # The overall upsampling factor is equal to 2 ** (# num of upsampling layers). + # However, the upsampling interpolation output size can be forced to fit any upsampling size + # on the fly if necessary. + default_overall_up_factor = 2 ** self.num_upsamplers + + # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` + forward_upsample_size = False + upsample_size = None + + if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): + logger.info("Forward upsample size to force interpolation output size.") + forward_upsample_size = True + + # ensure attention_mask is a bias, and give it a singleton query_tokens dimension + # expects mask of shape: + # [batch, key_tokens] + # adds singleton query_tokens dimension: + # [batch, 1, key_tokens] + # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: + # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) + # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) + if attention_mask is not None: + # assume that mask is expressed as: + # (1 = keep, 0 = discard) + # convert mask into a bias that can be added to attention scores: + # (keep = +0, discard = -10000.0) + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + + # convert encoder_attention_mask to a bias the same way we do for attention_mask + if encoder_attention_mask is not None: + encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 + encoder_attention_mask = encoder_attention_mask.unsqueeze(1) + + # 0. center input if necessary + if self.config.center_input_sample: + sample = 2 * sample - 1.0 + + # 1. time + timesteps = timestep + if not torch.is_tensor(timesteps): + # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can + # This would be a good case for the `match` statement (Python 3.10+) + is_mps = sample.device.type == "mps" + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timesteps = timesteps.expand(sample.shape[0]) + + t_emb = self.time_proj(timesteps) + + # `Timesteps` does not contain any weights and will always return f32 tensors + # but time_embedding might actually be running in fp16. so we need to cast here. + # there might be better ways to encapsulate this. + t_emb = t_emb.to(dtype=sample.dtype) + + emb = self.time_embedding(t_emb, timestep_cond) + aug_emb = None + + if self.class_embedding is not None: + if class_labels is None: + raise ValueError("class_labels should be provided when num_class_embeds > 0") + + if self.config.class_embed_type == "timestep": + class_labels = self.time_proj(class_labels) + + # `Timesteps` does not contain any weights and will always return f32 tensors + # there might be better ways to encapsulate this. + class_labels = class_labels.to(dtype=sample.dtype) + + class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) + + if self.config.class_embeddings_concat: + emb = torch.cat([emb, class_emb], dim=-1) + else: + emb = emb + class_emb + + if self.config.addition_embed_type == "text": + aug_emb = self.add_embedding(encoder_hidden_states) + elif self.config.addition_embed_type == "text_image": + # Kandinsky 2.1 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" + ) + + image_embs = added_cond_kwargs.get("image_embeds") + text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) + aug_emb = self.add_embedding(text_embs, image_embs) + elif self.config.addition_embed_type == "text_time": + if "text_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" + ) + text_embeds = added_cond_kwargs.get("text_embeds") + if "time_ids" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" + ) + time_ids = added_cond_kwargs.get("time_ids") + time_embeds = self.add_time_proj(time_ids.flatten()) + time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) + + add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) + add_embeds = add_embeds.to(emb.dtype) + aug_emb = self.add_embedding(add_embeds) + elif self.config.addition_embed_type == "image": + # Kandinsky 2.2 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" + ) + image_embs = added_cond_kwargs.get("image_embeds") + aug_emb = self.add_embedding(image_embs) + elif self.config.addition_embed_type == "image_hint": + # Kandinsky 2.2 - style + if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" + ) + image_embs = added_cond_kwargs.get("image_embeds") + hint = added_cond_kwargs.get("hint") + aug_emb, hint = self.add_embedding(image_embs, hint) + sample = torch.cat([sample, hint], dim=1) + + emb = emb + aug_emb if aug_emb is not None else emb + + if self.time_embed_act is not None: + emb = self.time_embed_act(emb) + + if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": + encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": + # Kadinsky 2.1 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" + ) + + image_embeds = added_cond_kwargs.get("image_embeds") + encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj": + # Kandinsky 2.2 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" + ) + image_embeds = added_cond_kwargs.get("image_embeds") + encoder_hidden_states = self.encoder_hid_proj(image_embeds) + # 2. pre-process + + sample = self.conv_in(sample) + + # 3. down + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: + sample, res_samples = downsample_block( + hidden_states=sample, + temb=emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + enable_temporal_attentions=enable_temporal_attentions + ) + else: + sample, res_samples = downsample_block(hidden_states=sample, + temb=emb, + encoder_hidden_states=encoder_hidden_states, + enable_temporal_attentions=enable_temporal_attentions) + + down_block_res_samples += res_samples + + if down_block_additional_residuals is not None: + new_down_block_res_samples = () + + for down_block_res_sample, down_block_additional_residual in zip( + down_block_res_samples, down_block_additional_residuals + ): + down_block_res_sample = down_block_res_sample + down_block_additional_residual + new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) + + down_block_res_samples = new_down_block_res_samples + + # 4. mid + if self.mid_block is not None: + sample = self.mid_block( + sample, + emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + enable_temporal_attentions=enable_temporal_attentions + ) + + if mid_block_additional_residual is not None: + sample = sample + mid_block_additional_residual + + # 5. up + for i, upsample_block in enumerate(self.up_blocks): + is_final_block = i == len(self.up_blocks) - 1 + + res_samples = down_block_res_samples[-len(upsample_block.resnets):] + down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] + + # if we have not reached the final block and need to forward the + # upsample size, we do it here + if not is_final_block and forward_upsample_size: + upsample_size = down_block_res_samples[-1].shape[2:] + + if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: + sample = upsample_block( + hidden_states=sample, + temb=emb, + res_hidden_states_tuple=res_samples, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + upsample_size=upsample_size, + attention_mask=attention_mask, + enable_temporal_attentions=enable_temporal_attentions + ) + else: + sample = upsample_block( + hidden_states=sample, + temb=emb, + res_hidden_states_tuple=res_samples, + upsample_size=upsample_size, + encoder_hidden_states=encoder_hidden_states, + enable_temporal_attentions=enable_temporal_attentions + ) + + # 6. post-process + if self.conv_norm_out: + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + + sample = self.conv_out(sample) + + if not return_dict: + return (sample,) + + return UNet3DConditionOutput(sample=sample) + + @classmethod + def from_pretrained_spatial(cls, pretrained_model_path, subfolder=None): + + import os + import json + + if subfolder is not None: + pretrained_model_path = os.path.join(pretrained_model_path, subfolder) + + config_file = os.path.join(pretrained_model_path, 'config.json') + + with open(config_file, "r") as f: + config = json.load(f) + + config["_class_name"] = "UNet3DConditionModel" + + config["down_block_types"] = [ + "DownBlock3D", + "CrossAttnDownBlock3D", + "CrossAttnDownBlock3D", + ] + config["up_block_types"] = [ + "CrossAttnUpBlock3D", + "CrossAttnUpBlock3D", + "UpBlock3D" + ] + + config["mid_block_type"] = "UNetMidBlock3DCrossAttn" + + model = cls.from_config(config) + + model_files = [ + os.path.join(pretrained_model_path, 'diffusion_pytorch_model.bin'), + os.path.join(pretrained_model_path, 'diffusion_pytorch_model.safetensors') + ] + + model_file = None + + for fp in model_files: + if os.path.exists(fp): + model_file = fp + + if not model_file: + raise RuntimeError(f"{model_file} does not exist") + + state_dict = torch.load(model_file, map_location="cpu") + + model.load_state_dict(state_dict, strict=False) + + return model diff --git a/Hotshot-XL/build/lib/hotshot_xl/models/unet_blocks.py b/Hotshot-XL/build/lib/hotshot_xl/models/unet_blocks.py new file mode 100644 index 0000000000000000000000000000000000000000..e642d4f8b56600b58238fdb7a243fb1e360a621d --- /dev/null +++ b/Hotshot-XL/build/lib/hotshot_xl/models/unet_blocks.py @@ -0,0 +1,740 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Modifications: +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# - Add temporal transformers to unet blocks + +import torch +from torch import nn + +from .transformer_3d import Transformer3DModel +from .resnet import Downsample3D, ResnetBlock3D, Upsample3D +from .transformer_temporal import TransformerTemporal + + +def get_down_block( + down_block_type, + num_layers, + in_channels, + out_channels, + temb_channels, + add_downsample, + resnet_eps, + resnet_act_fn, + transformer_layers_per_block=1, + num_attention_heads=None, + resnet_groups=None, + cross_attention_dim=None, + downsample_padding=None, + dual_cross_attention=False, + use_linear_projection=False, + only_cross_attention=False, + upcast_attention=False, + resnet_time_scale_shift="default", + resnet_skip_time_act=False, + resnet_out_scale_factor=1.0, + cross_attention_norm=None, + attention_head_dim=None, + downsample_type=None, +): + down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type + if down_block_type == "DownBlock3D": + return DownBlock3D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif down_block_type == "CrossAttnDownBlock3D": + if cross_attention_dim is None: + raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D") + return CrossAttnDownBlock3D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + transformer_layers_per_block=transformer_layers_per_block, + temb_channels=temb_channels, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + cross_attention_dim=cross_attention_dim, + num_attention_heads=num_attention_heads, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + raise ValueError(f"{down_block_type} does not exist.") + + +def get_up_block( + up_block_type, + num_layers, + in_channels, + out_channels, + prev_output_channel, + temb_channels, + add_upsample, + resnet_eps, + resnet_act_fn, + transformer_layers_per_block=1, + num_attention_heads=None, + resnet_groups=None, + cross_attention_dim=None, + dual_cross_attention=False, + use_linear_projection=False, + only_cross_attention=False, + upcast_attention=False, + resnet_time_scale_shift="default", + resnet_skip_time_act=False, + resnet_out_scale_factor=1.0, + cross_attention_norm=None, + attention_head_dim=None, + upsample_type=None, +): + up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type + if up_block_type == "UpBlock3D": + return UpBlock3D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif up_block_type == "CrossAttnUpBlock3D": + if cross_attention_dim is None: + raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D") + return CrossAttnUpBlock3D( + num_layers=num_layers, + in_channels=in_channels, + transformer_layers_per_block=transformer_layers_per_block, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + cross_attention_dim=cross_attention_dim, + num_attention_heads=num_attention_heads, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + raise ValueError(f"{up_block_type} does not exist.") + + +class UNetMidBlock3DCrossAttn(nn.Module): + def __init__( + self, + in_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + transformer_layers_per_block: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + num_attention_heads=1, + output_scale_factor=1.0, + cross_attention_dim=1280, + dual_cross_attention=False, + use_linear_projection=False, + upcast_attention=False, + ): + super().__init__() + + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + + # there is always at least one resnet + resnets = [ + ResnetBlock3D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ] + attentions = [] + + for _ in range(num_layers): + if dual_cross_attention: + raise NotImplementedError + attentions.append( + Transformer3DModel( + num_attention_heads, + in_channels // num_attention_heads, + in_channels=in_channels, + num_layers=transformer_layers_per_block, + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + use_linear_projection=use_linear_projection, + upcast_attention=upcast_attention, + ) + ) + + resnets.append( + ResnetBlock3D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, + cross_attention_kwargs=None, enable_temporal_attentions: bool = True): + hidden_states = self.resnets[0](hidden_states, temb) + for attn, resnet in zip(self.attentions, self.resnets[1:]): + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample + hidden_states = resnet(hidden_states, temb) + + return hidden_states + + def temporal_parameters(self) -> list: + return [] + + +class CrossAttnDownBlock3D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + transformer_layers_per_block: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + num_attention_heads=1, + cross_attention_dim=1280, + output_scale_factor=1.0, + downsample_padding=1, + add_downsample=True, + dual_cross_attention=False, + use_linear_projection=False, + only_cross_attention=False, + upcast_attention=False, + ): + super().__init__() + resnets = [] + attentions = [] + temporal_attentions = [] + + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock3D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + if dual_cross_attention: + raise NotImplementedError + attentions.append( + Transformer3DModel( + num_attention_heads, + out_channels // num_attention_heads, + in_channels=out_channels, + num_layers=transformer_layers_per_block, + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + ) + ) + temporal_attentions.append( + TransformerTemporal( + num_attention_heads=8, + attention_head_dim=out_channels // 8, + in_channels=out_channels, + cross_attention_dim=None, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + self.temporal_attentions = nn.ModuleList(temporal_attentions) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample3D( + out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, + cross_attention_kwargs=None, enable_temporal_attentions: bool = True): + output_states = () + + for resnet, attn, temporal_attention \ + in zip(self.resnets, self.attentions, self.temporal_attentions): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, + use_reentrant=False) + + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(attn, return_dict=False), + hidden_states, + encoder_hidden_states, + use_reentrant=False + )[0] + if enable_temporal_attentions and temporal_attention is not None: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(temporal_attention), + hidden_states, encoder_hidden_states, + use_reentrant=False) + + else: + hidden_states = resnet(hidden_states, temb) + + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample + + if temporal_attention and enable_temporal_attentions: + hidden_states = temporal_attention(hidden_states, + encoder_hidden_states=encoder_hidden_states) + + output_states += (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + output_states += (hidden_states,) + + return hidden_states, output_states + + def temporal_parameters(self) -> list: + output = [] + for block in self.temporal_attentions: + if block: + output.extend(block.parameters()) + return output + + +class DownBlock3D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor=1.0, + add_downsample=True, + downsample_padding=1, + ): + super().__init__() + resnets = [] + temporal_attentions = [] + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock3D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + temporal_attentions.append( + TransformerTemporal( + num_attention_heads=8, + attention_head_dim=out_channels // 8, + in_channels=out_channels, + cross_attention_dim=None + ) + ) + + self.resnets = nn.ModuleList(resnets) + self.temporal_attentions = nn.ModuleList(temporal_attentions) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample3D( + out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def forward(self, hidden_states, temb=None, encoder_hidden_states=None, enable_temporal_attentions: bool = True): + output_states = () + + for resnet, temporal_attention in zip(self.resnets, self.temporal_attentions): + if self.training and self.gradient_checkpointing: + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, + use_reentrant=False) + if enable_temporal_attentions and temporal_attention is not None: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(temporal_attention), + hidden_states, encoder_hidden_states, + use_reentrant=False) + else: + hidden_states = resnet(hidden_states, temb) + + if enable_temporal_attentions and temporal_attention: + hidden_states = temporal_attention(hidden_states, encoder_hidden_states=encoder_hidden_states) + + output_states += (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + output_states += (hidden_states,) + + return hidden_states, output_states + + def temporal_parameters(self) -> list: + output = [] + for block in self.temporal_attentions: + if block: + output.extend(block.parameters()) + return output + + +class CrossAttnUpBlock3D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + prev_output_channel: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + transformer_layers_per_block: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + num_attention_heads=1, + cross_attention_dim=1280, + output_scale_factor=1.0, + add_upsample=True, + dual_cross_attention=False, + use_linear_projection=False, + only_cross_attention=False, + upcast_attention=False, + ): + super().__init__() + resnets = [] + attentions = [] + temporal_attentions = [] + + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + resnets.append( + ResnetBlock3D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + if dual_cross_attention: + raise NotImplementedError + attentions.append( + Transformer3DModel( + num_attention_heads, + out_channels // num_attention_heads, + in_channels=out_channels, + num_layers=transformer_layers_per_block, + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + ) + ) + temporal_attentions.append( + TransformerTemporal( + num_attention_heads=8, + attention_head_dim=out_channels // 8, + in_channels=out_channels, + cross_attention_dim=None + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + self.temporal_attentions = nn.ModuleList(temporal_attentions) + + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states, + res_hidden_states_tuple, + temb=None, + encoder_hidden_states=None, + upsample_size=None, + cross_attention_kwargs=None, + attention_mask=None, + enable_temporal_attentions: bool = True + ): + for resnet, attn, temporal_attention \ + in zip(self.resnets, self.attentions, self.temporal_attentions): + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, + use_reentrant=False) + + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(attn, return_dict=False), + hidden_states, + encoder_hidden_states, + use_reentrant=False, + )[0] + if enable_temporal_attentions and temporal_attention is not None: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(temporal_attention), + hidden_states, encoder_hidden_states, + use_reentrant=False) + + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample + + if enable_temporal_attentions and temporal_attention: + hidden_states = temporal_attention(hidden_states, + encoder_hidden_states=encoder_hidden_states) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size) + + return hidden_states + + def temporal_parameters(self) -> list: + output = [] + for block in self.temporal_attentions: + if block: + output.extend(block.parameters()) + return output + + +class UpBlock3D(nn.Module): + def __init__( + self, + in_channels: int, + prev_output_channel: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor=1.0, + add_upsample=True, + ): + super().__init__() + resnets = [] + temporal_attentions = [] + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + resnets.append( + ResnetBlock3D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + temporal_attentions.append( + TransformerTemporal( + num_attention_heads=8, + attention_head_dim=out_channels // 8, + in_channels=out_channels, + cross_attention_dim=None + ) + ) + + self.resnets = nn.ModuleList(resnets) + self.temporal_attentions = nn.ModuleList(temporal_attentions) + + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + + def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, encoder_hidden_states=None, + enable_temporal_attentions: bool = True): + for resnet, temporal_attention in zip(self.resnets, self.temporal_attentions): + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, + use_reentrant=False) + if enable_temporal_attentions and temporal_attention is not None: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(temporal_attention), + hidden_states, encoder_hidden_states, + use_reentrant=False) + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = temporal_attention(hidden_states, + encoder_hidden_states=encoder_hidden_states) if enable_temporal_attentions and temporal_attention is not None else hidden_states + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size) + + return hidden_states + + def temporal_parameters(self) -> list: + output = [] + for block in self.temporal_attentions: + if block: + output.extend(block.parameters()) + return output diff --git a/Hotshot-XL/build/lib/hotshot_xl/pipelines/__init__.py b/Hotshot-XL/build/lib/hotshot_xl/pipelines/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/Hotshot-XL/build/lib/hotshot_xl/pipelines/hotshot_xl_controlnet_pipeline.py b/Hotshot-XL/build/lib/hotshot_xl/pipelines/hotshot_xl_controlnet_pipeline.py new file mode 100644 index 0000000000000000000000000000000000000000..b084688662309ef71b429d20a5edfc9c8f494f9f --- /dev/null +++ b/Hotshot-XL/build/lib/hotshot_xl/pipelines/hotshot_xl_controlnet_pipeline.py @@ -0,0 +1,1389 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Modifications: +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# - Adapted the SDXL Controlnet Pipeline to work temporally + +import inspect +import os +from typing import Any, Callable, Dict, List, Optional, Tuple, Union + +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer + +from hotshot_xl import HotshotPipelineXLOutput + +from diffusers.image_processor import VaeImageProcessor +from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin +from diffusers.models import AutoencoderKL, ControlNetModel +from diffusers.models.attention_processor import ( + AttnProcessor2_0, + LoRAAttnProcessor2_0, + LoRAXFormersAttnProcessor, + XFormersAttnProcessor, +) +from diffusers.schedulers import KarrasDiffusionSchedulers +from diffusers.utils import ( + is_accelerate_available, + is_accelerate_version, + logging, + replace_example_docstring, +) +from diffusers.pipelines.pipeline_utils import DiffusionPipeline +from diffusers.utils.torch_utils import randn_tensor, is_compiled_module + +from ..models.unet import UNet3DConditionModel + +from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel +from einops import rearrange +from tqdm import tqdm + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + """ + Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and + Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 + """ + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + # rescale the results from guidance (fixes overexposure) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> import torch + >>> from hotshot_xl import HotshotPipelineXL + >>> from diffusers import ControlNetModel + + >>> pipe = HotshotXLPipeline.from_pretrained( + ... "hotshotco/Hotshot-XL", + ... controlnet=ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0") + ... ) + + >>> def canny(image): + >>> image = cv2.Canny(image, 100, 200) + >>> image = image[:, :, None] + >>> image = np.concatenate([image, image, image], axis=2) + >>> return Image.fromarray(image) + + >>> # assuming you have 8 keyframes in current directory... + + >>> keyframes = [f"image_{i}.jpg" for i in range(8)] + >>> control_images = [canny(Image.open(fp)) for fp in keyframes] + + >>> pipe = pipe.to("cuda") + + >>> prompt = "a photo of an astronaut riding a horse on mars" + >>> video = pipe(prompt, + ... width=672, height=384, + ... original_size=(1920, 1080), + ... target_size=(512, 512), + ... output_type="tensor", + ... controlnet_conditioning_scale=0.7, + ... control_images=control_images + ).video + ``` +""" +class HotshotXLControlNetPipeline( + DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin +): + r""" + Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance. + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods + implemented for all pipelines (downloading, saving, running on a particular device, etc.). + + The pipeline also inherits the following loading methods: + - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings + - [`loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights + - [`loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files + + Args: + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. + text_encoder ([`~transformers.CLIPTextModel`]): + Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). + text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]): + Second frozen text-encoder + ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)). + tokenizer ([`~transformers.CLIPTokenizer`]): + A `CLIPTokenizer` to tokenize text. + tokenizer_2 ([`~transformers.CLIPTokenizer`]): + A `CLIPTokenizer` to tokenize text. + unet ([`UNet3DConditionModel`]): + A `UNet3DConditionModel` to denoise the encoded image latents. + controlnet ([`ControlNetModel`] or `List[ControlNetModel]`): + Provides additional conditioning to the `unet` during the denoising process. If you set multiple + ControlNets as a list, the outputs from each ControlNet are added together to create one combined + additional conditioning. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of + [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. + force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): + Whether the negative prompt embeddings should always be set to 0. Also see the config of + `stabilityai/stable-diffusion-xl-base-1-0`. + add_watermarker (`bool`, *optional*): + Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to + watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no + watermarker is used. + """ + + def __init__( + self, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + text_encoder_2: CLIPTextModelWithProjection, + tokenizer: CLIPTokenizer, + tokenizer_2: CLIPTokenizer, + unet: UNet3DConditionModel, + controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], + scheduler: KarrasDiffusionSchedulers, + force_zeros_for_empty_prompt: bool = True, + add_watermarker: Optional[bool] = None, + ): + super().__init__() + + if isinstance(controlnet, (list, tuple)): + controlnet = MultiControlNetModel(controlnet) + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + text_encoder_2=text_encoder_2, + tokenizer=tokenizer, + tokenizer_2=tokenizer_2, + unet=unet, + controlnet=controlnet, + scheduler=scheduler, + ) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) + self.control_image_processor = VaeImageProcessor( + vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False + ) + + self.watermark = None + + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing + def enable_vae_slicing(self): + r""" + Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to + compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. + """ + self.vae.enable_slicing() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing + def disable_vae_slicing(self): + r""" + Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_slicing() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling + def enable_vae_tiling(self): + r""" + Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to + compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow + processing larger images. + """ + self.vae.enable_tiling() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling + def disable_vae_tiling(self): + r""" + Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_tiling() + + def enable_model_cpu_offload(self, gpu_id=0): + r""" + Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared + to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` + method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with + `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. + """ + if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): + from accelerate import cpu_offload_with_hook + else: + raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") + + device = torch.device(f"cuda:{gpu_id}") + + if self.device.type != "cpu": + self.to("cpu", silence_dtype_warnings=True) + torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) + + model_sequence = ( + [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + ) + model_sequence.extend([self.unet, self.vae]) + + hook = None + for cpu_offloaded_model in model_sequence: + _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) + + cpu_offload_with_hook(self.controlnet, device) + + # We'll offload the last model manually. + self.final_offload_hook = hook + + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt + def encode_prompt( + self, + prompt: str, + prompt_2: Optional[str] = None, + device: Optional[torch.device] = None, + num_images_per_prompt: int = 1, + do_classifier_free_guidance: bool = True, + negative_prompt: Optional[str] = None, + negative_prompt_2: Optional[str] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + lora_scale: Optional[float] = None, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + used in both text-encoders + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + do_classifier_free_guidance (`bool`): + whether to use classifier free guidance or not + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + negative_prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and + `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + If not provided, pooled text embeddings will be generated from `prompt` input argument. + negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` + input argument. + lora_scale (`float`, *optional*): + A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + """ + device = device or self._execution_device + + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, LoraLoaderMixin): + self._lora_scale = lora_scale + + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + # Define tokenizers and text encoders + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = ( + [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + ) + + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + # textual inversion: procecss multi-vector tokens if necessary + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + + text_inputs = tokenizer( + prompt, + padding="max_length", + max_length=tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( + text_input_ids, untruncated_ids + ): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {tokenizer.model_max_length} tokens: {removed_text}" + ) + + prompt_embeds = text_encoder( + text_input_ids.to(device), + output_hidden_states=True, + ) + + # We are only ALWAYS interested in the pooled output of the final text encoder + pooled_prompt_embeds = prompt_embeds[0] + prompt_embeds = prompt_embeds.hidden_states[-2] + + prompt_embeds_list.append(prompt_embeds) + + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + + # get unconditional embeddings for classifier free guidance + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or "" + negative_prompt_2 = negative_prompt_2 or negative_prompt + + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt, negative_prompt_2] + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + + negative_prompt_embeds_list = [] + for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer( + negative_prompt, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + + negative_prompt_embeds = text_encoder( + uncond_input.input_ids.to(device), + output_hidden_states=True, + ) + # We are only ALWAYS interested in the pooled output of the final text encoder + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + + negative_prompt_embeds_list.append(negative_prompt_embeds) + + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + + if do_classifier_free_guidance: + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( + bs_embed * num_images_per_prompt, -1 + ) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( + bs_embed * num_images_per_prompt, -1 + ) + + return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (ฮท) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to ฮท in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + def check_inputs( + self, + prompt, + prompt_2, + control_images, + video_length, + callback_steps, + negative_prompt=None, + negative_prompt_2=None, + prompt_embeds=None, + negative_prompt_embeds=None, + pooled_prompt_embeds=None, + negative_pooled_prompt_embeds=None, + controlnet_conditioning_scale=1.0, + control_guidance_start=0.0, + control_guidance_end=1.0, + ): + if (callback_steps is None) or ( + callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) + ): + raise ValueError( + f"`callback_steps` has to be a positive integer but is {callback_steps} of type" + f" {type(callback_steps)}." + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): + raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError( + "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." + ) + + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError( + "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." + ) + + # `prompt` needs more sophisticated handling when there are multiple + # conditionings. + if isinstance(self.controlnet, MultiControlNetModel): + if isinstance(prompt, list): + logger.warning( + f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}" + " prompts. The conditionings will be fixed across the prompts." + ) + + # Check `image` + is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( + self.controlnet, torch._dynamo.eval_frame.OptimizedModule + ) + if ( + isinstance(self.controlnet, ControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, ControlNetModel) + ): + + assert len(control_images) == video_length + # for image in control_images: + # self.check_image(image, prompt, prompt_embeds) + elif ( + isinstance(self.controlnet, MultiControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, MultiControlNetModel) + ): + ... + # todo + # + # if not isinstance(image, list): + # raise TypeError("For multiple controlnets: `image` must be type `list`") + # + # # When `image` is a nested list: + # # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]]) + # elif any(isinstance(i, list) for i in image): + # raise ValueError("A single batch of multiple conditionings are supported at the moment.") + # elif len(image) != len(self.controlnet.nets): + # raise ValueError( + # f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets." + # ) + # + # for image_ in image: + # self.check_image(image_, prompt, prompt_embeds) + else: + assert False + + # Check `controlnet_conditioning_scale` + if ( + isinstance(self.controlnet, ControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, ControlNetModel) + ): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") + elif ( + isinstance(self.controlnet, MultiControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, MultiControlNetModel) + ): + if isinstance(controlnet_conditioning_scale, list): + if any(isinstance(i, list) for i in controlnet_conditioning_scale): + raise ValueError("A single batch of multiple conditionings are supported at the moment.") + elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( + self.controlnet.nets + ): + raise ValueError( + "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" + " the same length as the number of controlnets" + ) + else: + assert False + + if not isinstance(control_guidance_start, (tuple, list)): + control_guidance_start = [control_guidance_start] + + if not isinstance(control_guidance_end, (tuple, list)): + control_guidance_end = [control_guidance_end] + + if len(control_guidance_start) != len(control_guidance_end): + raise ValueError( + f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." + ) + + if isinstance(self.controlnet, MultiControlNetModel): + if len(control_guidance_start) != len(self.controlnet.nets): + raise ValueError( + f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." + ) + + for start, end in zip(control_guidance_start, control_guidance_end): + if start >= end: + raise ValueError( + f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." + ) + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + + # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + + if ( + not image_is_pil + and not image_is_tensor + and not image_is_np + and not image_is_pil_list + and not image_is_tensor_list + and not image_is_np_list + ): + raise TypeError( + f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" + ) + + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError( + f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" + ) + + # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image + def prepare_images( + self, + images, + width, + height, + batch_size, + num_images_per_prompt, + device, + dtype, + do_classifier_free_guidance=False, + guess_mode=False, + ): + images_pre_processed = [self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) for image in images] + + images_pre_processed = torch.cat(images_pre_processed, dim=0) + + repeat_factor = [1] * len(images_pre_processed.shape) + repeat_factor[0] = batch_size * num_images_per_prompt + images_pre_processed = images_pre_processed.repeat(*repeat_factor) + + images = images_pre_processed.unsqueeze(0) + + # image_batch_size = image.shape[0] + # + # if image_batch_size == 1: + # repeat_by = batch_size + # else: + # # image batch size is the same as prompt batch size + # repeat_by = num_images_per_prompt + + #image = image.repeat_interleave(repeat_by, dim=0) + + images = images.to(device=device, dtype=dtype) + + if do_classifier_free_guidance and not guess_mode: + repeat_factor = [1] * len(images.shape) + repeat_factor[0] = 2 + images = images.repeat(*repeat_factor) + + return images + + # def prepare_images(self, + # images: list, + # width, + # height, + # batch_size, + # num_images_per_prompt, + # device, + # dtype, + # do_classifier_free_guidance=False, + # guess_mode=False): + # + # images = [self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) for image in images] + # + # image_batch_size = image.shape[0] + # + # if image_batch_size == 1: + # repeat_by = batch_size + # else: + # # image batch size is the same as prompt batch size + # repeat_by = num_images_per_prompt + # + # image = image.repeat_interleave(repeat_by, dim=0) + # + # image = image.to(device=device, dtype=dtype) + # + # if do_classifier_free_guidance and not guess_mode: + # image = torch.cat([image] * 2) + # + # return image + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents + def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None): + #shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) + shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + + # scale the initial noise by the standard deviation required by the scheduler + latents = latents * self.scheduler.init_noise_sigma + return latents + + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + + passed_add_embed_dim = ( + self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim + ) + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError( + f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." + ) + + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance( + self.vae.decoder.mid_block.attentions[0].processor, + ( + AttnProcessor2_0, + XFormersAttnProcessor, + LoRAXFormersAttnProcessor, + LoRAAttnProcessor2_0, + ), + ) + # if xformers or torch_2_0 is used attention block does not need + # to be in float32 which can save lots of memory + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Union[str, List[str]] = None, + prompt_2: Optional[Union[str, List[str]]] = None, + video_length: Optional[int] = 8, + control_images: List[PIL.Image.Image] = None, + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 50, + guidance_scale: float = 5.0, + negative_prompt: Optional[Union[str, List[str]]] = None, + negative_prompt_2: Optional[Union[str, List[str]]] = None, + num_images_per_prompt: Optional[int] = 1, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, + callback_steps: int = 1, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + guidance_rescale: float = 0.0, + controlnet_conditioning_scale: Union[float, List[float]] = 1.0, + guess_mode: bool = False, + control_guidance_start: Union[float, List[float]] = 0.0, + control_guidance_end: Union[float, List[float]] = 1.0, + original_size: Tuple[int, int] = None, + crops_coords_top_left: Tuple[int, int] = (0, 0), + target_size: Tuple[int, int] = None, + negative_original_size: Optional[Tuple[int, int]] = None, + negative_crops_coords_top_left: Tuple[int, int] = (0, 0), + negative_target_size: Optional[Tuple[int, int]] = None, + ): + r""" + The call function to the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + used in both text-encoders. + image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: + `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): + The ControlNet input condition to provide guidance to the `unet` for generation. If the type is + specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be + accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height + and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in + `init`, images must be passed as a list such that each element of the list can be correctly batched for + input to a single ControlNet. + height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The width in pixels of the generated image. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + guidance_scale (`float`, *optional*, defaults to 5.0): + A higher guidance scale value encourages the model to generate images closely linked to the text + `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide what to not include in image generation. If not defined, you need to + pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). + negative_prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2` + and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders. + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (ฮท) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies + to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make + generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor is generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not + provided, text embeddings are generated from the `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If + not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If + not provided, pooled text embeddings are generated from `prompt` input argument. + negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt + weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input + argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generated image. Choose between `PIL.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a + plain tuple. + callback (`Callable`, *optional*): + A function that calls every `callback_steps` steps during inference. The function is called with the + following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. + callback_steps (`int`, *optional*, defaults to 1): + The frequency at which the `callback` function is called. If not specified, the callback is called at + every step. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in + [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): + The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added + to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set + the corresponding scale as a list. + guess_mode (`bool`, *optional*, defaults to `False`): + The ControlNet encoder tries to recognize the content of the input image even if you remove all + prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. + control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): + The percentage of total steps at which the ControlNet starts applying. + control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): + The percentage of total steps at which the ControlNet stops applying. + original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. + `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as + explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): + `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position + `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting + `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + For most cases, `target_size` should be set to the desired height and width of the generated image. If + not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in + section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + To negatively condition the generation process based on a specific image resolution. Part of SDXL's + micro-conditioning as explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more + information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. + negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): + To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's + micro-conditioning as explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more + information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. + negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + To negatively condition the generation process based on a target image resolution. It should be as same + as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more + information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. + + Examples: + + Returns: + [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: + If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, + otherwise a `tuple` is returned containing the output images. + """ + + + if video_length > 1 and num_images_per_prompt > 1: + print(f"Warning - setting num_images_per_prompt = 1 because video_length = {video_length}") + num_images_per_prompt = 1 + + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + + # align format for control guidance + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): + mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 + control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [ + control_guidance_end + ] + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + prompt_2, + control_images, + video_length, + callback_steps, + negative_prompt, + negative_prompt_2, + prompt_embeds, + negative_prompt_embeds, + pooled_prompt_embeds, + negative_pooled_prompt_embeds, + controlnet_conditioning_scale, + control_guidance_start, + control_guidance_end, + ) + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + do_classifier_free_guidance = guidance_scale > 1.0 + + if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): + controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) + + global_pool_conditions = ( + controlnet.config.global_pool_conditions + if isinstance(controlnet, ControlNetModel) + else controlnet.nets[0].config.global_pool_conditions + ) + guess_mode = guess_mode or global_pool_conditions + + # 3. Encode input prompt + text_encoder_lora_scale = ( + cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None + ) + ( + prompt_embeds, + negative_prompt_embeds, + pooled_prompt_embeds, + negative_pooled_prompt_embeds, + ) = self.encode_prompt( + prompt, + prompt_2, + device, + num_images_per_prompt, + do_classifier_free_guidance, + negative_prompt, + negative_prompt_2, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, + lora_scale=text_encoder_lora_scale, + ) + + + # 4. Prepare image + if isinstance(controlnet, ControlNetModel): + + assert len(control_images) == video_length * batch_size + + images = self.prepare_images( + images=control_images, + width=width, + height=height, + batch_size=batch_size * num_images_per_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + dtype=controlnet.dtype, + do_classifier_free_guidance=do_classifier_free_guidance, + guess_mode=guess_mode, + ) + + height, width = images.shape[-2:] + elif isinstance(controlnet, MultiControlNetModel): + + raise Exception("not supported yet") + + # images = [] + # + # for image_ in control_images: + # image_ = self.prepare_image( + # image=image_, + # width=width, + # height=height, + # batch_size=batch_size * num_images_per_prompt, + # num_images_per_prompt=num_images_per_prompt, + # device=device, + # dtype=controlnet.dtype, + # do_classifier_free_guidance=do_classifier_free_guidance, + # guess_mode=guess_mode, + # ) + # + # images.append(image_) + # + # image = images + # height, width = image[0].shape[-2:] + else: + assert False + + # 5. Prepare timesteps + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + + # 6. Prepare latent variables + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + video_length, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + + # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 7.1 Create tensor stating which controlnets to keep + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [ + 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) + for s, e in zip(control_guidance_start, control_guidance_end) + ] + controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) + + # 7.2 Prepare added time ids & embeddings + # if isinstance(image, list): + # original_size = original_size or image[0].shape[-2:] + # else: + original_size = original_size or images.shape[-2:] + target_size = target_size or (height, width) + + add_text_embeds = pooled_prompt_embeds + add_time_ids = self._get_add_time_ids( + original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype + ) + + if negative_original_size is not None and negative_target_size is not None: + negative_add_time_ids = self._get_add_time_ids( + negative_original_size, + negative_crops_coords_top_left, + negative_target_size, + dtype=prompt_embeds.dtype, + ) + else: + negative_add_time_ids = add_time_ids + + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) + + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) + + # 8. Denoising loop + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + + images = rearrange(images, "b f c h w -> (b f) c h w") + + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} + + # controlnet(s) inference + if guess_mode and do_classifier_free_guidance: + # Infer ControlNet only for the conditional batch. + control_model_input = latents + control_model_input = self.scheduler.scale_model_input(control_model_input, t) + controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] + controlnet_added_cond_kwargs = { + "text_embeds": add_text_embeds.chunk(2)[1], + "time_ids": add_time_ids.chunk(2)[1], + } + else: + control_model_input = latent_model_input + controlnet_prompt_embeds = prompt_embeds + controlnet_added_cond_kwargs = added_cond_kwargs + + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + + + # this will be non interlaced when arranged! + control_model_input = rearrange(control_model_input, "b c f h w -> (b f) c h w") + # if we chunked this by 2 - the top 8 frames will be positive for cfg + # the bottom half will be negative for cfg... + + if video_length > 1: + # use repeat_interleave as we need to match the rearrangement above. + + controlnet_prompt_embeds = controlnet_prompt_embeds.repeat_interleave(video_length, dim=0) + controlnet_added_cond_kwargs = { + "text_embeds": controlnet_added_cond_kwargs['text_embeds'].repeat_interleave(video_length, dim=0), + "time_ids": controlnet_added_cond_kwargs['time_ids'].repeat_interleave(video_length, dim=0) + } + + # if type(image) is list: + # image = torch.cat(image, dim=0) + + # todo - check if video_length > 1 this needs to produce num_frames * batch_size samples... + down_block_res_samples, mid_block_res_sample = self.controlnet( + control_model_input, + t, + encoder_hidden_states=controlnet_prompt_embeds, + controlnet_cond=images, + conditioning_scale=cond_scale, + guess_mode=guess_mode, + added_cond_kwargs=controlnet_added_cond_kwargs, + return_dict=False, + ) + + for j, sample in enumerate(down_block_res_samples): + down_block_res_samples[j] = rearrange(sample, "(b f) c h w -> b c f h w", f=video_length) + + mid_block_res_sample = rearrange(mid_block_res_sample, "(b f) c h w -> b c f h w", f=video_length) + + if guess_mode and do_classifier_free_guidance: + # Infered ControlNet only for the conditional batch. + # To apply the output of ControlNet to both the unconditional and conditional batches, + # add 0 to the unconditional batch to keep it unchanged. + down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] + mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) + + # predict the noise residual + noise_pred = self.unet( + latent_model_input, + t, + encoder_hidden_states=prompt_embeds, + cross_attention_kwargs=cross_attention_kwargs, + down_block_additional_residuals=down_block_res_samples, + mid_block_additional_residual=mid_block_res_sample, + added_cond_kwargs=added_cond_kwargs, + return_dict=False, + enable_temporal_attentions=video_length > 1 + )[0] + + # perform guidance + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + + if do_classifier_free_guidance and guidance_rescale > 0.0: + # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) + + # compute the previous noisy sample x_t -> x_t-1 + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + callback(i, t, latents) + + # make sure the VAE is in float32 mode, as it overflows in float16 + if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + + # If we do sequential model offloading, let's offload unet and controlnet + # manually for max memory savings + if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: + self.unet.to("cpu") + self.controlnet.to("cpu") + torch.cuda.empty_cache() + + # if not output_type == "latent": + # # make sure the VAE is in float32 mode, as it overflows in float16 + # needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + # + # if needs_upcasting: + # self.upcast_vae() + # latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + # + # image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + # + # # cast back to fp16 if needed + # if needs_upcasting: + # self.vae.to(dtype=torch.float16) + # else: + # image = latents + # return StableDiffusionXLPipelineOutput(images=image) + + video = self.decode_latents(latents) + + # Convert to tensor + if output_type == "tensor": + video = torch.from_numpy(video) + + if not return_dict: + return video + + return HotshotPipelineXLOutput(videos=video) + + def decode_latents(self, latents): + video_length = latents.shape[2] + latents = 1 / self.vae.config.scaling_factor * latents + latents = rearrange(latents, "b c f h w -> (b f) c h w") + # video = self.vae.decode(latents).sample + video = [] + for frame_idx in tqdm(range(latents.shape[0])): + video.append(self.vae.decode( + latents[frame_idx:frame_idx+1]).sample) + video = torch.cat(video) + video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) + video = (video / 2.0 + 0.5).clamp(0, 1) + # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 + video = video.cpu().float().numpy() + return video + + # Overrride to properly handle the loading and unloading of the additional text encoder. + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.load_lora_weights + def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): + # We could have accessed the unet config from `lora_state_dict()` too. We pass + # it here explicitly to be able to tell that it's coming from an SDXL + # pipeline. + state_dict, network_alphas = self.lora_state_dict( + pretrained_model_name_or_path_or_dict, + unet_config=self.unet.config, + **kwargs, + ) + self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet) + + text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} + if len(text_encoder_state_dict) > 0: + self.load_lora_into_text_encoder( + text_encoder_state_dict, + network_alphas=network_alphas, + text_encoder=self.text_encoder, + prefix="text_encoder", + lora_scale=self.lora_scale, + ) + + text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} + if len(text_encoder_2_state_dict) > 0: + self.load_lora_into_text_encoder( + text_encoder_2_state_dict, + network_alphas=network_alphas, + text_encoder=self.text_encoder_2, + prefix="text_encoder_2", + lora_scale=self.lora_scale, + ) + + @classmethod + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.save_lora_weights + def save_lora_weights( + self, + save_directory: Union[str, os.PathLike], + unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, + text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, + text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, + is_main_process: bool = True, + weight_name: str = None, + save_function: Callable = None, + safe_serialization: bool = True, + ): + state_dict = {} + + def pack_weights(layers, prefix): + layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers + layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()} + return layers_state_dict + + state_dict.update(pack_weights(unet_lora_layers, "unet")) + + if text_encoder_lora_layers and text_encoder_2_lora_layers: + state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder")) + state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) + + self.write_lora_layers( + state_dict=state_dict, + save_directory=save_directory, + is_main_process=is_main_process, + weight_name=weight_name, + save_function=save_function, + safe_serialization=safe_serialization, + ) + + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._remove_text_encoder_monkey_patch + def _remove_text_encoder_monkey_patch(self): + self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder) + self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2) diff --git a/Hotshot-XL/build/lib/hotshot_xl/pipelines/hotshot_xl_pipeline.py b/Hotshot-XL/build/lib/hotshot_xl/pipelines/hotshot_xl_pipeline.py new file mode 100644 index 0000000000000000000000000000000000000000..1c3b41da67eacee21c8cb192de343e47d5fe30d0 --- /dev/null +++ b/Hotshot-XL/build/lib/hotshot_xl/pipelines/hotshot_xl_pipeline.py @@ -0,0 +1,975 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Modifications: +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# - Adapted the SDXL Pipeline to work temporally + + +import os +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union + +import torch +from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer +from hotshot_xl import HotshotPipelineXLOutput + +from diffusers.image_processor import VaeImageProcessor +from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin +from diffusers.models import AutoencoderKL +from hotshot_xl.models.unet import UNet3DConditionModel +from diffusers.models.attention_processor import ( + AttnProcessor2_0, + LoRAAttnProcessor2_0, + LoRAXFormersAttnProcessor, + XFormersAttnProcessor, +) +from diffusers.schedulers import KarrasDiffusionSchedulers +from diffusers.utils import ( + is_accelerate_available, + is_accelerate_version, + logging, + replace_example_docstring, +) +from diffusers.utils.torch_utils import randn_tensor +from diffusers.pipelines.pipeline_utils import DiffusionPipeline +from tqdm import tqdm +from einops import repeat, rearrange +from diffusers.utils import deprecate, logging + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> import torch + >>> from hotshot_xl import HotshotPipelineXL + + >>> pipe = HotshotXLPipeline.from_pretrained( + ... "hotshotco/Hotshot-XL" + ... ) + >>> pipe = pipe.to("cuda") + + >>> prompt = "a photo of an astronaut riding a horse on mars" + >>> video = pipe(prompt, + ... width=672, height=384, + ... original_size=(1920, 1080), + ... target_size=(512, 512), + ... output_type="tensor" + ).video + ``` +""" + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + """ + Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and + Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 + """ + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + # rescale the results from guidance (fixes overexposure) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + + + + +class HotshotXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin): + r""" + Pipeline for text-to-image generation using Stable Diffusion XL. + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the + library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) + + In addition the pipeline inherits the following loading methods: + - *LoRA*: [`HotshotPipelineXL.load_lora_weights`] + - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`] + + as well as the following saving methods: + - *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`] + + Args: + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. + text_encoder ([`CLIPTextModel`]): + Frozen text-encoder. Stable Diffusion XL uses the text portion of + [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically + the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. + text_encoder_2 ([` CLIPTextModelWithProjection`]): + Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of + [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), + specifically the + [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) + variant. + tokenizer (`CLIPTokenizer`): + Tokenizer of class + [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). + tokenizer_2 (`CLIPTokenizer`): + Second Tokenizer of class + [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). + unet ([`UNet3DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of + [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. + """ + + def __init__( + self, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + text_encoder_2: CLIPTextModelWithProjection, + tokenizer: CLIPTokenizer, + tokenizer_2: CLIPTokenizer, + unet: UNet3DConditionModel, + scheduler: KarrasDiffusionSchedulers, + force_zeros_for_empty_prompt: bool = True, + add_watermarker: Optional[bool] = None, + ): + super().__init__() + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + text_encoder_2=text_encoder_2, + tokenizer=tokenizer, + tokenizer_2=tokenizer_2, + unet=unet, + scheduler=scheduler, + ) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.default_sample_size = self.unet.config.sample_size + self.watermark = None + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing + def enable_vae_slicing(self): + r""" + Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to + compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. + """ + self.vae.enable_slicing() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing + def disable_vae_slicing(self): + r""" + Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_slicing() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling + def enable_vae_tiling(self): + r""" + Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to + compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow + processing larger images. + """ + self.vae.enable_tiling() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling + def disable_vae_tiling(self): + r""" + Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_tiling() + + def enable_model_cpu_offload(self, gpu_id=0): + r""" + Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared + to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` + method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with + `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. + """ + if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): + from accelerate import cpu_offload_with_hook + else: + raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") + + device = torch.device(f"cuda:{gpu_id}") + + if self.device.type != "cpu": + self.to("cpu", silence_dtype_warnings=True) + torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) + + model_sequence = ( + [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + ) + model_sequence.extend([self.unet, self.vae]) + + hook = None + for cpu_offloaded_model in model_sequence: + _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) + + # We'll offload the last model manually. + self.final_offload_hook = hook + + def encode_prompt( + self, + prompt: str, + prompt_2: Optional[str] = None, + device: Optional[torch.device] = None, + num_images_per_prompt: int = 1, + do_classifier_free_guidance: bool = True, + negative_prompt: Optional[str] = None, + negative_prompt_2: Optional[str] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + lora_scale: Optional[float] = None, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + used in both text-encoders + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + do_classifier_free_guidance (`bool`): + whether to use classifier free guidance or not + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + negative_prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and + `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + If not provided, pooled text embeddings will be generated from `prompt` input argument. + negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` + input argument. + lora_scale (`float`, *optional*): + A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + """ + device = device or self._execution_device + + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, LoraLoaderMixin): + self._lora_scale = lora_scale + + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + # Define tokenizers and text encoders + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = ( + [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + ) + + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + # textual inversion: procecss multi-vector tokens if necessary + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + + text_inputs = tokenizer( + prompt, + padding="max_length", + max_length=tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( + text_input_ids, untruncated_ids + ): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {tokenizer.model_max_length} tokens: {removed_text}" + ) + + prompt_embeds = text_encoder( + text_input_ids.to(device), + output_hidden_states=True, + ) + + # We are only ALWAYS interested in the pooled output of the final text encoder + pooled_prompt_embeds = prompt_embeds[0] + prompt_embeds = prompt_embeds.hidden_states[-2] + + prompt_embeds_list.append(prompt_embeds) + + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + + # get unconditional embeddings for classifier free guidance + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or "" + negative_prompt_2 = negative_prompt_2 or negative_prompt + + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt, negative_prompt_2] + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + + negative_prompt_embeds_list = [] + for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer( + negative_prompt, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + + negative_prompt_embeds = text_encoder( + uncond_input.input_ids.to(device), + output_hidden_states=True, + ) + # We are only ALWAYS interested in the pooled output of the final text encoder + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + + negative_prompt_embeds_list.append(negative_prompt_embeds) + + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + + if do_classifier_free_guidance: + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( + bs_embed * num_images_per_prompt, -1 + ) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( + bs_embed * num_images_per_prompt, -1 + ) + + return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (ฮท) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to ฮท in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + def check_inputs( + self, + prompt, + prompt_2, + height, + width, + callback_steps, + negative_prompt=None, + negative_prompt_2=None, + prompt_embeds=None, + negative_prompt_embeds=None, + pooled_prompt_embeds=None, + negative_pooled_prompt_embeds=None, + ): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") + + if (callback_steps is None) or ( + callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) + ): + raise ValueError( + f"`callback_steps` has to be a positive integer but is {callback_steps} of type" + f" {type(callback_steps)}." + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): + raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError( + "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." + ) + + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError( + "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." + ) + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents + def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + + # scale the initial noise by the standard deviation required by the scheduler + latents = latents * self.scheduler.init_noise_sigma + return latents + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + + passed_add_embed_dim = ( + self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim + ) + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError( + f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." + ) + + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance( + self.vae.decoder.mid_block.attentions[0].processor, + ( + AttnProcessor2_0, + XFormersAttnProcessor, + LoRAXFormersAttnProcessor, + LoRAAttnProcessor2_0, + ), + ) + # if xformers or torch_2_0 is used attention block does not need + # to be in float32 which can save lots of memory + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Union[str, List[str]] = None, + prompt_2: Optional[Union[str, List[str]]] = None, + video_length: Optional[int] = 8, + num_images_per_prompt: Optional[int] = 1, + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 50, + denoising_end: Optional[float] = None, + guidance_scale: float = 5.0, + negative_prompt: Optional[Union[str, List[str]]] = None, + negative_prompt_2: Optional[Union[str, List[str]]] = None, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, + callback_steps: int = 1, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + guidance_rescale: float = 0.0, + original_size: Optional[Tuple[int, int]] = None, + crops_coords_top_left: Tuple[int, int] = (0, 0), + target_size: Optional[Tuple[int, int]] = None, + ): + r""" + Function invoked when calling the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. + instead. + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + used in both text-encoders + height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The width in pixels of the generated image. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + denoising_end (`float`, *optional*): + When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be + completed before it is intentionally prematurely terminated. As a result, the returned sample will + still retain a substantial amount of noise as determined by the discrete timesteps selected by the + scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a + "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image + Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) + guidance_scale (`float`, *optional*, defaults to 5.0): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). + `guidance_scale` is defined as `w` of equation 2. of [Imagen + Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > + 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, + usually at the expense of lower image quality. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + negative_prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and + `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (ฮท) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to + [`schedulers.DDIMScheduler`], will be ignored for others. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) + to make generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor will ge generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + If not provided, pooled text embeddings will be generated from `prompt` input argument. + negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` + input argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generate image. Choose between + [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead + of a plain tuple. + callback (`Callable`, *optional*): + A function that will be called every `callback_steps` steps during inference. The function will be + called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. + callback_steps (`int`, *optional*, defaults to 1): + The frequency at which the `callback` function will be called. If not specified, the callback will be + called at every step. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + guidance_rescale (`float`, *optional*, defaults to 0.7): + Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are + Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `ฯ†` in equation 16. of + [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). + Guidance rescale factor should fix overexposure when using zero terminal SNR. + original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. + `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as + explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): + `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position + `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting + `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + For most cases, `target_size` should be set to the desired height and width of the generated image. If + not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in + section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + + Examples: + + Returns: + [`~hotshot_xl.HotshotPipelineXLOutput`] or `tuple`: + [`~hotshot_xl.HotshotPipelineXLOutput`] if `return_dict` is True, otherwise a + `tuple`. When returning a tuple, the first element is a list with the generated images. + """ + + if video_length > 1: + print(f"Warning - setting num_images_per_prompt = 1 because video_length = {video_length}") + num_images_per_prompt = 1 + + # 0. Default height and width to unet + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + + original_size = original_size or (height, width) + target_size = target_size or (height, width) + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + prompt_2, + height, + width, + callback_steps, + negative_prompt, + negative_prompt_2, + prompt_embeds, + negative_prompt_embeds, + pooled_prompt_embeds, + negative_pooled_prompt_embeds, + ) + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + do_classifier_free_guidance = guidance_scale > 1.0 + + # 3. Encode input prompt + text_encoder_lora_scale = ( + cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None + ) + ( + prompt_embeds, + negative_prompt_embeds, + pooled_prompt_embeds, + negative_pooled_prompt_embeds, + ) = self.encode_prompt( + prompt=prompt, + prompt_2=prompt_2, + device=device, + num_images_per_prompt=num_images_per_prompt, + do_classifier_free_guidance=do_classifier_free_guidance, + negative_prompt=negative_prompt, + negative_prompt_2=negative_prompt_2, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, + lora_scale=text_encoder_lora_scale, + ) + + # 4. Prepare timesteps + self.scheduler.set_timesteps(num_inference_steps, device=device) + + timesteps = self.scheduler.timesteps + + # 5. Prepare latent variables + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + video_length, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + + # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 7. Prepare added time ids & embeddings + add_text_embeds = pooled_prompt_embeds + add_time_ids = self._get_add_time_ids( + original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype + ) + + # todo - negative_original_size from latest diffusers for cfg + + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) + + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) + + # 8. Denoising loop + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + + # 7.1 Apply denoising_end + if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1: + discrete_timestep_cutoff = int( + round( + self.scheduler.config.num_train_timesteps + - (denoising_end * self.scheduler.config.num_train_timesteps) + ) + ) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + # predict the noise residual + added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} + noise_pred = self.unet( + latent_model_input, + t, + encoder_hidden_states=prompt_embeds, + cross_attention_kwargs=cross_attention_kwargs, + added_cond_kwargs=added_cond_kwargs, + return_dict=False, + enable_temporal_attentions= video_length > 1 + )[0] + + # perform guidance + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + + if do_classifier_free_guidance and guidance_rescale > 0.0: + # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) + + # compute the previous noisy sample x_t -> x_t-1 + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + callback(i, t, latents) + + # make sure the VAE is in float32 mode, as it overflows in float16 + if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + + # if not output_type == "latent": + # image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + # else: + # image = latents + # return StableDiffusionXLPipelineOutput(images=image) + + # apply watermark if available + # if self.watermark is not None: + # image = self.watermark.apply_watermark(image) + + #image = self.image_processor.postprocess(image, output_type=output_type) + + video = self.decode_latents(latents) + + # Convert to tensor + if output_type == "tensor": + video = torch.from_numpy(video) + + if not return_dict: + return video + + return HotshotPipelineXLOutput(videos=video) + + # + # # Offload last model to CPU + # if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: + # self.final_offload_hook.offload() + # + # if not return_dict: + # return (image,) + # + # return StableDiffusionXLPipelineOutput(images=image) + + # Overrride to properly handle the loading and unloading of the additional text encoder. + def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): + # We could have accessed the unet config from `lora_state_dict()` too. We pass + # it here explicitly to be able to tell that it's coming from an SDXL + # pipeline. + state_dict, network_alphas = self.lora_state_dict( + pretrained_model_name_or_path_or_dict, + unet_config=self.unet.config, + **kwargs, + ) + self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet) + + text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} + if len(text_encoder_state_dict) > 0: + self.load_lora_into_text_encoder( + text_encoder_state_dict, + network_alphas=network_alphas, + text_encoder=self.text_encoder, + prefix="text_encoder", + lora_scale=self.lora_scale, + ) + + text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} + if len(text_encoder_2_state_dict) > 0: + self.load_lora_into_text_encoder( + text_encoder_2_state_dict, + network_alphas=network_alphas, + text_encoder=self.text_encoder_2, + prefix="text_encoder_2", + lora_scale=self.lora_scale, + ) + + @classmethod + def save_lora_weights( + self, + save_directory: Union[str, os.PathLike], + unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, + text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, + text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, + is_main_process: bool = True, + weight_name: str = None, + save_function: Callable = None, + safe_serialization: bool = False, + ): + state_dict = {} + + def pack_weights(layers, prefix): + layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers + layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()} + return layers_state_dict + + state_dict.update(pack_weights(unet_lora_layers, "unet")) + + if text_encoder_lora_layers and text_encoder_2_lora_layers: + state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder")) + state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) + + self.write_lora_layers( + state_dict=state_dict, + save_directory=save_directory, + is_main_process=is_main_process, + weight_name=weight_name, + save_function=save_function, + safe_serialization=safe_serialization, + ) + + def decode_latents(self, latents): + video_length = latents.shape[2] + latents = 1 / self.vae.config.scaling_factor * latents + latents = rearrange(latents, "b c f h w -> (b f) c h w") + # video = self.vae.decode(latents).sample + video = [] + for frame_idx in tqdm(range(latents.shape[0])): + video.append(self.vae.decode( + latents[frame_idx:frame_idx+1]).sample) + video = torch.cat(video) + video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) + video = (video / 2.0 + 0.5).clamp(0, 1) + # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 + video = video.cpu().float().numpy() + return video + + def _remove_text_encoder_monkey_patch(self): + self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder) + self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2) diff --git a/Hotshot-XL/build/lib/hotshot_xl/utils.py b/Hotshot-XL/build/lib/hotshot_xl/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..b7660c2a756ecae141333a7081ea358549db6ba6 --- /dev/null +++ b/Hotshot-XL/build/lib/hotshot_xl/utils.py @@ -0,0 +1,213 @@ +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import List, Union +from io import BytesIO +import PIL +from PIL import ImageSequence, Image +import requests +import os + +def get_image(img_path) -> PIL.Image.Image: + if img_path.startswith("http"): + return PIL.Image.open(requests.get(img_path, stream=True).raw) + if os.path.exists(img_path): + return Image.open(img_path) + raise Exception("File not found") + +def images_to_gif_bytes(images: List, duration: int = 1000) -> bytes: + with BytesIO() as output_buffer: + # Save the first image + images[0].save(output_buffer, + format='GIF', + save_all=True, + append_images=images[1:], + duration=duration, + loop=0) # 0 means the GIF will loop indefinitely + + # Get the byte array from the buffer + gif_bytes = output_buffer.getvalue() + + return gif_bytes + + +def save_as_gif(images: List, file_path: str, duration: int = 1000): + with open(file_path, "wb") as f: + f.write(images_to_gif_bytes(images, duration)) + +def scale_aspect_fill(img, new_width, new_height): + new_width = int(new_width) + new_height = int(new_height) + + original_width, original_height = img.size + ratio_w = float(new_width) / original_width + ratio_h = float(new_height) / original_height + + if ratio_w > ratio_h: + # It must be fixed by width + resize_width = new_width + resize_height = round(original_height * ratio_w) + else: + # Fixed by height + resize_width = round(original_width * ratio_h) + resize_height = new_height + + img_resized = img.resize((resize_width, resize_height), Image.LANCZOS) + + # Calculate cropping boundaries and do crop + left = (resize_width - new_width) / 2 + top = (resize_height - new_height) / 2 + right = (resize_width + new_width) / 2 + bottom = (resize_height + new_height) / 2 + + img_cropped = img_resized.crop((left, top, right, bottom)) + + return img_cropped + +def extract_gif_frames_from_midpoint(image: Union[str, PIL.Image.Image], fps: int=8, target_duration: int=1000) -> list: + # Load the GIF + image = get_image(image) if type(image) is str else image + + frames = [] + + estimated_frame_time = None + + # some gifs contain the duration - others don't + # so if there is a duration we will grab it otherwise we will fall back + + for frame in ImageSequence.Iterator(image): + + frames.append(frame.copy()) + if 'duration' in frame.info: + frame_info_duration = frame.info['duration'] + if frame_info_duration > 0: + estimated_frame_time = frame_info_duration + + if estimated_frame_time is None: + if len(frames) <= 16: + # assume it's 8fps + estimated_frame_time = 1000 // 8 + else: + # assume it's 15 fps + estimated_frame_time = 70 + + if len(frames) < fps: + raise ValueError(f"fps of {fps} is too small for this gif as it only has {len(frames)} frames.") + + skip = len(frames) // fps + upper_bound_index = len(frames) - 1 + + best_indices = [x for x in range(0, len(frames), skip)][:fps] + offset = int(upper_bound_index - best_indices[-1]) // 2 + best_indices = [x + offset for x in best_indices] + best_duration = (best_indices[-1] - best_indices[0]) * estimated_frame_time + + while True: + + skip -= 1 + + if skip == 0: + break + + indices = [x for x in range(0, len(frames), skip)][:fps] + + # center the indices, so we sample the middle of the gif... + offset = int(upper_bound_index - indices[-1]) // 2 + if offset == 0: + # can't shift + break + indices = [x + offset for x in indices] + + # is the new duration closer to the target than last guess? + duration = (indices[-1] - indices[0]) * estimated_frame_time + if abs(duration - target_duration) > abs(best_duration - target_duration): + break + + best_indices = indices + best_duration = duration + + return [frames[index] for index in best_indices] + +def get_crop_coordinates(old_size: tuple, new_size: tuple) -> tuple: + """ + Calculate the crop coordinates after scaling an image to fit a new size. + + :param old_size: tuple of the form (width, height) representing the original size of the image. + :param new_size: tuple of the form (width, height) representing the desired size after scaling. + :return: tuple of the form (left, upper, right, lower) representing the normalized crop coordinates. + """ + # Check if the input tuples have the right form (width, height) + if not (isinstance(old_size, tuple) and isinstance(new_size, tuple) and + len(old_size) == 2 and len(new_size) == 2): + raise ValueError("old_size and new_size should be tuples of the form (width, height)") + + # Extract the width and height from the old and new sizes + old_width, old_height = old_size + new_width, new_height = new_size + + # Calculate the ratios for width and height + ratio_w = float(new_width) / old_width + ratio_h = float(new_height) / old_height + + # Determine which dimension is fixed (width or height) + if ratio_w > ratio_h: + # It must be fixed by width + resize_width = new_width + resize_height = round(old_height * ratio_w) + else: + # Fixed by height + resize_width = round(old_width * ratio_h) + resize_height = new_height + + # Calculate cropping boundaries in the resized image space + left = (resize_width - new_width) / 2 + upper = (resize_height - new_height) / 2 + right = (resize_width + new_width) / 2 + lower = (resize_height + new_height) / 2 + + # Normalize the cropping coordinates + + # Return the normalized coordinates as a tuple + return (left, upper, right, lower) + +aspect_ratio_to_1024_map = { + "0.42": [640, 1536], + "0.57": [768, 1344], + "0.68": [832, 1216], + "1.00": [1024, 1024], + "1.46": [1216, 832], + "1.75": [1344, 768], + "2.40": [1536, 640] +} + +res_to_aspect_map = { + 1024: aspect_ratio_to_1024_map, + 512: {key: [value[0] // 2, value[1] // 2] for key, value in aspect_ratio_to_1024_map.items()}, +} + +def best_aspect_ratio(aspect_ratio: float, resolution: int): + + map = res_to_aspect_map[resolution] + + d = 99999999 + res = None + for key, value in map.items(): + ar = value[0] / value[1] + diff = abs(aspect_ratio - ar) + if diff < d: + d = diff + res = value + + ar = res[0] / res[1] + return f"{ar:.2f}", res \ No newline at end of file diff --git a/Hotshot-XL/dist/hotshot_xl-1.0-py3.8.egg b/Hotshot-XL/dist/hotshot_xl-1.0-py3.8.egg new file mode 100644 index 0000000000000000000000000000000000000000..8b71a021b8a67dd6caeac9e37de7dda423d5b131 Binary files /dev/null and b/Hotshot-XL/dist/hotshot_xl-1.0-py3.8.egg differ diff --git a/Hotshot-XL/docker/Dockerfile b/Hotshot-XL/docker/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..3aa868315be12f0bcb825ac089d25ad2622dd485 --- /dev/null +++ b/Hotshot-XL/docker/Dockerfile @@ -0,0 +1,5 @@ +FROM pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime + +COPY requirements.txt . + +RUN pip install --no-cache-dir -r requirements.txt diff --git a/Hotshot-XL/docker/Readme.md b/Hotshot-XL/docker/Readme.md new file mode 100644 index 0000000000000000000000000000000000000000..3a3464fec291a451e39ad308428ae2277ca89fbf --- /dev/null +++ b/Hotshot-XL/docker/Readme.md @@ -0,0 +1,41 @@ +# Setup + +This docker file is for the **environment only**. This is to keep the docker image as small as possible! + +## Quickstart + +Hotshot have their own docker image you can use directly: +``` +docker pull hotshotapp/hotshot-xl-env:latest +``` + +Or you can build it yourself + +``` +cd docker +docker build -t hotshotapp/hotshot-xl-env:latest . +``` + +## Running the docker image + +We recommend storing the weights locally on your machine. That way the weights persist if you kill the container! + +- Install the models to a folder locally (Optional) + ``` + cd /path/to/models + git lfs install + git clone https://huggingface.co/hotshotco/Hotshot-XL + ``` +- Run the docker from the project root + - **Linux** + ``` + docker run -it --gpus=all --rm -v $(pwd):/local -v /path/to/models:/models hotshotapp/hotshot-xl-env:latest + ``` + - **Windows (Powershell)** + ``` + docker run -it --gpus=all --rm -v ${PWD}:/local -v C:\path\to\models:/models hotshotapp/hotshot-xl-env:latest + ``` + +If you want to download the models from within the container itself then you do not need to map the volumes and ` -v /path/to/models:/models` can be removed. + +**Note**: Ensure you have NVIDIA Docker runtime installed if you want to utilize GPU support with `--gpus=all`. diff --git a/Hotshot-XL/docker/requirements.txt b/Hotshot-XL/docker/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..0991a8c50d1fb50a49d71bf29a914fc8e98dea7e --- /dev/null +++ b/Hotshot-XL/docker/requirements.txt @@ -0,0 +1,8 @@ +accelerate==0.23.0 +einops==0.7.0 +diffusers==0.21.4 +transformers==4.34.0 +wandb==0.15.11 +moviepy==1.0.3 +imageio==2.31.5 +xformers==0.0.22 diff --git a/Hotshot-XL/fine_tune.py b/Hotshot-XL/fine_tune.py new file mode 100644 index 0000000000000000000000000000000000000000..38c4a345b990b5a1b49d180967c49a647c5c33fb --- /dev/null +++ b/Hotshot-XL/fine_tune.py @@ -0,0 +1,987 @@ +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse +import math +import os +import traceback +from pathlib import Path +import time +import torch +import torch.utils.checkpoint +import torch.multiprocessing as mp +from accelerate import Accelerator +from accelerate.logging import get_logger +from accelerate.utils import set_seed +from diffusers import AutoencoderKL +from diffusers.optimization import get_scheduler +from diffusers import DDPMScheduler +from torchvision import transforms +from tqdm.auto import tqdm +from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection +import torch.nn.functional as F +import gc +from typing import Callable +from PIL import Image +import numpy as np +from concurrent.futures import ThreadPoolExecutor +from hotshot_xl.models.unet import UNet3DConditionModel +from hotshot_xl.pipelines.hotshot_xl_pipeline import HotshotXLPipeline +from hotshot_xl.utils import get_crop_coordinates, res_to_aspect_map, scale_aspect_fill +from einops import rearrange +from torch.utils.data import Dataset, DataLoader +from datetime import timedelta +from accelerate.utils.dataclasses import InitProcessGroupKwargs +from diffusers.utils import is_wandb_available + +if is_wandb_available(): + import wandb + +logger = get_logger(__file__) + + +class HotshotXLDataset(Dataset): + + def __init__(self, directory: str, make_sample_fn: Callable): + """ + + Training data folder needs to look like: + + training_samples + --- + sample_001 + ------- + frame_0.jpg + ------- + frame_1.jpg + ------- + ... + ------- + frame_n.jpg + ------- + prompt.txt + --- + sample_002 + ------- + frame_0.jpg + ------- + frame_1.jpg + ------- + ... + ------- + frame_n.jpg + ------- + prompt.txt + + Args: + directory: base directory of the training samples + make_sample_fn: a delegate call to load the images and prep the sample for batching + """ + samples_dir = [os.path.join(directory, p) for p in os.listdir(directory)] + samples_dir = [p for p in samples_dir if os.path.isdir(p)] + samples = [] + + for d in samples_dir: + file_paths = [os.path.join(d, p) for p in os.listdir(d)] + image_fps = [f for f in file_paths if os.path.splitext(f)[1] in {".png", ".jpg"}] + with open(os.path.join(d, "prompt.txt")) as f: + prompt = f.read().strip() + + samples.append({ + "image_fps": image_fps, + "prompt": prompt + }) + + self.samples = samples + self.length = len(samples) + self.make_sample_fn = make_sample_fn + + def __len__(self): + return self.length + + def __getitem__(self, index): + return self.make_sample_fn( + self.samples[index] + ) + + +def parse_args(): + parser = argparse.ArgumentParser(description="Simple example of a training script.") + parser.add_argument( + "--pretrained_model_name_or_path", + type=str, + default="hotshotco/Hotshot-XL", + help="Path to pretrained model or model identifier from huggingface.co/models.", + ) + parser.add_argument( + "--unet_resume_path", + type=str, + default=None, + help="Path to pretrained model or model identifier from huggingface.co/models.", + ) + + parser.add_argument( + "--data_dir", + type=str, + required=True, + help="Path to data to train.", + ) + + parser.add_argument( + "--report_to", + type=str, + default="wandb", + help=( + 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' + ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' + ), + ) + + parser.add_argument("--run_validation_at_start", action="store_true") + parser.add_argument("--max_vae_encode", type=int, default=None) + parser.add_argument("--vae_b16", action="store_true") + parser.add_argument("--disable_optimizer_restore", action="store_true") + + parser.add_argument( + "--latent_nan_checking", + action="store_true", + help="Check if latents contain nans - important if vae is f16", + ) + parser.add_argument( + "--test_prompts", + type=str, + default=None, + ) + parser.add_argument( + "--project_name", + type=str, + default="fine-tune-hotshot-xl", + help="the name of the run", + ) + parser.add_argument( + "--run_name", + type=str, + default="run-01", + help="the name of the run", + ) + parser.add_argument( + "--output_dir", + type=str, + default="output", + help="The output directory where the model predictions and checkpoints will be written.", + ) + parser.add_argument("--noise_offset", type=float, default=0.05, help="The scale of noise offset.") + parser.add_argument("--seed", type=int, default=111, help="A seed for reproducible training.") + parser.add_argument( + "--resolution", + type=int, + default=512, + help=( + "The resolution for input images, all the images in the train/validation dataset will be resized to this" + " resolution" + ), + ) + parser.add_argument( + "--aspect_ratio", + type=str, + default="1.75", + choices=list(res_to_aspect_map[512].keys()), + help="Aspect ratio to train at", + ) + + parser.add_argument("--xformers", action="store_true") + + parser.add_argument( + "--train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader." + ) + + parser.add_argument("--num_train_epochs", type=int, default=1) + + parser.add_argument( + "--max_train_steps", + type=int, + default=9999999, + help="Total number of training steps to perform. If provided, overrides num_train_epochs.", + ) + parser.add_argument( + "--gradient_accumulation_steps", + type=int, + default=1, + help="Number of updates steps to accumulate before performing a backward/update pass.", + ) + parser.add_argument( + "--gradient_checkpointing", + action="store_true", + help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", + ) + + parser.add_argument( + "--learning_rate", + type=float, + default=5e-6, + help="Initial learning rate (after the potential warmup period) to use.", + ) + + parser.add_argument( + "--scale_lr", + action="store_true", + default=False, + help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", + ) + parser.add_argument( + "--lr_scheduler", + type=str, + default="constant", + help=( + 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' + ' "constant", "constant_with_warmup"]' + ), + ) + parser.add_argument( + "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." + ) + parser.add_argument( + "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." + ) + + parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") + parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") + parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") + parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") + parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") + + parser.add_argument( + "--logging_dir", + type=str, + default="logs", + help=( + "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" + " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." + ), + ) + + parser.add_argument( + "--mixed_precision", + type=str, + default="no", + choices=["no", "fp16", "bf16"], + help=( + "Whether to use mixed precision. Choose" + "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." + "and an Nvidia Ampere GPU." + ), + ) + + parser.add_argument( + "--validate_every_steps", + type=int, + default=100, + help="Run inference every", + ) + + parser.add_argument( + "--save_n_steps", + type=int, + default=100, + help="Save the model every n global_steps", + ) + + parser.add_argument( + "--save_starting_step", + type=int, + default=100, + help="The step from which it starts saving intermediary checkpoints", + ) + + parser.add_argument( + "--nccl_timeout", + type=int, + help="nccl_timeout", + default=3600 + ) + + parser.add_argument("--snr_gamma", action="store_true") + + args = parser.parse_args() + + return args + + +def add_time_ids( + unet_config, + unet_add_embedding, + text_encoder_2: CLIPTextModelWithProjection, + original_size: tuple, + crops_coords_top_left: tuple, + target_size: tuple, + dtype: torch.dtype): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + + passed_add_embed_dim = ( + unet_config.addition_time_embed_dim * len(add_time_ids) + text_encoder_2.config.projection_dim + ) + expected_add_embed_dim = unet_add_embedding.linear_1.in_features + + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError( + f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." + ) + + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + +def main(): + global_step = 0 + min_steps_before_validation = 0 + + args = parse_args() + + next_save_iter = args.save_starting_step + + if args.save_starting_step < 1: + next_save_iter = None + + if args.report_to == "wandb": + if not is_wandb_available(): + raise ImportError("Make sure to install wandb if you want to use it for logging during training.") + + accelerator = Accelerator( + gradient_accumulation_steps=args.gradient_accumulation_steps, + mixed_precision=args.mixed_precision, + log_with=args.report_to, + kwargs_handlers=[InitProcessGroupKwargs(timeout=timedelta(args.nccl_timeout))] + ) + + # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format + def save_model_hook(models, weights, output_dir): + nonlocal global_step + + for model in models: + if isinstance(model, type(accelerator.unwrap_model(unet))): + model.save_pretrained(os.path.join(output_dir, 'unet')) + # make sure to pop weight so that corresponding model is not saved again + weights.pop() + + accelerator.register_save_state_pre_hook(save_model_hook) + + set_seed(args.seed) + + # Handle the repository creation + if accelerator.is_local_main_process: + if args.output_dir is not None: + os.makedirs(args.output_dir, exist_ok=True) + + # Load the tokenizer + tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") + tokenizer_2 = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer_2") + + # Load models and create wrapper for stable diffusion + text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") + text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(args.pretrained_model_name_or_path, + subfolder="text_encoder_2") + + vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") + + optimizer_resume_path = None + + if args.unet_resume_path: + optimizer_fp = os.path.join(args.unet_resume_path, "optimizer.bin") + + if os.path.exists(optimizer_fp): + optimizer_resume_path = optimizer_fp + + unet = UNet3DConditionModel.from_pretrained(args.unet_resume_path, + subfolder="unet", + low_cpu_mem_usage=False, + device_map=None) + + else: + unet = UNet3DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") + + if args.xformers: + vae.set_use_memory_efficient_attention_xformers(True, None) + unet.set_use_memory_efficient_attention_xformers(True, None) + + unet_config = unet.config + unet_add_embedding = unet.add_embedding + + unet.requires_grad_(False) + + temporal_params = unet.temporal_parameters() + + for p in temporal_params: + p.requires_grad_(True) + + vae.requires_grad_(False) + text_encoder.requires_grad_(False) + text_encoder_2.requires_grad_(False) + + if args.gradient_checkpointing: + unet.enable_gradient_checkpointing() + + if args.scale_lr: + args.learning_rate = ( + args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes + ) + + # Use 8-bit Adam for lower memory usage + if args.use_8bit_adam: + try: + import bitsandbytes as bnb + except ImportError: + raise ImportError( + "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." + ) + + optimizer_class = bnb.optim.AdamW8bit + else: + optimizer_class = torch.optim.AdamW + + learning_rate = args.learning_rate + + params_to_optimize = [ + {'params': temporal_params, "lr": learning_rate}, + ] + + optimizer = optimizer_class( + params_to_optimize, + lr=args.learning_rate, + betas=(args.adam_beta1, args.adam_beta2), + weight_decay=args.adam_weight_decay, + eps=args.adam_epsilon, + ) + + if optimizer_resume_path and not args.disable_optimizer_restore: + logger.info("Restoring the optimizer.") + try: + + old_optimizer_state_dict = torch.load(optimizer_resume_path) + + # Extract only the state + old_state = old_optimizer_state_dict['state'] + + # Set the state of the new optimizer + optimizer.load_state_dict({'state': old_state, 'param_groups': optimizer.param_groups}) + + del old_optimizer_state_dict + del old_state + + torch.cuda.empty_cache() + torch.cuda.synchronize() + gc.collect() + + logger.info(f"Restored the optimizer ok") + + except: + logger.error("Failed to restore the optimizer...", exc_info=True) + traceback.print_exc() + raise + + noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") + + def compute_snr(timesteps): + """ + Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849 + """ + alphas_cumprod = noise_scheduler.alphas_cumprod + sqrt_alphas_cumprod = alphas_cumprod ** 0.5 + sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 + + # Expand the tensors. + # Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026 + sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float() + while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape): + sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None] + alpha = sqrt_alphas_cumprod.expand(timesteps.shape) + + sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float() + while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape): + sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None] + sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape) + + # Compute SNR. + snr = (alpha / sigma) ** 2 + return snr + + device = torch.device('cuda') + + image_transforms = transforms.Compose( + [ + transforms.ToTensor(), + transforms.Normalize([0.5], [0.5]), + ] + ) + + def image_to_tensor(img): + with torch.no_grad(): + + if img.mode != "RGB": + img = img.convert("RGB") + + image = image_transforms(img).to(accelerator.device) + + if image.shape[0] == 1: + image = image.repeat(3, 1, 1) + + if image.shape[0] > 3: + image = image[:3, :, :] + + return image + + def make_sample(sample): + + nonlocal unet_config + nonlocal unet_add_embedding + + images = [Image.open(img) for img in sample['image_fps']] + + og_size = images[0].size + + for i, im in enumerate(images): + if im.mode != "RGB": + images[i] = im.convert("RGB") + + aspect_ratio_map = res_to_aspect_map[args.resolution] + + required_size = tuple(aspect_ratio_map[args.aspect_ratio]) + + if required_size != og_size: + + def resize_image(x): + img_size = x.size + if img_size == required_size: + return x.resize(required_size, Image.LANCZOS) + + return scale_aspect_fill(x, required_size[0], required_size[1]) + + with ThreadPoolExecutor(max_workers=len(images)) as executor: + images = list(executor.map(resize_image, images)) + + frames = torch.stack([image_to_tensor(x) for x in images]) + + l, u, *_ = get_crop_coordinates(og_size, images[0].size) + crop_coords = (l, u) + + additional_time_ids = add_time_ids( + unet_config, + unet_add_embedding, + text_encoder_2, + og_size, + crop_coords, + (required_size[0], required_size[1]), + dtype=torch.float32 + ).to(device) + + input_ids_0 = tokenizer( + sample['prompt'], + padding="do_not_pad", + truncation=True, + max_length=tokenizer.model_max_length, + ).input_ids + + input_ids_1 = tokenizer_2( + sample['prompt'], + padding="do_not_pad", + truncation=True, + max_length=tokenizer.model_max_length, + ).input_ids + + return { + "frames": frames, + "input_ids_0": input_ids_0, + "input_ids_1": input_ids_1, + "additional_time_ids": additional_time_ids, + } + + def collate_fn(examples: list) -> dict: + + # Two Text encoders + # First Text Encoder -> Penultimate Layer + # Second Text Encoder -> Pooled Layer + + input_ids_0 = [example['input_ids_0'] for example in examples] + input_ids_0 = tokenizer.pad({"input_ids": input_ids_0}, padding="max_length", + max_length=tokenizer.model_max_length, return_tensors="pt").input_ids + + prompt_embeds_0 = text_encoder( + input_ids_0.to(device), + output_hidden_states=True, + ) + + # we take penultimate embeddings from the first text encoder + prompt_embeds_0 = prompt_embeds_0.hidden_states[-2] + + input_ids_1 = [example['input_ids_1'] for example in examples] + input_ids_1 = tokenizer_2.pad({"input_ids": input_ids_1}, padding="max_length", + max_length=tokenizer.model_max_length, return_tensors="pt").input_ids + + # We are only ALWAYS interested in the pooled output of the final text encoder + prompt_embeds = text_encoder_2( + input_ids_1.to(device), + output_hidden_states=True + ) + + pooled_prompt_embeds = prompt_embeds[0] + prompt_embeds_1 = prompt_embeds.hidden_states[-2] + + prompt_embeds = torch.concat([prompt_embeds_0, prompt_embeds_1], dim=-1) + + *_, h, w = examples[0]['frames'].shape + + return { + "frames": torch.stack([x['frames'] for x in examples]).to(memory_format=torch.contiguous_format).float(), + "prompt_embeds": prompt_embeds.to(memory_format=torch.contiguous_format).float(), + "pooled_prompt_embeds": pooled_prompt_embeds, + "additional_time_ids": torch.stack([x['additional_time_ids'] for x in examples]), + } + + # Region - Dataloaders + dataset = HotshotXLDataset(args.data_dir, make_sample) + dataloader = DataLoader(dataset, args.train_batch_size, shuffle=True, collate_fn=collate_fn) + + # Scheduler and math around the number of training steps. + overrode_max_train_steps = False + num_update_steps_per_epoch = math.ceil(len(dataloader) / args.gradient_accumulation_steps) + + if args.max_train_steps is None: + args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch + overrode_max_train_steps = True + + lr_scheduler = get_scheduler( + args.lr_scheduler, + optimizer=optimizer, + num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, + num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, + ) + + unet, optimizer, lr_scheduler, dataloader = accelerator.prepare( + unet, optimizer, lr_scheduler, dataloader + ) + + def to_images(video_frames: torch.Tensor): + import torchvision.transforms as transforms + to_pil = transforms.ToPILImage() + video_frames = rearrange(video_frames, "b c f w h -> b f c w h") + bsz = video_frames.shape[0] + images = [] + for i in range(bsz): + video = video_frames[i] + for j in range(video.shape[0]): + image = to_pil(video[j]) + images.append(image) + return images + + def to_video_frames(images: list) -> np.ndarray: + x = np.stack([np.asarray(img) for img in images]) + return np.transpose(x, (0, 3, 1, 2)) + + def run_validation(step=0, node_index=0): + + nonlocal global_step + nonlocal accelerator + + if args.test_prompts: + prompts = args.test_prompts.split("|") + else: + prompts = [ + "a woman is lifting weights in a gym", + "a group of people are dancing at a party", + "a teddy bear doing the front crawl" + ] + + torch.cuda.empty_cache() + gc.collect() + + logger.info(f"Running inference to test model at {step} steps") + with torch.no_grad(): + + pipe = HotshotXLPipeline.from_pretrained( + args.pretrained_model_name_or_path, + unet=accelerator.unwrap_model(unet), + text_encoder=text_encoder, + text_encoder_2=text_encoder_2, + vae=vae, + ) + + videos = [] + + aspect_ratio_map = res_to_aspect_map[args.resolution] + w, h = aspect_ratio_map[args.aspect_ratio] + + for prompt in prompts: + video = pipe(prompt, + width=w, + height=h, + original_size=(1920, 1080), # todo - pass in as args? + target_size=(args.resolution, args.resolution), + num_inference_steps=30, + video_length=8, + output_type="tensor", + generator=torch.Generator().manual_seed(111)).videos + + videos.append(to_images(video)) + + for tracker in accelerator.trackers: + + if tracker.name == "wandb": + tracker.log( + { + "validation": [wandb.Video(to_video_frames(video), fps=8, format='mp4') for video in + videos], + }, step=global_step + ) + + del pipe + + return + + # Move text_encode and vae to gpu. + vae.to(accelerator.device, dtype=torch.bfloat16 if args.vae_b16 else torch.float32) + text_encoder.to(accelerator.device) + text_encoder_2.to(accelerator.device) + + # We need to recalculate our total training steps as the size of the training dataloader may have changed. + + num_update_steps_per_epoch = math.ceil(len(dataloader) / args.gradient_accumulation_steps) + if overrode_max_train_steps: + args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch + # Afterward we recalculate our number of training epochs + args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) + + # We need to initialize the trackers we use, and also store our configuration. + # The trackers initialize automatically on the main process. + + if accelerator.is_main_process: + accelerator.init_trackers(args.project_name) + + def bar(prg): + br = '|' + 'โ–ˆ' * prg + ' ' * (25 - prg) + '|' + return br + + # Train! + total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps + + if accelerator.is_main_process: + logger.info("***** Running training *****") + logger.info(f" Num examples = {len(dataset)}") + logger.info(f" Num Epochs = {args.num_train_epochs}") + logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") + logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") + logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") + logger.info(f" Total optimization steps = {args.max_train_steps}") + + # Only show the progress bar once on each machine. + progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) + + latents_scaler = vae.config.scaling_factor + + def save_checkpoint(): + save_dir = Path(args.output_dir) + save_dir = str(save_dir) + save_dir = save_dir.replace(" ", "_") + if not os.path.exists(save_dir): + os.makedirs(save_dir, exist_ok=True) + accelerator.save_state(save_dir) + + def save_checkpoint_and_wait(): + if accelerator.is_main_process: + save_checkpoint() + accelerator.wait_for_everyone() + + def save_model_and_wait(): + if accelerator.is_main_process: + HotshotXLPipeline.from_pretrained( + args.pretrained_model_name_or_path, + unet=accelerator.unwrap_model(unet), + text_encoder=text_encoder, + text_encoder_2=text_encoder_2, + vae=vae, + ).save_pretrained(args.output_dir, safe_serialization=True) + accelerator.wait_for_everyone() + + def compute_loss_from_batch(batch: dict): + frames = batch["frames"] + bsz, number_of_frames, c, w, h = frames.shape + + # Convert images to latent space + with torch.no_grad(): + + if args.max_vae_encode: + latents = [] + + x = rearrange(frames, "bs nf c h w -> (bs nf) c h w") + + for latent_index in range(0, x.shape[0], args.max_vae_encode): + sample = x[latent_index: latent_index + args.max_vae_encode] + + latent = vae.encode(sample.to(dtype=vae.dtype)).latent_dist.sample().float() + if len(latent.shape) == 3: + latent = latent.unsqueeze(0) + + latents.append(latent) + torch.cuda.empty_cache() + + latents = torch.cat(latents, dim=0) + else: + + # convert the latents from 5d -> 4d, so we can run it though the vae encoder + x = rearrange(frames, "bs nf c h w -> (bs nf) c h w") + + del frames + + torch.cuda.empty_cache() + + latents = vae.encode(x.to(dtype=vae.dtype)).latent_dist.sample().float() + + if args.latent_nan_checking and torch.any(torch.isnan(latents)): + accelerator.print("NaN found in latents, replacing with zeros") + latents = torch.where(torch.isnan(latents), torch.zeros_like(latents), latents) + + latents = rearrange(latents, "(b f) c h w -> b c f h w", b=bsz) + + torch.cuda.empty_cache() + + noise = torch.randn_like(latents, device=latents.device) + + if args.noise_offset: + # https://www.crosslabs.org//blog/diffusion-with-offset-noise + noise += args.noise_offset * torch.randn( + (latents.shape[0], latents.shape[1], 1, 1, 1), device=latents.device + ) + + # Sample a random timestep for each image + timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) + timesteps = timesteps.long() # .repeat_interleave(number_of_frames) + latents = latents * latents_scaler + + # Add noise to the latents according to the noise magnitude at each timestep + # (this is the forward diffusion process) + + prompt_embeds = batch['prompt_embeds'] + add_text_embeds = batch['pooled_prompt_embeds'] + + additional_time_ids = batch['additional_time_ids'] # .repeat_interleave(number_of_frames, dim=0) + + added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": additional_time_ids} + + noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) + + if noise_scheduler.config.prediction_type == "epsilon": + target = noise + elif noise_scheduler.config.prediction_type == "v_prediction": + target = noise_scheduler.get_velocity(latents, noise, timesteps) + else: + raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") + + noisy_latents.requires_grad = True + + model_pred = unet(noisy_latents, + timesteps, + cross_attention_kwargs=None, + encoder_hidden_states=prompt_embeds, + added_cond_kwargs=added_cond_kwargs, + return_dict=False, + )[0] + + if args.snr_gamma: + # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. + # Since we predict the noise instead of x_0, the original formulation is slightly changed. + # This is discussed in Section 4.2 of the same paper. + snr = compute_snr(timesteps) + mse_loss_weights = ( + torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr + ) + # We first calculate the original loss. Then we mean over the non-batch dimensions and + # rebalance the sample-wise losses with their respective loss weights. + # Finally, we take the mean of the rebalanced loss. + loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") + + loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights + return loss.mean() + else: + return F.mse_loss(model_pred.float(), target.float(), reduction='mean') + + def process_batch(batch: dict): + nonlocal global_step + nonlocal next_save_iter + + now = time.time() + + with accelerator.accumulate(unet): + + logging_data = {} + if global_step == 0: + # print(f"Running initial validation at step") + if accelerator.is_main_process and args.run_validation_at_start: + run_validation(step=global_step, node_index=accelerator.process_index // 8) + accelerator.wait_for_everyone() + + loss = compute_loss_from_batch(batch) + + accelerator.backward(loss) + + if accelerator.sync_gradients: + accelerator.clip_grad_norm_(temporal_params, args.max_grad_norm) + + optimizer.step() + + lr_scheduler.step() + optimizer.zero_grad() + + # Checks if the accelerator has performed an optimization step behind the scenes + if accelerator.sync_gradients: + progress_bar.update(1) + global_step += 1 + + fll = round((global_step * 100) / args.max_train_steps) + fll = round(fll / 4) + pr = bar(fll) + + logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "loss_time": (time.time() - now)} + + if args.validate_every_steps is not None and global_step > min_steps_before_validation and global_step % args.validate_every_steps == 0: + if accelerator.is_main_process: + run_validation(step=global_step, node_index=accelerator.process_index // 8) + + accelerator.wait_for_everyone() + + for key, val in logging_data.items(): + logs[key] = val + + progress_bar.set_postfix(**logs) + progress_bar.set_description_str("Progress:" + pr) + accelerator.log(logs, step=global_step) + + if accelerator.is_main_process \ + and next_save_iter is not None \ + and global_step < args.max_train_steps \ + and global_step + 1 == next_save_iter: + save_checkpoint() + + torch.cuda.empty_cache() + gc.collect() + + next_save_iter += args.save_n_steps + + for epoch in range(args.num_train_epochs): + unet.train() + + for step, batch in enumerate(dataloader): + process_batch(batch) + + if global_step >= args.max_train_steps: + break + + if global_step >= args.max_train_steps: + logger.info("Max train steps reached. Breaking while loop") + break + + accelerator.wait_for_everyone() + + save_model_and_wait() + + accelerator.end_training() + + +if __name__ == "__main__": + mp.set_start_method('spawn') + main() diff --git a/Hotshot-XL/hotshot_xl.egg-info/PKG-INFO b/Hotshot-XL/hotshot_xl.egg-info/PKG-INFO new file mode 100644 index 0000000000000000000000000000000000000000..c5a69f0e876b5dc5487724466a0e4bbf785dae5f --- /dev/null +++ b/Hotshot-XL/hotshot_xl.egg-info/PKG-INFO @@ -0,0 +1,5 @@ +Metadata-Version: 2.1 +Name: hotshot-xl +Version: 1.0 +Author: Natural Synthetics Inc +License-File: LICENSE diff --git a/Hotshot-XL/hotshot_xl.egg-info/SOURCES.txt b/Hotshot-XL/hotshot_xl.egg-info/SOURCES.txt new file mode 100644 index 0000000000000000000000000000000000000000..3ed4b371ebcd300dfc12e2ab0dc01179f8b1e105 --- /dev/null +++ b/Hotshot-XL/hotshot_xl.egg-info/SOURCES.txt @@ -0,0 +1,19 @@ +LICENSE +README.md +setup.py +hotshot_xl/__init__.py +hotshot_xl/utils.py +hotshot_xl.egg-info/PKG-INFO +hotshot_xl.egg-info/SOURCES.txt +hotshot_xl.egg-info/dependency_links.txt +hotshot_xl.egg-info/requires.txt +hotshot_xl.egg-info/top_level.txt +hotshot_xl/models/__init__.py +hotshot_xl/models/resnet.py +hotshot_xl/models/transformer_3d.py +hotshot_xl/models/transformer_temporal.py +hotshot_xl/models/unet.py +hotshot_xl/models/unet_blocks.py +hotshot_xl/pipelines/__init__.py +hotshot_xl/pipelines/hotshot_xl_controlnet_pipeline.py +hotshot_xl/pipelines/hotshot_xl_pipeline.py \ No newline at end of file diff --git a/Hotshot-XL/hotshot_xl.egg-info/dependency_links.txt b/Hotshot-XL/hotshot_xl.egg-info/dependency_links.txt new file mode 100644 index 0000000000000000000000000000000000000000..8b137891791fe96927ad78e64b0aad7bded08bdc --- /dev/null +++ b/Hotshot-XL/hotshot_xl.egg-info/dependency_links.txt @@ -0,0 +1 @@ + diff --git a/Hotshot-XL/hotshot_xl.egg-info/requires.txt b/Hotshot-XL/hotshot_xl.egg-info/requires.txt new file mode 100644 index 0000000000000000000000000000000000000000..2d1a81d2018e60ad898957360c90c60540ecd689 --- /dev/null +++ b/Hotshot-XL/hotshot_xl.egg-info/requires.txt @@ -0,0 +1,5 @@ +torch>=2.0.1 +torchvision>=0.15.2 +diffusers>=0.21.4 +transformers>=4.33.3 +einops diff --git a/Hotshot-XL/hotshot_xl.egg-info/top_level.txt b/Hotshot-XL/hotshot_xl.egg-info/top_level.txt new file mode 100644 index 0000000000000000000000000000000000000000..5d4814c5f5827393e60d27fbbc56f76343591f02 --- /dev/null +++ b/Hotshot-XL/hotshot_xl.egg-info/top_level.txt @@ -0,0 +1 @@ +hotshot_xl diff --git a/Hotshot-XL/hotshot_xl/__init__.py b/Hotshot-XL/hotshot_xl/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..090de024570c67f7182c8e5b214c81f3aaadaf6e --- /dev/null +++ b/Hotshot-XL/hotshot_xl/__init__.py @@ -0,0 +1,25 @@ +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# + +from dataclasses import dataclass +from typing import Union + +import numpy as np +import torch + +# don't remove these imports - they are needed to load from pretrain. +from diffusers.models.modeling_utils import ModelMixin +from .models.unet import UNet3DConditionModel + +from diffusers.utils import ( + BaseOutput, +) + +@dataclass +class HotshotPipelineXLOutput(BaseOutput): + videos: Union[torch.Tensor, np.ndarray] \ No newline at end of file diff --git a/Hotshot-XL/hotshot_xl/__pycache__/__init__.cpython-38.pyc b/Hotshot-XL/hotshot_xl/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8314477c38f726534d49f13619dfb67ad53770e7 Binary files /dev/null and b/Hotshot-XL/hotshot_xl/__pycache__/__init__.cpython-38.pyc differ diff --git a/Hotshot-XL/hotshot_xl/__pycache__/__init__.cpython-39.pyc b/Hotshot-XL/hotshot_xl/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b470ab2f7a9a638702e5840a2ad0fcc349883920 Binary files /dev/null and b/Hotshot-XL/hotshot_xl/__pycache__/__init__.cpython-39.pyc differ diff --git a/Hotshot-XL/hotshot_xl/__pycache__/utils.cpython-39.pyc b/Hotshot-XL/hotshot_xl/__pycache__/utils.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2d4c0a2e2da291336b883d6807be026b5eddddab Binary files /dev/null and b/Hotshot-XL/hotshot_xl/__pycache__/utils.cpython-39.pyc differ diff --git a/Hotshot-XL/hotshot_xl/models/__init__.py b/Hotshot-XL/hotshot_xl/models/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/Hotshot-XL/hotshot_xl/models/__pycache__/__init__.cpython-38.pyc b/Hotshot-XL/hotshot_xl/models/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dbef36bf5a6f9e97ceec62f81b1e7c0e18e09795 Binary files /dev/null and b/Hotshot-XL/hotshot_xl/models/__pycache__/__init__.cpython-38.pyc differ diff --git a/Hotshot-XL/hotshot_xl/models/__pycache__/__init__.cpython-39.pyc b/Hotshot-XL/hotshot_xl/models/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..df3b414c2761b4a650deca945fcdbdb5ed29c47a Binary files /dev/null and b/Hotshot-XL/hotshot_xl/models/__pycache__/__init__.cpython-39.pyc differ diff --git a/Hotshot-XL/hotshot_xl/models/__pycache__/resnet.cpython-38.pyc b/Hotshot-XL/hotshot_xl/models/__pycache__/resnet.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c4a6a79993ebb204d5474c552c74c4033da6449b Binary files /dev/null and b/Hotshot-XL/hotshot_xl/models/__pycache__/resnet.cpython-38.pyc differ diff --git a/Hotshot-XL/hotshot_xl/models/__pycache__/resnet.cpython-39.pyc b/Hotshot-XL/hotshot_xl/models/__pycache__/resnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0678bc932aec8d292fd98a4356598ec765d49666 Binary files /dev/null and b/Hotshot-XL/hotshot_xl/models/__pycache__/resnet.cpython-39.pyc differ diff --git a/Hotshot-XL/hotshot_xl/models/__pycache__/transformer_3d.cpython-38.pyc b/Hotshot-XL/hotshot_xl/models/__pycache__/transformer_3d.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2469126f7a14d7de7f6aaa53f186ec6956b88e3e Binary files /dev/null and b/Hotshot-XL/hotshot_xl/models/__pycache__/transformer_3d.cpython-38.pyc differ diff --git a/Hotshot-XL/hotshot_xl/models/__pycache__/transformer_3d.cpython-39.pyc b/Hotshot-XL/hotshot_xl/models/__pycache__/transformer_3d.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3edb0f7f7f8a8a6319c17916e61145a4751cc5cd Binary files /dev/null and b/Hotshot-XL/hotshot_xl/models/__pycache__/transformer_3d.cpython-39.pyc differ diff --git a/Hotshot-XL/hotshot_xl/models/__pycache__/transformer_temporal.cpython-38.pyc b/Hotshot-XL/hotshot_xl/models/__pycache__/transformer_temporal.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..62a4da5e527e1f7aa34c19ae4b63a1db907f468e Binary files /dev/null and b/Hotshot-XL/hotshot_xl/models/__pycache__/transformer_temporal.cpython-38.pyc differ diff --git a/Hotshot-XL/hotshot_xl/models/__pycache__/transformer_temporal.cpython-39.pyc b/Hotshot-XL/hotshot_xl/models/__pycache__/transformer_temporal.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..09596b9533d22b0c8e58c6fe72ca84d01fa906f0 Binary files /dev/null and b/Hotshot-XL/hotshot_xl/models/__pycache__/transformer_temporal.cpython-39.pyc differ diff --git a/Hotshot-XL/hotshot_xl/models/__pycache__/unet.cpython-38.pyc b/Hotshot-XL/hotshot_xl/models/__pycache__/unet.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f8ebddea6476de30f98291d7fb4402f75dd68dea Binary files /dev/null and b/Hotshot-XL/hotshot_xl/models/__pycache__/unet.cpython-38.pyc differ diff --git a/Hotshot-XL/hotshot_xl/models/__pycache__/unet.cpython-39.pyc b/Hotshot-XL/hotshot_xl/models/__pycache__/unet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d5e52f761f4b5d863d04ade537953181322ebbdb Binary files /dev/null and b/Hotshot-XL/hotshot_xl/models/__pycache__/unet.cpython-39.pyc differ diff --git a/Hotshot-XL/hotshot_xl/models/__pycache__/unet_blocks.cpython-38.pyc b/Hotshot-XL/hotshot_xl/models/__pycache__/unet_blocks.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f9d3fe512196ae0e97609e0910cb29997dc011ad Binary files /dev/null and b/Hotshot-XL/hotshot_xl/models/__pycache__/unet_blocks.cpython-38.pyc differ diff --git a/Hotshot-XL/hotshot_xl/models/__pycache__/unet_blocks.cpython-39.pyc b/Hotshot-XL/hotshot_xl/models/__pycache__/unet_blocks.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bfb4f31a082ce59bb9bcc48dd7f96835f83e4b90 Binary files /dev/null and b/Hotshot-XL/hotshot_xl/models/__pycache__/unet_blocks.cpython-39.pyc differ diff --git a/Hotshot-XL/hotshot_xl/models/resnet.py b/Hotshot-XL/hotshot_xl/models/resnet.py new file mode 100644 index 0000000000000000000000000000000000000000..4b46c907610a9a4fb73288f280c79e923b86c89a --- /dev/null +++ b/Hotshot-XL/hotshot_xl/models/resnet.py @@ -0,0 +1,134 @@ +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# + +import torch +import torch.nn as nn +from diffusers.models.resnet import Upsample2D, Downsample2D, LoRACompatibleConv +from einops import rearrange + + +class Upsample3D(Upsample2D): + def forward(self, hidden_states, output_size=None, scale: float = 1.0): + f = hidden_states.shape[2] + hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") + hidden_states = super(Upsample3D, self).forward(hidden_states, output_size, scale) + return rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f) + + +class Downsample3D(Downsample2D): + + def forward(self, hidden_states, scale: float = 1.0): + f = hidden_states.shape[2] + hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") + hidden_states = super(Downsample3D, self).forward(hidden_states, scale) + return rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f) + + +class Conv3d(LoRACompatibleConv): + def forward(self, hidden_states, scale: float = 1.0): + f = hidden_states.shape[2] + hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") + hidden_states = super().forward(hidden_states, scale) + return rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f) + + +class ResnetBlock3D(nn.Module): + def __init__( + self, + *, + in_channels, + out_channels=None, + conv_shortcut=False, + dropout=0.0, + temb_channels=512, + groups=32, + groups_out=None, + pre_norm=True, + eps=1e-6, + non_linearity="silu", + time_embedding_norm="default", + output_scale_factor=1.0, + use_in_shortcut=None, + conv_shortcut_bias: bool = True, + ): + super().__init__() + self.pre_norm = pre_norm + self.pre_norm = True + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + self.time_embedding_norm = time_embedding_norm + self.output_scale_factor = output_scale_factor + + if groups_out is None: + groups_out = groups + + self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) + self.conv1 = Conv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + + if temb_channels is not None: + if self.time_embedding_norm == "default": + time_emb_proj_out_channels = out_channels + elif self.time_embedding_norm == "scale_shift": + time_emb_proj_out_channels = out_channels * 2 + else: + raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") + + self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels) + else: + self.time_emb_proj = None + + self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = Conv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) + + assert non_linearity == "silu" + + self.nonlinearity = nn.SiLU() + + self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut + + self.conv_shortcut = None + if self.use_in_shortcut: + self.conv_shortcut = Conv3d( + in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias + ) + + def forward(self, input_tensor, temb): + hidden_states = input_tensor + + hidden_states = self.norm1(hidden_states) + hidden_states = self.nonlinearity(hidden_states) + + hidden_states = self.conv1(hidden_states) + + if temb is not None: + temb = self.nonlinearity(temb) + temb = self.time_emb_proj(temb)[:, :, None, None, None] + + if temb is not None and self.time_embedding_norm == "default": + hidden_states = hidden_states + temb + + hidden_states = self.norm2(hidden_states) + + if temb is not None and self.time_embedding_norm == "scale_shift": + scale, shift = torch.chunk(temb, 2, dim=1) + hidden_states = hidden_states * (1 + scale) + shift + + hidden_states = self.nonlinearity(hidden_states) + + hidden_states = self.dropout(hidden_states) + hidden_states = self.conv2(hidden_states) + + if self.conv_shortcut is not None: + input_tensor = self.conv_shortcut(input_tensor) + + output_tensor = (input_tensor + hidden_states) / self.output_scale_factor + + return output_tensor diff --git a/Hotshot-XL/hotshot_xl/models/transformer_3d.py b/Hotshot-XL/hotshot_xl/models/transformer_3d.py new file mode 100644 index 0000000000000000000000000000000000000000..169f91ee6f2bcd568141a5776820429140370f6f --- /dev/null +++ b/Hotshot-XL/hotshot_xl/models/transformer_3d.py @@ -0,0 +1,75 @@ +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# + +from dataclasses import dataclass +from typing import Optional +import torch +from torch import nn +from diffusers.utils import BaseOutput +from diffusers.models.transformer_2d import Transformer2DModel +from einops import rearrange, repeat +from typing import Dict, Any + + +@dataclass +class Transformer3DModelOutput(BaseOutput): + """ + The output of [`Transformer3DModel`]. + + Args: + sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`: + The hidden states output conditioned on the `encoder_hidden_states` input. + """ + + sample: torch.FloatTensor + + +class Transformer3DModel(Transformer2DModel): + + def __init__(self, *args, **kwargs): + super(Transformer3DModel, self).__init__(*args, **kwargs) + nn.init.zeros_(self.proj_out.weight.data) + nn.init.zeros_(self.proj_out.bias.data) + + def forward( + self, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + timestep: Optional[torch.LongTensor] = None, + class_labels: Optional[torch.LongTensor] = None, + cross_attention_kwargs: Dict[str, Any] = None, + attention_mask: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + enable_temporal_layers: bool = True, + positional_embedding: Optional[torch.Tensor] = None, + return_dict: bool = True, + ): + + is_video = len(hidden_states.shape) == 5 + + if is_video: + f = hidden_states.shape[2] + hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") + encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=f) + + hidden_states = super(Transformer3DModel, self).forward(hidden_states, + encoder_hidden_states, + timestep, + class_labels, + cross_attention_kwargs, + attention_mask, + encoder_attention_mask, + return_dict=False)[0] + + if is_video: + hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f) + + if not return_dict: + return (hidden_states,) + + return Transformer3DModelOutput(sample=hidden_states) \ No newline at end of file diff --git a/Hotshot-XL/hotshot_xl/models/transformer_temporal.py b/Hotshot-XL/hotshot_xl/models/transformer_temporal.py new file mode 100644 index 0000000000000000000000000000000000000000..772e51d55da5ebf3279235b482c1db7e46e2b603 --- /dev/null +++ b/Hotshot-XL/hotshot_xl/models/transformer_temporal.py @@ -0,0 +1,192 @@ +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# + +import torch +import math +from dataclasses import dataclass +from torch import nn +from diffusers.utils import BaseOutput +from diffusers.models.attention import Attention, FeedForward +from einops import rearrange, repeat +from typing import Optional + + +class PositionalEncoding(nn.Module): + """ + Implements positional encoding as described in "Attention Is All You Need". + Adds sinusoidal based positional encodings to the input tensor. + """ + + _SCALE_FACTOR = 10000.0 # Scale factor used in the positional encoding computation. + + def __init__(self, dim: int, dropout: float = 0.0, max_length: int = 24): + super(PositionalEncoding, self).__init__() + + self.dropout = nn.Dropout(p=dropout) + + # The size is (1, max_length, dim) to allow easy addition to input tensors. + positional_encoding = torch.zeros(1, max_length, dim) + + # Position and dim are used in the sinusoidal computation. + position = torch.arange(max_length).unsqueeze(1) + div_term = torch.exp(torch.arange(0, dim, 2) * (-math.log(self._SCALE_FACTOR) / dim)) + + positional_encoding[0, :, 0::2] = torch.sin(position * div_term) + positional_encoding[0, :, 1::2] = torch.cos(position * div_term) + + # Register the positional encoding matrix as a buffer, + # so it's part of the model's state but not the parameters. + self.register_buffer('positional_encoding', positional_encoding) + + def forward(self, hidden_states: torch.Tensor, length: int) -> torch.Tensor: + hidden_states = hidden_states + self.positional_encoding[:, :length] + return self.dropout(hidden_states) + + +class TemporalAttention(Attention): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.pos_encoder = PositionalEncoding(kwargs["query_dim"], dropout=0) + + def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, number_of_frames=8): + sequence_length = hidden_states.shape[1] + hidden_states = rearrange(hidden_states, "(b f) s c -> (b s) f c", f=number_of_frames) + hidden_states = self.pos_encoder(hidden_states, length=number_of_frames) + + if encoder_hidden_states: + encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b s) n c", s=sequence_length) + + hidden_states = super().forward(hidden_states, encoder_hidden_states, attention_mask=attention_mask) + + return rearrange(hidden_states, "(b s) f c -> (b f) s c", s=sequence_length) + + +@dataclass +class TransformerTemporalOutput(BaseOutput): + sample: torch.FloatTensor + + +class TransformerTemporal(nn.Module): + def __init__( + self, + num_attention_heads: int, + attention_head_dim: int, + in_channels: int, + num_layers: int = 1, + dropout: float = 0.0, + norm_num_groups: int = 32, + cross_attention_dim: Optional[int] = None, + attention_bias: bool = False, + activation_fn: str = "geglu", + upcast_attention: bool = False, + ): + super().__init__() + + inner_dim = num_attention_heads * attention_head_dim + + self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) + self.proj_in = nn.Linear(in_channels, inner_dim) + + self.transformer_blocks = nn.ModuleList( + [ + TransformerBlock( + dim=inner_dim, + num_attention_heads=num_attention_heads, + attention_head_dim=attention_head_dim, + dropout=dropout, + activation_fn=activation_fn, + attention_bias=attention_bias, + upcast_attention=upcast_attention, + cross_attention_dim=cross_attention_dim + ) + for _ in range(num_layers) + ] + ) + self.proj_out = nn.Linear(inner_dim, in_channels) + + def forward(self, hidden_states, encoder_hidden_states=None): + _, num_channels, f, height, width = hidden_states.shape + hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") + + skip = hidden_states + + hidden_states = self.norm(hidden_states) + hidden_states = rearrange(hidden_states, "bf c h w -> bf (h w) c") + hidden_states = self.proj_in(hidden_states) + + for block in self.transformer_blocks: + hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, number_of_frames=f) + + hidden_states = self.proj_out(hidden_states) + hidden_states = rearrange(hidden_states, "bf (h w) c -> bf c h w", h=height, w=width).contiguous() + + output = hidden_states + skip + output = rearrange(output, "(b f) c h w -> b c f h w", f=f) + + return output + + +class TransformerBlock(nn.Module): + def __init__( + self, + dim, + num_attention_heads, + attention_head_dim, + dropout=0.0, + activation_fn="geglu", + attention_bias=False, + upcast_attention=False, + depth=2, + cross_attention_dim: Optional[int] = None + ): + super().__init__() + + self.is_cross = cross_attention_dim is not None + + attention_blocks = [] + norms = [] + + for _ in range(depth): + attention_blocks.append( + TemporalAttention( + query_dim=dim, + cross_attention_dim=cross_attention_dim, + heads=num_attention_heads, + dim_head=attention_head_dim, + dropout=dropout, + bias=attention_bias, + upcast_attention=upcast_attention, + ) + ) + norms.append(nn.LayerNorm(dim)) + + self.attention_blocks = nn.ModuleList(attention_blocks) + self.norms = nn.ModuleList(norms) + + self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) + self.ff_norm = nn.LayerNorm(dim) + + def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, number_of_frames=None): + + if not self.is_cross: + encoder_hidden_states = None + + for block, norm in zip(self.attention_blocks, self.norms): + norm_hidden_states = norm(hidden_states) + hidden_states = block( + norm_hidden_states, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + number_of_frames=number_of_frames + ) + hidden_states + + norm_hidden_states = self.ff_norm(hidden_states) + hidden_states = self.ff(norm_hidden_states) + hidden_states + + output = hidden_states + return output diff --git a/Hotshot-XL/hotshot_xl/models/unet.py b/Hotshot-XL/hotshot_xl/models/unet.py new file mode 100644 index 0000000000000000000000000000000000000000..30b45fe9fcf7d2e0e898aa7ebd36494ee13998ef --- /dev/null +++ b/Hotshot-XL/hotshot_xl/models/unet.py @@ -0,0 +1,975 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Modifications: +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# - Unet now supports SDXL + +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.utils.checkpoint + +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.loaders import UNet2DConditionLoadersMixin +from diffusers.utils import BaseOutput, logging +from diffusers.models.activations import get_activation +from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor +from diffusers.models.embeddings import ( + GaussianFourierProjection, + ImageHintTimeEmbedding, + ImageProjection, + ImageTimeEmbedding, + TextImageProjection, + TextImageTimeEmbedding, + TextTimeEmbedding, + TimestepEmbedding, + Timesteps, +) + +from diffusers.models.modeling_utils import ModelMixin +from diffusers.models.embeddings import TimestepEmbedding, Timesteps +from .unet_blocks import ( + CrossAttnDownBlock3D, + CrossAttnUpBlock3D, + DownBlock3D, + UNetMidBlock3DCrossAttn, + UpBlock3D, + get_down_block, + get_up_block, +) + +from .resnet import Conv3d + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +@dataclass +class UNet3DConditionOutput(BaseOutput): + """ + The output of [`UNet2DConditionModel`]. + + Args: + sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. + """ + + sample: torch.FloatTensor = None + + +class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + sample_size: Optional[int] = None, + in_channels: int = 4, + out_channels: int = 4, + center_input_sample: bool = False, + flip_sin_to_cos: bool = True, + freq_shift: int = 0, + down_block_types: Tuple[str] = ( + "CrossAttnDownBlock3D", + "CrossAttnDownBlock3D", + "DownBlock3D", + ), + mid_block_type: Optional[str] = "UNetMidBlock3DCrossAttn", + up_block_types: Tuple[str] = ( + "UpBlock3D", + "CrossAttnUpBlock3D", + "CrossAttnUpBlock3D", + ), + only_cross_attention: Union[bool, Tuple[bool]] = False, + block_out_channels: Tuple[int] = (320, 640, 1280, 1280), + layers_per_block: Union[int, Tuple[int]] = 2, + downsample_padding: int = 1, + mid_block_scale_factor: float = 1, + act_fn: str = "silu", + norm_num_groups: Optional[int] = 32, + norm_eps: float = 1e-5, + cross_attention_dim: Union[int, Tuple[int]] = 1280, + transformer_layers_per_block: Union[int, Tuple[int]] = 1, + encoder_hid_dim: Optional[int] = None, + encoder_hid_dim_type: Optional[str] = None, + attention_head_dim: Union[int, Tuple[int]] = 8, + num_attention_heads: Optional[Union[int, Tuple[int]]] = None, + dual_cross_attention: bool = False, + use_linear_projection: bool = False, + class_embed_type: Optional[str] = None, + addition_embed_type: Optional[str] = None, + addition_time_embed_dim: Optional[int] = None, + num_class_embeds: Optional[int] = None, + upcast_attention: bool = False, + resnet_time_scale_shift: str = "default", + resnet_skip_time_act: bool = False, + resnet_out_scale_factor: int = 1.0, + time_embedding_type: str = "positional", + time_embedding_dim: Optional[int] = None, + time_embedding_act_fn: Optional[str] = None, + timestep_post_act: Optional[str] = None, + time_cond_proj_dim: Optional[int] = None, + conv_in_kernel: int = 3, + conv_out_kernel: int = 3, + projection_class_embeddings_input_dim: Optional[int] = None, + class_embeddings_concat: bool = False, + mid_block_only_cross_attention: Optional[bool] = None, + cross_attention_norm: Optional[str] = None, + addition_embed_type_num_heads=64, + ): + super().__init__() + + self.sample_size = sample_size + + if num_attention_heads is not None: + raise ValueError( + "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." + ) + + # If `num_attention_heads` is not defined (which is the case for most models) + # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. + # The reason for this behavior is to correct for incorrectly named variables that were introduced + # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 + # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking + # which is why we correct for the naming here. + num_attention_heads = num_attention_heads or attention_head_dim + + # Check inputs + if len(down_block_types) != len(up_block_types): + raise ValueError( + f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." + ) + + if len(block_out_channels) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." + ) + + if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." + ) + + # input + conv_in_padding = (conv_in_kernel - 1) // 2 + + self.conv_in = Conv3d(in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding) + + # time + if time_embedding_type == "fourier": + time_embed_dim = time_embedding_dim or block_out_channels[0] * 2 + if time_embed_dim % 2 != 0: + raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.") + self.time_proj = GaussianFourierProjection( + time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos + ) + timestep_input_dim = time_embed_dim + elif time_embedding_type == "positional": + time_embed_dim = time_embedding_dim or block_out_channels[0] * 4 + + self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) + timestep_input_dim = block_out_channels[0] + else: + raise ValueError( + f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`." + ) + + self.time_embedding = TimestepEmbedding( + timestep_input_dim, + time_embed_dim, + act_fn=act_fn, + post_act_fn=timestep_post_act, + cond_proj_dim=time_cond_proj_dim, + ) + + if encoder_hid_dim_type is None and encoder_hid_dim is not None: + encoder_hid_dim_type = "text_proj" + self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) + logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") + + if encoder_hid_dim is None and encoder_hid_dim_type is not None: + raise ValueError( + f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." + ) + + if encoder_hid_dim_type == "text_proj": + self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) + elif encoder_hid_dim_type == "text_image_proj": + # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much + # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use + # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)` + self.encoder_hid_proj = TextImageProjection( + text_embed_dim=encoder_hid_dim, + image_embed_dim=cross_attention_dim, + cross_attention_dim=cross_attention_dim, + ) + elif encoder_hid_dim_type == "image_proj": + # Kandinsky 2.2 + self.encoder_hid_proj = ImageProjection( + image_embed_dim=encoder_hid_dim, + cross_attention_dim=cross_attention_dim, + ) + elif encoder_hid_dim_type is not None: + raise ValueError( + f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." + ) + else: + self.encoder_hid_proj = None + + # class embedding + if class_embed_type is None and num_class_embeds is not None: + self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) + elif class_embed_type == "timestep": + self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn) + elif class_embed_type == "identity": + self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) + elif class_embed_type == "projection": + if projection_class_embeddings_input_dim is None: + raise ValueError( + "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" + ) + # The projection `class_embed_type` is the same as the timestep `class_embed_type` except + # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings + # 2. it projects from an arbitrary input dimension. + # + # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. + # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings. + # As a result, `TimestepEmbedding` can be passed arbitrary vectors. + self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + elif class_embed_type == "simple_projection": + if projection_class_embeddings_input_dim is None: + raise ValueError( + "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set" + ) + self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim) + else: + self.class_embedding = None + + if addition_embed_type == "text": + if encoder_hid_dim is not None: + text_time_embedding_from_dim = encoder_hid_dim + else: + text_time_embedding_from_dim = cross_attention_dim + + self.add_embedding = TextTimeEmbedding( + text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads + ) + elif addition_embed_type == "text_image": + # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much + # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use + # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)` + self.add_embedding = TextImageTimeEmbedding( + text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim + ) + elif addition_embed_type == "text_time": + self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) + self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + elif addition_embed_type == "image": + # Kandinsky 2.2 + self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) + elif addition_embed_type == "image_hint": + # Kandinsky 2.2 ControlNet + self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) + elif addition_embed_type is not None: + raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") + + if time_embedding_act_fn is None: + self.time_embed_act = None + else: + self.time_embed_act = get_activation(time_embedding_act_fn) + + self.down_blocks = nn.ModuleList([]) + self.up_blocks = nn.ModuleList([]) + + if isinstance(only_cross_attention, bool): + if mid_block_only_cross_attention is None: + mid_block_only_cross_attention = only_cross_attention + + only_cross_attention = [only_cross_attention] * len(down_block_types) + + if mid_block_only_cross_attention is None: + mid_block_only_cross_attention = False + + if isinstance(num_attention_heads, int): + num_attention_heads = (num_attention_heads,) * len(down_block_types) + + if isinstance(attention_head_dim, int): + attention_head_dim = (attention_head_dim,) * len(down_block_types) + + if isinstance(cross_attention_dim, int): + cross_attention_dim = (cross_attention_dim,) * len(down_block_types) + + if isinstance(layers_per_block, int): + layers_per_block = [layers_per_block] * len(down_block_types) + + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) + + if class_embeddings_concat: + # The time embeddings are concatenated with the class embeddings. The dimension of the + # time embeddings passed to the down, middle, and up blocks is twice the dimension of the + # regular time embeddings + blocks_time_embed_dim = time_embed_dim * 2 + else: + blocks_time_embed_dim = time_embed_dim + + # down + output_channel = block_out_channels[0] + for i, down_block_type in enumerate(down_block_types): + res = 2 ** i + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + + down_block = get_down_block( + down_block_type, + num_layers=layers_per_block[i], + transformer_layers_per_block=transformer_layers_per_block[i], + in_channels=input_channel, + out_channels=output_channel, + temb_channels=blocks_time_embed_dim, + add_downsample=not is_final_block, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + cross_attention_dim=cross_attention_dim[i], + num_attention_heads=num_attention_heads[i], + downsample_padding=downsample_padding, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention[i], + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + resnet_skip_time_act=resnet_skip_time_act, + resnet_out_scale_factor=resnet_out_scale_factor, + cross_attention_norm=cross_attention_norm, + attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, + ) + self.down_blocks.append(down_block) + + # mid + if mid_block_type == "UNetMidBlock3DCrossAttn": + self.mid_block = UNetMidBlock3DCrossAttn( + transformer_layers_per_block=transformer_layers_per_block[-1], + in_channels=block_out_channels[-1], + temb_channels=blocks_time_embed_dim, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + output_scale_factor=mid_block_scale_factor, + resnet_time_scale_shift=resnet_time_scale_shift, + cross_attention_dim=cross_attention_dim[-1], + num_attention_heads=num_attention_heads[-1], + resnet_groups=norm_num_groups, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + upcast_attention=upcast_attention, + ) + elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn": + raise ValueError("UNetMidBlock2DSimpleCrossAttn not supported") + + elif mid_block_type is None: + self.mid_block = None + else: + raise ValueError(f"unknown mid_block_type : {mid_block_type}") + + # count how many layers upsample the images + self.num_upsamplers = 0 + + # up + reversed_block_out_channels = list(reversed(block_out_channels)) + reversed_num_attention_heads = list(reversed(num_attention_heads)) + reversed_layers_per_block = list(reversed(layers_per_block)) + reversed_cross_attention_dim = list(reversed(cross_attention_dim)) + reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) + only_cross_attention = list(reversed(only_cross_attention)) + + output_channel = reversed_block_out_channels[0] + for i, up_block_type in enumerate(up_block_types): + res = 2 ** (len(up_block_types) - 1 - i) + is_final_block = i == len(block_out_channels) - 1 + + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] + + # add upsample block for all BUT final layer + if not is_final_block: + add_upsample = True + self.num_upsamplers += 1 + else: + add_upsample = False + + up_block = get_up_block( + up_block_type, + num_layers=reversed_layers_per_block[i] + 1, + transformer_layers_per_block=reversed_transformer_layers_per_block[i], + in_channels=input_channel, + out_channels=output_channel, + prev_output_channel=prev_output_channel, + temb_channels=blocks_time_embed_dim, + add_upsample=add_upsample, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + cross_attention_dim=reversed_cross_attention_dim[i], + num_attention_heads=reversed_num_attention_heads[i], + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention[i], + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + resnet_skip_time_act=resnet_skip_time_act, + resnet_out_scale_factor=resnet_out_scale_factor, + cross_attention_norm=cross_attention_norm, + attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, + ) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + + # out + if norm_num_groups is not None: + self.conv_norm_out = nn.GroupNorm( + num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps + ) + + self.conv_act = get_activation(act_fn) + + else: + self.conv_norm_out = None + self.conv_act = None + + conv_out_padding = (conv_out_kernel - 1) // 2 + + self.conv_out = Conv3d(block_out_channels[0], out_channels, kernel_size=conv_out_kernel, + padding=conv_out_padding) + + def temporal_parameters(self) -> list: + output = [] + all_blocks = self.down_blocks + self.up_blocks + [self.mid_block] + for block in all_blocks: + output.extend(block.temporal_parameters()) + return output + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + return self.get_attn_processors(include_temporal_layers=False) + + def get_attn_processors(self, include_temporal_layers=True) -> Dict[str, AttentionProcessor]: + r""" + Returns: + `dict` of attention processors: A dictionary containing all attention processors used in the model with + indexed by its weight name. + """ + # set recursively + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + + if not include_temporal_layers: + if 'temporal' in name: + return processors + + if hasattr(module, "set_processor"): + processors[f"{name}.processor"] = module.processor + + for sub_name, child in module.named_children(): + fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) + + return processors + + for name, module in self.named_children(): + fn_recursive_add_processors(name, module, processors) + + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], + include_temporal_layers=False): + r""" + Sets the attention processor to use to compute attention. + + Parameters: + processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): + The instantiated processor class or a dictionary of processor classes that will be set as the processor + for **all** `Attention` layers. + + If `processor` is a dict, the key needs to define the path to the corresponding cross attention + processor. This is strongly recommended when setting trainable attention processors. + + """ + count = len(self.get_attn_processors(include_temporal_layers=include_temporal_layers).keys()) + + if isinstance(processor, dict) and len(processor) != count: + raise ValueError( + f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" + f" number of attention layers: {count}. Please make sure to pass {count} processor classes." + ) + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + + if not include_temporal_layers: + if "temporal" in name: + return + + if hasattr(module, "set_processor"): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f"{name}.processor")) + + for sub_name, child in module.named_children(): + fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) + + for name, module in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + """ + Disables custom attention processors and sets the default attention implementation. + """ + self.set_attn_processor(AttnProcessor()) + + def set_attention_slice(self, slice_size): + r""" + Enable sliced attention computation. + + When this option is enabled, the attention module splits the input tensor in slices to compute attention in + several steps. This is useful for saving some memory in exchange for a small decrease in speed. + + Args: + slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): + When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If + `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is + provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` + must be a multiple of `slice_size`. + """ + sliceable_head_dims = [] + + def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): + if hasattr(module, "set_attention_slice"): + sliceable_head_dims.append(module.sliceable_head_dim) + + for child in module.children(): + fn_recursive_retrieve_sliceable_dims(child) + + # retrieve number of attention layers + for module in self.children(): + fn_recursive_retrieve_sliceable_dims(module) + + num_sliceable_layers = len(sliceable_head_dims) + + if slice_size == "auto": + # half the attention head size is usually a good trade-off between + # speed and memory + slice_size = [dim // 2 for dim in sliceable_head_dims] + elif slice_size == "max": + # make smallest slice possible + slice_size = num_sliceable_layers * [1] + + slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size + + if len(slice_size) != len(sliceable_head_dims): + raise ValueError( + f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" + f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." + ) + + for i in range(len(slice_size)): + size = slice_size[i] + dim = sliceable_head_dims[i] + if size is not None and size > dim: + raise ValueError(f"size {size} has to be smaller or equal to {dim}.") + + # Recursively walk through all the children. + # Any children which exposes the set_attention_slice method + # gets the message + def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): + if hasattr(module, "set_attention_slice"): + module.set_attention_slice(slice_size.pop()) + + for child in module.children(): + fn_recursive_set_attention_slice(child, slice_size) + + reversed_slice_size = list(reversed(slice_size)) + for module in self.children(): + fn_recursive_set_attention_slice(module, reversed_slice_size) + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)): + module.gradient_checkpointing = value + + def forward( + self, + sample: torch.FloatTensor, + timestep: Union[torch.Tensor, float, int], + encoder_hidden_states: torch.Tensor, + class_labels: Optional[torch.Tensor] = None, + timestep_cond: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, + down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, + mid_block_additional_residual: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + return_dict: bool = True, + enable_temporal_attentions: bool = True + ) -> Union[UNet3DConditionOutput, Tuple]: + r""" + The [`UNet2DConditionModel`] forward method. + + Args: + sample (`torch.FloatTensor`): + The noisy input tensor with the following shape `(batch, channel, height, width)`. + timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. + encoder_hidden_states (`torch.FloatTensor`): + The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. + encoder_attention_mask (`torch.Tensor`): + A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If + `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, + which adds large negative values to the attention scores corresponding to "discard" tokens. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain + tuple. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the [`AttnProcessor`]. + added_cond_kwargs: (`dict`, *optional*): + A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that + are passed along to the UNet blocks. + + Returns: + [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: + If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise + a `tuple` is returned where the first element is the sample tensor. + """ + # By default samples have to be AT least a multiple of the overall upsampling factor. + # The overall upsampling factor is equal to 2 ** (# num of upsampling layers). + # However, the upsampling interpolation output size can be forced to fit any upsampling size + # on the fly if necessary. + default_overall_up_factor = 2 ** self.num_upsamplers + + # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` + forward_upsample_size = False + upsample_size = None + + if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): + logger.info("Forward upsample size to force interpolation output size.") + forward_upsample_size = True + + # ensure attention_mask is a bias, and give it a singleton query_tokens dimension + # expects mask of shape: + # [batch, key_tokens] + # adds singleton query_tokens dimension: + # [batch, 1, key_tokens] + # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: + # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) + # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) + if attention_mask is not None: + # assume that mask is expressed as: + # (1 = keep, 0 = discard) + # convert mask into a bias that can be added to attention scores: + # (keep = +0, discard = -10000.0) + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + + # convert encoder_attention_mask to a bias the same way we do for attention_mask + if encoder_attention_mask is not None: + encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 + encoder_attention_mask = encoder_attention_mask.unsqueeze(1) + + # 0. center input if necessary + if self.config.center_input_sample: + sample = 2 * sample - 1.0 + + # 1. time + timesteps = timestep + if not torch.is_tensor(timesteps): + # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can + # This would be a good case for the `match` statement (Python 3.10+) + is_mps = sample.device.type == "mps" + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timesteps = timesteps.expand(sample.shape[0]) + + t_emb = self.time_proj(timesteps) + + # `Timesteps` does not contain any weights and will always return f32 tensors + # but time_embedding might actually be running in fp16. so we need to cast here. + # there might be better ways to encapsulate this. + t_emb = t_emb.to(dtype=sample.dtype) + + emb = self.time_embedding(t_emb, timestep_cond) + aug_emb = None + + if self.class_embedding is not None: + if class_labels is None: + raise ValueError("class_labels should be provided when num_class_embeds > 0") + + if self.config.class_embed_type == "timestep": + class_labels = self.time_proj(class_labels) + + # `Timesteps` does not contain any weights and will always return f32 tensors + # there might be better ways to encapsulate this. + class_labels = class_labels.to(dtype=sample.dtype) + + class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) + + if self.config.class_embeddings_concat: + emb = torch.cat([emb, class_emb], dim=-1) + else: + emb = emb + class_emb + + if self.config.addition_embed_type == "text": + aug_emb = self.add_embedding(encoder_hidden_states) + elif self.config.addition_embed_type == "text_image": + # Kandinsky 2.1 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" + ) + + image_embs = added_cond_kwargs.get("image_embeds") + text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) + aug_emb = self.add_embedding(text_embs, image_embs) + elif self.config.addition_embed_type == "text_time": + if "text_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" + ) + text_embeds = added_cond_kwargs.get("text_embeds") + if "time_ids" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" + ) + time_ids = added_cond_kwargs.get("time_ids") + time_embeds = self.add_time_proj(time_ids.flatten()) + time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) + + add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) + add_embeds = add_embeds.to(emb.dtype) + aug_emb = self.add_embedding(add_embeds) + elif self.config.addition_embed_type == "image": + # Kandinsky 2.2 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" + ) + image_embs = added_cond_kwargs.get("image_embeds") + aug_emb = self.add_embedding(image_embs) + elif self.config.addition_embed_type == "image_hint": + # Kandinsky 2.2 - style + if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" + ) + image_embs = added_cond_kwargs.get("image_embeds") + hint = added_cond_kwargs.get("hint") + aug_emb, hint = self.add_embedding(image_embs, hint) + sample = torch.cat([sample, hint], dim=1) + + emb = emb + aug_emb if aug_emb is not None else emb + + if self.time_embed_act is not None: + emb = self.time_embed_act(emb) + + if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": + encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": + # Kadinsky 2.1 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" + ) + + image_embeds = added_cond_kwargs.get("image_embeds") + encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj": + # Kandinsky 2.2 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" + ) + image_embeds = added_cond_kwargs.get("image_embeds") + encoder_hidden_states = self.encoder_hid_proj(image_embeds) + # 2. pre-process + + sample = self.conv_in(sample) + + # 3. down + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: + sample, res_samples = downsample_block( + hidden_states=sample, + temb=emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + enable_temporal_attentions=enable_temporal_attentions + ) + else: + sample, res_samples = downsample_block(hidden_states=sample, + temb=emb, + encoder_hidden_states=encoder_hidden_states, + enable_temporal_attentions=enable_temporal_attentions) + + down_block_res_samples += res_samples + + if down_block_additional_residuals is not None: + new_down_block_res_samples = () + + for down_block_res_sample, down_block_additional_residual in zip( + down_block_res_samples, down_block_additional_residuals + ): + down_block_res_sample = down_block_res_sample + down_block_additional_residual + new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) + + down_block_res_samples = new_down_block_res_samples + + # 4. mid + if self.mid_block is not None: + sample = self.mid_block( + sample, + emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + enable_temporal_attentions=enable_temporal_attentions + ) + + if mid_block_additional_residual is not None: + sample = sample + mid_block_additional_residual + + # 5. up + for i, upsample_block in enumerate(self.up_blocks): + is_final_block = i == len(self.up_blocks) - 1 + + res_samples = down_block_res_samples[-len(upsample_block.resnets):] + down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] + + # if we have not reached the final block and need to forward the + # upsample size, we do it here + if not is_final_block and forward_upsample_size: + upsample_size = down_block_res_samples[-1].shape[2:] + + if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: + sample = upsample_block( + hidden_states=sample, + temb=emb, + res_hidden_states_tuple=res_samples, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + upsample_size=upsample_size, + attention_mask=attention_mask, + enable_temporal_attentions=enable_temporal_attentions + ) + else: + sample = upsample_block( + hidden_states=sample, + temb=emb, + res_hidden_states_tuple=res_samples, + upsample_size=upsample_size, + encoder_hidden_states=encoder_hidden_states, + enable_temporal_attentions=enable_temporal_attentions + ) + + # 6. post-process + if self.conv_norm_out: + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + + sample = self.conv_out(sample) + + if not return_dict: + return (sample,) + + return UNet3DConditionOutput(sample=sample) + + @classmethod + def from_pretrained_spatial(cls, pretrained_model_path, subfolder=None): + + import os + import json + + if subfolder is not None: + pretrained_model_path = os.path.join(pretrained_model_path, subfolder) + + config_file = os.path.join(pretrained_model_path, 'config.json') + + with open(config_file, "r") as f: + config = json.load(f) + + config["_class_name"] = "UNet3DConditionModel" + + config["down_block_types"] = [ + "DownBlock3D", + "CrossAttnDownBlock3D", + "CrossAttnDownBlock3D", + ] + config["up_block_types"] = [ + "CrossAttnUpBlock3D", + "CrossAttnUpBlock3D", + "UpBlock3D" + ] + + config["mid_block_type"] = "UNetMidBlock3DCrossAttn" + + model = cls.from_config(config) + + model_files = [ + os.path.join(pretrained_model_path, 'diffusion_pytorch_model.bin'), + os.path.join(pretrained_model_path, 'diffusion_pytorch_model.safetensors') + ] + + model_file = None + + for fp in model_files: + if os.path.exists(fp): + model_file = fp + + if not model_file: + raise RuntimeError(f"{model_file} does not exist") + + state_dict = torch.load(model_file, map_location="cpu") + + model.load_state_dict(state_dict, strict=False) + + return model diff --git a/Hotshot-XL/hotshot_xl/models/unet_blocks.py b/Hotshot-XL/hotshot_xl/models/unet_blocks.py new file mode 100644 index 0000000000000000000000000000000000000000..e642d4f8b56600b58238fdb7a243fb1e360a621d --- /dev/null +++ b/Hotshot-XL/hotshot_xl/models/unet_blocks.py @@ -0,0 +1,740 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Modifications: +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# - Add temporal transformers to unet blocks + +import torch +from torch import nn + +from .transformer_3d import Transformer3DModel +from .resnet import Downsample3D, ResnetBlock3D, Upsample3D +from .transformer_temporal import TransformerTemporal + + +def get_down_block( + down_block_type, + num_layers, + in_channels, + out_channels, + temb_channels, + add_downsample, + resnet_eps, + resnet_act_fn, + transformer_layers_per_block=1, + num_attention_heads=None, + resnet_groups=None, + cross_attention_dim=None, + downsample_padding=None, + dual_cross_attention=False, + use_linear_projection=False, + only_cross_attention=False, + upcast_attention=False, + resnet_time_scale_shift="default", + resnet_skip_time_act=False, + resnet_out_scale_factor=1.0, + cross_attention_norm=None, + attention_head_dim=None, + downsample_type=None, +): + down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type + if down_block_type == "DownBlock3D": + return DownBlock3D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif down_block_type == "CrossAttnDownBlock3D": + if cross_attention_dim is None: + raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D") + return CrossAttnDownBlock3D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + transformer_layers_per_block=transformer_layers_per_block, + temb_channels=temb_channels, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + cross_attention_dim=cross_attention_dim, + num_attention_heads=num_attention_heads, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + raise ValueError(f"{down_block_type} does not exist.") + + +def get_up_block( + up_block_type, + num_layers, + in_channels, + out_channels, + prev_output_channel, + temb_channels, + add_upsample, + resnet_eps, + resnet_act_fn, + transformer_layers_per_block=1, + num_attention_heads=None, + resnet_groups=None, + cross_attention_dim=None, + dual_cross_attention=False, + use_linear_projection=False, + only_cross_attention=False, + upcast_attention=False, + resnet_time_scale_shift="default", + resnet_skip_time_act=False, + resnet_out_scale_factor=1.0, + cross_attention_norm=None, + attention_head_dim=None, + upsample_type=None, +): + up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type + if up_block_type == "UpBlock3D": + return UpBlock3D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif up_block_type == "CrossAttnUpBlock3D": + if cross_attention_dim is None: + raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D") + return CrossAttnUpBlock3D( + num_layers=num_layers, + in_channels=in_channels, + transformer_layers_per_block=transformer_layers_per_block, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + cross_attention_dim=cross_attention_dim, + num_attention_heads=num_attention_heads, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + raise ValueError(f"{up_block_type} does not exist.") + + +class UNetMidBlock3DCrossAttn(nn.Module): + def __init__( + self, + in_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + transformer_layers_per_block: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + num_attention_heads=1, + output_scale_factor=1.0, + cross_attention_dim=1280, + dual_cross_attention=False, + use_linear_projection=False, + upcast_attention=False, + ): + super().__init__() + + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + + # there is always at least one resnet + resnets = [ + ResnetBlock3D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ] + attentions = [] + + for _ in range(num_layers): + if dual_cross_attention: + raise NotImplementedError + attentions.append( + Transformer3DModel( + num_attention_heads, + in_channels // num_attention_heads, + in_channels=in_channels, + num_layers=transformer_layers_per_block, + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + use_linear_projection=use_linear_projection, + upcast_attention=upcast_attention, + ) + ) + + resnets.append( + ResnetBlock3D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, + cross_attention_kwargs=None, enable_temporal_attentions: bool = True): + hidden_states = self.resnets[0](hidden_states, temb) + for attn, resnet in zip(self.attentions, self.resnets[1:]): + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample + hidden_states = resnet(hidden_states, temb) + + return hidden_states + + def temporal_parameters(self) -> list: + return [] + + +class CrossAttnDownBlock3D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + transformer_layers_per_block: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + num_attention_heads=1, + cross_attention_dim=1280, + output_scale_factor=1.0, + downsample_padding=1, + add_downsample=True, + dual_cross_attention=False, + use_linear_projection=False, + only_cross_attention=False, + upcast_attention=False, + ): + super().__init__() + resnets = [] + attentions = [] + temporal_attentions = [] + + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock3D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + if dual_cross_attention: + raise NotImplementedError + attentions.append( + Transformer3DModel( + num_attention_heads, + out_channels // num_attention_heads, + in_channels=out_channels, + num_layers=transformer_layers_per_block, + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + ) + ) + temporal_attentions.append( + TransformerTemporal( + num_attention_heads=8, + attention_head_dim=out_channels // 8, + in_channels=out_channels, + cross_attention_dim=None, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + self.temporal_attentions = nn.ModuleList(temporal_attentions) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample3D( + out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, + cross_attention_kwargs=None, enable_temporal_attentions: bool = True): + output_states = () + + for resnet, attn, temporal_attention \ + in zip(self.resnets, self.attentions, self.temporal_attentions): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, + use_reentrant=False) + + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(attn, return_dict=False), + hidden_states, + encoder_hidden_states, + use_reentrant=False + )[0] + if enable_temporal_attentions and temporal_attention is not None: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(temporal_attention), + hidden_states, encoder_hidden_states, + use_reentrant=False) + + else: + hidden_states = resnet(hidden_states, temb) + + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample + + if temporal_attention and enable_temporal_attentions: + hidden_states = temporal_attention(hidden_states, + encoder_hidden_states=encoder_hidden_states) + + output_states += (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + output_states += (hidden_states,) + + return hidden_states, output_states + + def temporal_parameters(self) -> list: + output = [] + for block in self.temporal_attentions: + if block: + output.extend(block.parameters()) + return output + + +class DownBlock3D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor=1.0, + add_downsample=True, + downsample_padding=1, + ): + super().__init__() + resnets = [] + temporal_attentions = [] + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock3D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + temporal_attentions.append( + TransformerTemporal( + num_attention_heads=8, + attention_head_dim=out_channels // 8, + in_channels=out_channels, + cross_attention_dim=None + ) + ) + + self.resnets = nn.ModuleList(resnets) + self.temporal_attentions = nn.ModuleList(temporal_attentions) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample3D( + out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def forward(self, hidden_states, temb=None, encoder_hidden_states=None, enable_temporal_attentions: bool = True): + output_states = () + + for resnet, temporal_attention in zip(self.resnets, self.temporal_attentions): + if self.training and self.gradient_checkpointing: + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, + use_reentrant=False) + if enable_temporal_attentions and temporal_attention is not None: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(temporal_attention), + hidden_states, encoder_hidden_states, + use_reentrant=False) + else: + hidden_states = resnet(hidden_states, temb) + + if enable_temporal_attentions and temporal_attention: + hidden_states = temporal_attention(hidden_states, encoder_hidden_states=encoder_hidden_states) + + output_states += (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + output_states += (hidden_states,) + + return hidden_states, output_states + + def temporal_parameters(self) -> list: + output = [] + for block in self.temporal_attentions: + if block: + output.extend(block.parameters()) + return output + + +class CrossAttnUpBlock3D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + prev_output_channel: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + transformer_layers_per_block: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + num_attention_heads=1, + cross_attention_dim=1280, + output_scale_factor=1.0, + add_upsample=True, + dual_cross_attention=False, + use_linear_projection=False, + only_cross_attention=False, + upcast_attention=False, + ): + super().__init__() + resnets = [] + attentions = [] + temporal_attentions = [] + + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + resnets.append( + ResnetBlock3D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + if dual_cross_attention: + raise NotImplementedError + attentions.append( + Transformer3DModel( + num_attention_heads, + out_channels // num_attention_heads, + in_channels=out_channels, + num_layers=transformer_layers_per_block, + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + ) + ) + temporal_attentions.append( + TransformerTemporal( + num_attention_heads=8, + attention_head_dim=out_channels // 8, + in_channels=out_channels, + cross_attention_dim=None + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + self.temporal_attentions = nn.ModuleList(temporal_attentions) + + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states, + res_hidden_states_tuple, + temb=None, + encoder_hidden_states=None, + upsample_size=None, + cross_attention_kwargs=None, + attention_mask=None, + enable_temporal_attentions: bool = True + ): + for resnet, attn, temporal_attention \ + in zip(self.resnets, self.attentions, self.temporal_attentions): + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, + use_reentrant=False) + + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(attn, return_dict=False), + hidden_states, + encoder_hidden_states, + use_reentrant=False, + )[0] + if enable_temporal_attentions and temporal_attention is not None: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(temporal_attention), + hidden_states, encoder_hidden_states, + use_reentrant=False) + + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample + + if enable_temporal_attentions and temporal_attention: + hidden_states = temporal_attention(hidden_states, + encoder_hidden_states=encoder_hidden_states) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size) + + return hidden_states + + def temporal_parameters(self) -> list: + output = [] + for block in self.temporal_attentions: + if block: + output.extend(block.parameters()) + return output + + +class UpBlock3D(nn.Module): + def __init__( + self, + in_channels: int, + prev_output_channel: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor=1.0, + add_upsample=True, + ): + super().__init__() + resnets = [] + temporal_attentions = [] + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + resnets.append( + ResnetBlock3D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + temporal_attentions.append( + TransformerTemporal( + num_attention_heads=8, + attention_head_dim=out_channels // 8, + in_channels=out_channels, + cross_attention_dim=None + ) + ) + + self.resnets = nn.ModuleList(resnets) + self.temporal_attentions = nn.ModuleList(temporal_attentions) + + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + + def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, encoder_hidden_states=None, + enable_temporal_attentions: bool = True): + for resnet, temporal_attention in zip(self.resnets, self.temporal_attentions): + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, + use_reentrant=False) + if enable_temporal_attentions and temporal_attention is not None: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(temporal_attention), + hidden_states, encoder_hidden_states, + use_reentrant=False) + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = temporal_attention(hidden_states, + encoder_hidden_states=encoder_hidden_states) if enable_temporal_attentions and temporal_attention is not None else hidden_states + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size) + + return hidden_states + + def temporal_parameters(self) -> list: + output = [] + for block in self.temporal_attentions: + if block: + output.extend(block.parameters()) + return output diff --git a/Hotshot-XL/hotshot_xl/pipelines/__init__.py b/Hotshot-XL/hotshot_xl/pipelines/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/Hotshot-XL/hotshot_xl/pipelines/__pycache__/__init__.cpython-38.pyc b/Hotshot-XL/hotshot_xl/pipelines/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..837f54d8354052949995f9225e3a0a32ee1f51a2 Binary files /dev/null and b/Hotshot-XL/hotshot_xl/pipelines/__pycache__/__init__.cpython-38.pyc differ diff --git a/Hotshot-XL/hotshot_xl/pipelines/__pycache__/__init__.cpython-39.pyc b/Hotshot-XL/hotshot_xl/pipelines/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..608c366d4065f2f3a3f9a30f6335dc2d2461dea8 Binary files /dev/null and b/Hotshot-XL/hotshot_xl/pipelines/__pycache__/__init__.cpython-39.pyc differ diff --git a/Hotshot-XL/hotshot_xl/pipelines/__pycache__/hotshot_xl_controlnet_pipeline.cpython-38.pyc b/Hotshot-XL/hotshot_xl/pipelines/__pycache__/hotshot_xl_controlnet_pipeline.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e486c8b99469f44e8ac918d8ca17a609ba526a80 Binary files /dev/null and b/Hotshot-XL/hotshot_xl/pipelines/__pycache__/hotshot_xl_controlnet_pipeline.cpython-38.pyc differ diff --git a/Hotshot-XL/hotshot_xl/pipelines/__pycache__/hotshot_xl_controlnet_pipeline.cpython-39.pyc b/Hotshot-XL/hotshot_xl/pipelines/__pycache__/hotshot_xl_controlnet_pipeline.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cc024d7d8ec3a1a56e5c4151dca7ba563b23730c Binary files /dev/null and b/Hotshot-XL/hotshot_xl/pipelines/__pycache__/hotshot_xl_controlnet_pipeline.cpython-39.pyc differ diff --git a/Hotshot-XL/hotshot_xl/pipelines/__pycache__/hotshot_xl_pipeline.cpython-38.pyc b/Hotshot-XL/hotshot_xl/pipelines/__pycache__/hotshot_xl_pipeline.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..84177377f32b1f5ecfca5aae0676e7429708f087 Binary files /dev/null and b/Hotshot-XL/hotshot_xl/pipelines/__pycache__/hotshot_xl_pipeline.cpython-38.pyc differ diff --git a/Hotshot-XL/hotshot_xl/pipelines/__pycache__/hotshot_xl_pipeline.cpython-39.pyc b/Hotshot-XL/hotshot_xl/pipelines/__pycache__/hotshot_xl_pipeline.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..367a8a1151fa42951fbceff2ea6bfb17859716cd Binary files /dev/null and b/Hotshot-XL/hotshot_xl/pipelines/__pycache__/hotshot_xl_pipeline.cpython-39.pyc differ diff --git a/Hotshot-XL/hotshot_xl/pipelines/hotshot_xl_controlnet_pipeline.py b/Hotshot-XL/hotshot_xl/pipelines/hotshot_xl_controlnet_pipeline.py new file mode 100644 index 0000000000000000000000000000000000000000..b084688662309ef71b429d20a5edfc9c8f494f9f --- /dev/null +++ b/Hotshot-XL/hotshot_xl/pipelines/hotshot_xl_controlnet_pipeline.py @@ -0,0 +1,1389 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Modifications: +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# - Adapted the SDXL Controlnet Pipeline to work temporally + +import inspect +import os +from typing import Any, Callable, Dict, List, Optional, Tuple, Union + +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer + +from hotshot_xl import HotshotPipelineXLOutput + +from diffusers.image_processor import VaeImageProcessor +from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin +from diffusers.models import AutoencoderKL, ControlNetModel +from diffusers.models.attention_processor import ( + AttnProcessor2_0, + LoRAAttnProcessor2_0, + LoRAXFormersAttnProcessor, + XFormersAttnProcessor, +) +from diffusers.schedulers import KarrasDiffusionSchedulers +from diffusers.utils import ( + is_accelerate_available, + is_accelerate_version, + logging, + replace_example_docstring, +) +from diffusers.pipelines.pipeline_utils import DiffusionPipeline +from diffusers.utils.torch_utils import randn_tensor, is_compiled_module + +from ..models.unet import UNet3DConditionModel + +from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel +from einops import rearrange +from tqdm import tqdm + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + """ + Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and + Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 + """ + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + # rescale the results from guidance (fixes overexposure) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> import torch + >>> from hotshot_xl import HotshotPipelineXL + >>> from diffusers import ControlNetModel + + >>> pipe = HotshotXLPipeline.from_pretrained( + ... "hotshotco/Hotshot-XL", + ... controlnet=ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0") + ... ) + + >>> def canny(image): + >>> image = cv2.Canny(image, 100, 200) + >>> image = image[:, :, None] + >>> image = np.concatenate([image, image, image], axis=2) + >>> return Image.fromarray(image) + + >>> # assuming you have 8 keyframes in current directory... + + >>> keyframes = [f"image_{i}.jpg" for i in range(8)] + >>> control_images = [canny(Image.open(fp)) for fp in keyframes] + + >>> pipe = pipe.to("cuda") + + >>> prompt = "a photo of an astronaut riding a horse on mars" + >>> video = pipe(prompt, + ... width=672, height=384, + ... original_size=(1920, 1080), + ... target_size=(512, 512), + ... output_type="tensor", + ... controlnet_conditioning_scale=0.7, + ... control_images=control_images + ).video + ``` +""" +class HotshotXLControlNetPipeline( + DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin +): + r""" + Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance. + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods + implemented for all pipelines (downloading, saving, running on a particular device, etc.). + + The pipeline also inherits the following loading methods: + - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings + - [`loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights + - [`loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files + + Args: + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. + text_encoder ([`~transformers.CLIPTextModel`]): + Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). + text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]): + Second frozen text-encoder + ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)). + tokenizer ([`~transformers.CLIPTokenizer`]): + A `CLIPTokenizer` to tokenize text. + tokenizer_2 ([`~transformers.CLIPTokenizer`]): + A `CLIPTokenizer` to tokenize text. + unet ([`UNet3DConditionModel`]): + A `UNet3DConditionModel` to denoise the encoded image latents. + controlnet ([`ControlNetModel`] or `List[ControlNetModel]`): + Provides additional conditioning to the `unet` during the denoising process. If you set multiple + ControlNets as a list, the outputs from each ControlNet are added together to create one combined + additional conditioning. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of + [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. + force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): + Whether the negative prompt embeddings should always be set to 0. Also see the config of + `stabilityai/stable-diffusion-xl-base-1-0`. + add_watermarker (`bool`, *optional*): + Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to + watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no + watermarker is used. + """ + + def __init__( + self, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + text_encoder_2: CLIPTextModelWithProjection, + tokenizer: CLIPTokenizer, + tokenizer_2: CLIPTokenizer, + unet: UNet3DConditionModel, + controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], + scheduler: KarrasDiffusionSchedulers, + force_zeros_for_empty_prompt: bool = True, + add_watermarker: Optional[bool] = None, + ): + super().__init__() + + if isinstance(controlnet, (list, tuple)): + controlnet = MultiControlNetModel(controlnet) + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + text_encoder_2=text_encoder_2, + tokenizer=tokenizer, + tokenizer_2=tokenizer_2, + unet=unet, + controlnet=controlnet, + scheduler=scheduler, + ) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) + self.control_image_processor = VaeImageProcessor( + vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False + ) + + self.watermark = None + + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing + def enable_vae_slicing(self): + r""" + Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to + compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. + """ + self.vae.enable_slicing() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing + def disable_vae_slicing(self): + r""" + Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_slicing() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling + def enable_vae_tiling(self): + r""" + Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to + compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow + processing larger images. + """ + self.vae.enable_tiling() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling + def disable_vae_tiling(self): + r""" + Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_tiling() + + def enable_model_cpu_offload(self, gpu_id=0): + r""" + Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared + to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` + method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with + `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. + """ + if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): + from accelerate import cpu_offload_with_hook + else: + raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") + + device = torch.device(f"cuda:{gpu_id}") + + if self.device.type != "cpu": + self.to("cpu", silence_dtype_warnings=True) + torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) + + model_sequence = ( + [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + ) + model_sequence.extend([self.unet, self.vae]) + + hook = None + for cpu_offloaded_model in model_sequence: + _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) + + cpu_offload_with_hook(self.controlnet, device) + + # We'll offload the last model manually. + self.final_offload_hook = hook + + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt + def encode_prompt( + self, + prompt: str, + prompt_2: Optional[str] = None, + device: Optional[torch.device] = None, + num_images_per_prompt: int = 1, + do_classifier_free_guidance: bool = True, + negative_prompt: Optional[str] = None, + negative_prompt_2: Optional[str] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + lora_scale: Optional[float] = None, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + used in both text-encoders + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + do_classifier_free_guidance (`bool`): + whether to use classifier free guidance or not + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + negative_prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and + `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + If not provided, pooled text embeddings will be generated from `prompt` input argument. + negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` + input argument. + lora_scale (`float`, *optional*): + A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + """ + device = device or self._execution_device + + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, LoraLoaderMixin): + self._lora_scale = lora_scale + + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + # Define tokenizers and text encoders + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = ( + [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + ) + + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + # textual inversion: procecss multi-vector tokens if necessary + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + + text_inputs = tokenizer( + prompt, + padding="max_length", + max_length=tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( + text_input_ids, untruncated_ids + ): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {tokenizer.model_max_length} tokens: {removed_text}" + ) + + prompt_embeds = text_encoder( + text_input_ids.to(device), + output_hidden_states=True, + ) + + # We are only ALWAYS interested in the pooled output of the final text encoder + pooled_prompt_embeds = prompt_embeds[0] + prompt_embeds = prompt_embeds.hidden_states[-2] + + prompt_embeds_list.append(prompt_embeds) + + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + + # get unconditional embeddings for classifier free guidance + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or "" + negative_prompt_2 = negative_prompt_2 or negative_prompt + + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt, negative_prompt_2] + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + + negative_prompt_embeds_list = [] + for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer( + negative_prompt, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + + negative_prompt_embeds = text_encoder( + uncond_input.input_ids.to(device), + output_hidden_states=True, + ) + # We are only ALWAYS interested in the pooled output of the final text encoder + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + + negative_prompt_embeds_list.append(negative_prompt_embeds) + + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + + if do_classifier_free_guidance: + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( + bs_embed * num_images_per_prompt, -1 + ) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( + bs_embed * num_images_per_prompt, -1 + ) + + return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (ฮท) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to ฮท in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + def check_inputs( + self, + prompt, + prompt_2, + control_images, + video_length, + callback_steps, + negative_prompt=None, + negative_prompt_2=None, + prompt_embeds=None, + negative_prompt_embeds=None, + pooled_prompt_embeds=None, + negative_pooled_prompt_embeds=None, + controlnet_conditioning_scale=1.0, + control_guidance_start=0.0, + control_guidance_end=1.0, + ): + if (callback_steps is None) or ( + callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) + ): + raise ValueError( + f"`callback_steps` has to be a positive integer but is {callback_steps} of type" + f" {type(callback_steps)}." + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): + raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError( + "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." + ) + + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError( + "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." + ) + + # `prompt` needs more sophisticated handling when there are multiple + # conditionings. + if isinstance(self.controlnet, MultiControlNetModel): + if isinstance(prompt, list): + logger.warning( + f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}" + " prompts. The conditionings will be fixed across the prompts." + ) + + # Check `image` + is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( + self.controlnet, torch._dynamo.eval_frame.OptimizedModule + ) + if ( + isinstance(self.controlnet, ControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, ControlNetModel) + ): + + assert len(control_images) == video_length + # for image in control_images: + # self.check_image(image, prompt, prompt_embeds) + elif ( + isinstance(self.controlnet, MultiControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, MultiControlNetModel) + ): + ... + # todo + # + # if not isinstance(image, list): + # raise TypeError("For multiple controlnets: `image` must be type `list`") + # + # # When `image` is a nested list: + # # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]]) + # elif any(isinstance(i, list) for i in image): + # raise ValueError("A single batch of multiple conditionings are supported at the moment.") + # elif len(image) != len(self.controlnet.nets): + # raise ValueError( + # f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets." + # ) + # + # for image_ in image: + # self.check_image(image_, prompt, prompt_embeds) + else: + assert False + + # Check `controlnet_conditioning_scale` + if ( + isinstance(self.controlnet, ControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, ControlNetModel) + ): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") + elif ( + isinstance(self.controlnet, MultiControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, MultiControlNetModel) + ): + if isinstance(controlnet_conditioning_scale, list): + if any(isinstance(i, list) for i in controlnet_conditioning_scale): + raise ValueError("A single batch of multiple conditionings are supported at the moment.") + elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( + self.controlnet.nets + ): + raise ValueError( + "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" + " the same length as the number of controlnets" + ) + else: + assert False + + if not isinstance(control_guidance_start, (tuple, list)): + control_guidance_start = [control_guidance_start] + + if not isinstance(control_guidance_end, (tuple, list)): + control_guidance_end = [control_guidance_end] + + if len(control_guidance_start) != len(control_guidance_end): + raise ValueError( + f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." + ) + + if isinstance(self.controlnet, MultiControlNetModel): + if len(control_guidance_start) != len(self.controlnet.nets): + raise ValueError( + f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." + ) + + for start, end in zip(control_guidance_start, control_guidance_end): + if start >= end: + raise ValueError( + f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." + ) + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + + # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + + if ( + not image_is_pil + and not image_is_tensor + and not image_is_np + and not image_is_pil_list + and not image_is_tensor_list + and not image_is_np_list + ): + raise TypeError( + f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" + ) + + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError( + f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" + ) + + # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image + def prepare_images( + self, + images, + width, + height, + batch_size, + num_images_per_prompt, + device, + dtype, + do_classifier_free_guidance=False, + guess_mode=False, + ): + images_pre_processed = [self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) for image in images] + + images_pre_processed = torch.cat(images_pre_processed, dim=0) + + repeat_factor = [1] * len(images_pre_processed.shape) + repeat_factor[0] = batch_size * num_images_per_prompt + images_pre_processed = images_pre_processed.repeat(*repeat_factor) + + images = images_pre_processed.unsqueeze(0) + + # image_batch_size = image.shape[0] + # + # if image_batch_size == 1: + # repeat_by = batch_size + # else: + # # image batch size is the same as prompt batch size + # repeat_by = num_images_per_prompt + + #image = image.repeat_interleave(repeat_by, dim=0) + + images = images.to(device=device, dtype=dtype) + + if do_classifier_free_guidance and not guess_mode: + repeat_factor = [1] * len(images.shape) + repeat_factor[0] = 2 + images = images.repeat(*repeat_factor) + + return images + + # def prepare_images(self, + # images: list, + # width, + # height, + # batch_size, + # num_images_per_prompt, + # device, + # dtype, + # do_classifier_free_guidance=False, + # guess_mode=False): + # + # images = [self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) for image in images] + # + # image_batch_size = image.shape[0] + # + # if image_batch_size == 1: + # repeat_by = batch_size + # else: + # # image batch size is the same as prompt batch size + # repeat_by = num_images_per_prompt + # + # image = image.repeat_interleave(repeat_by, dim=0) + # + # image = image.to(device=device, dtype=dtype) + # + # if do_classifier_free_guidance and not guess_mode: + # image = torch.cat([image] * 2) + # + # return image + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents + def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None): + #shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) + shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + + # scale the initial noise by the standard deviation required by the scheduler + latents = latents * self.scheduler.init_noise_sigma + return latents + + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + + passed_add_embed_dim = ( + self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim + ) + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError( + f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." + ) + + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance( + self.vae.decoder.mid_block.attentions[0].processor, + ( + AttnProcessor2_0, + XFormersAttnProcessor, + LoRAXFormersAttnProcessor, + LoRAAttnProcessor2_0, + ), + ) + # if xformers or torch_2_0 is used attention block does not need + # to be in float32 which can save lots of memory + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Union[str, List[str]] = None, + prompt_2: Optional[Union[str, List[str]]] = None, + video_length: Optional[int] = 8, + control_images: List[PIL.Image.Image] = None, + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 50, + guidance_scale: float = 5.0, + negative_prompt: Optional[Union[str, List[str]]] = None, + negative_prompt_2: Optional[Union[str, List[str]]] = None, + num_images_per_prompt: Optional[int] = 1, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, + callback_steps: int = 1, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + guidance_rescale: float = 0.0, + controlnet_conditioning_scale: Union[float, List[float]] = 1.0, + guess_mode: bool = False, + control_guidance_start: Union[float, List[float]] = 0.0, + control_guidance_end: Union[float, List[float]] = 1.0, + original_size: Tuple[int, int] = None, + crops_coords_top_left: Tuple[int, int] = (0, 0), + target_size: Tuple[int, int] = None, + negative_original_size: Optional[Tuple[int, int]] = None, + negative_crops_coords_top_left: Tuple[int, int] = (0, 0), + negative_target_size: Optional[Tuple[int, int]] = None, + ): + r""" + The call function to the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + used in both text-encoders. + image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: + `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): + The ControlNet input condition to provide guidance to the `unet` for generation. If the type is + specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be + accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height + and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in + `init`, images must be passed as a list such that each element of the list can be correctly batched for + input to a single ControlNet. + height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The width in pixels of the generated image. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + guidance_scale (`float`, *optional*, defaults to 5.0): + A higher guidance scale value encourages the model to generate images closely linked to the text + `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide what to not include in image generation. If not defined, you need to + pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). + negative_prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2` + and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders. + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (ฮท) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies + to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make + generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor is generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not + provided, text embeddings are generated from the `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If + not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If + not provided, pooled text embeddings are generated from `prompt` input argument. + negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt + weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input + argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generated image. Choose between `PIL.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a + plain tuple. + callback (`Callable`, *optional*): + A function that calls every `callback_steps` steps during inference. The function is called with the + following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. + callback_steps (`int`, *optional*, defaults to 1): + The frequency at which the `callback` function is called. If not specified, the callback is called at + every step. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in + [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): + The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added + to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set + the corresponding scale as a list. + guess_mode (`bool`, *optional*, defaults to `False`): + The ControlNet encoder tries to recognize the content of the input image even if you remove all + prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. + control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): + The percentage of total steps at which the ControlNet starts applying. + control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): + The percentage of total steps at which the ControlNet stops applying. + original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. + `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as + explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): + `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position + `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting + `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + For most cases, `target_size` should be set to the desired height and width of the generated image. If + not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in + section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + To negatively condition the generation process based on a specific image resolution. Part of SDXL's + micro-conditioning as explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more + information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. + negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): + To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's + micro-conditioning as explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more + information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. + negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + To negatively condition the generation process based on a target image resolution. It should be as same + as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more + information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. + + Examples: + + Returns: + [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: + If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, + otherwise a `tuple` is returned containing the output images. + """ + + + if video_length > 1 and num_images_per_prompt > 1: + print(f"Warning - setting num_images_per_prompt = 1 because video_length = {video_length}") + num_images_per_prompt = 1 + + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + + # align format for control guidance + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): + mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 + control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [ + control_guidance_end + ] + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + prompt_2, + control_images, + video_length, + callback_steps, + negative_prompt, + negative_prompt_2, + prompt_embeds, + negative_prompt_embeds, + pooled_prompt_embeds, + negative_pooled_prompt_embeds, + controlnet_conditioning_scale, + control_guidance_start, + control_guidance_end, + ) + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + do_classifier_free_guidance = guidance_scale > 1.0 + + if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): + controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) + + global_pool_conditions = ( + controlnet.config.global_pool_conditions + if isinstance(controlnet, ControlNetModel) + else controlnet.nets[0].config.global_pool_conditions + ) + guess_mode = guess_mode or global_pool_conditions + + # 3. Encode input prompt + text_encoder_lora_scale = ( + cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None + ) + ( + prompt_embeds, + negative_prompt_embeds, + pooled_prompt_embeds, + negative_pooled_prompt_embeds, + ) = self.encode_prompt( + prompt, + prompt_2, + device, + num_images_per_prompt, + do_classifier_free_guidance, + negative_prompt, + negative_prompt_2, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, + lora_scale=text_encoder_lora_scale, + ) + + + # 4. Prepare image + if isinstance(controlnet, ControlNetModel): + + assert len(control_images) == video_length * batch_size + + images = self.prepare_images( + images=control_images, + width=width, + height=height, + batch_size=batch_size * num_images_per_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + dtype=controlnet.dtype, + do_classifier_free_guidance=do_classifier_free_guidance, + guess_mode=guess_mode, + ) + + height, width = images.shape[-2:] + elif isinstance(controlnet, MultiControlNetModel): + + raise Exception("not supported yet") + + # images = [] + # + # for image_ in control_images: + # image_ = self.prepare_image( + # image=image_, + # width=width, + # height=height, + # batch_size=batch_size * num_images_per_prompt, + # num_images_per_prompt=num_images_per_prompt, + # device=device, + # dtype=controlnet.dtype, + # do_classifier_free_guidance=do_classifier_free_guidance, + # guess_mode=guess_mode, + # ) + # + # images.append(image_) + # + # image = images + # height, width = image[0].shape[-2:] + else: + assert False + + # 5. Prepare timesteps + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + + # 6. Prepare latent variables + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + video_length, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + + # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 7.1 Create tensor stating which controlnets to keep + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [ + 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) + for s, e in zip(control_guidance_start, control_guidance_end) + ] + controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) + + # 7.2 Prepare added time ids & embeddings + # if isinstance(image, list): + # original_size = original_size or image[0].shape[-2:] + # else: + original_size = original_size or images.shape[-2:] + target_size = target_size or (height, width) + + add_text_embeds = pooled_prompt_embeds + add_time_ids = self._get_add_time_ids( + original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype + ) + + if negative_original_size is not None and negative_target_size is not None: + negative_add_time_ids = self._get_add_time_ids( + negative_original_size, + negative_crops_coords_top_left, + negative_target_size, + dtype=prompt_embeds.dtype, + ) + else: + negative_add_time_ids = add_time_ids + + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) + + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) + + # 8. Denoising loop + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + + images = rearrange(images, "b f c h w -> (b f) c h w") + + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} + + # controlnet(s) inference + if guess_mode and do_classifier_free_guidance: + # Infer ControlNet only for the conditional batch. + control_model_input = latents + control_model_input = self.scheduler.scale_model_input(control_model_input, t) + controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] + controlnet_added_cond_kwargs = { + "text_embeds": add_text_embeds.chunk(2)[1], + "time_ids": add_time_ids.chunk(2)[1], + } + else: + control_model_input = latent_model_input + controlnet_prompt_embeds = prompt_embeds + controlnet_added_cond_kwargs = added_cond_kwargs + + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + + + # this will be non interlaced when arranged! + control_model_input = rearrange(control_model_input, "b c f h w -> (b f) c h w") + # if we chunked this by 2 - the top 8 frames will be positive for cfg + # the bottom half will be negative for cfg... + + if video_length > 1: + # use repeat_interleave as we need to match the rearrangement above. + + controlnet_prompt_embeds = controlnet_prompt_embeds.repeat_interleave(video_length, dim=0) + controlnet_added_cond_kwargs = { + "text_embeds": controlnet_added_cond_kwargs['text_embeds'].repeat_interleave(video_length, dim=0), + "time_ids": controlnet_added_cond_kwargs['time_ids'].repeat_interleave(video_length, dim=0) + } + + # if type(image) is list: + # image = torch.cat(image, dim=0) + + # todo - check if video_length > 1 this needs to produce num_frames * batch_size samples... + down_block_res_samples, mid_block_res_sample = self.controlnet( + control_model_input, + t, + encoder_hidden_states=controlnet_prompt_embeds, + controlnet_cond=images, + conditioning_scale=cond_scale, + guess_mode=guess_mode, + added_cond_kwargs=controlnet_added_cond_kwargs, + return_dict=False, + ) + + for j, sample in enumerate(down_block_res_samples): + down_block_res_samples[j] = rearrange(sample, "(b f) c h w -> b c f h w", f=video_length) + + mid_block_res_sample = rearrange(mid_block_res_sample, "(b f) c h w -> b c f h w", f=video_length) + + if guess_mode and do_classifier_free_guidance: + # Infered ControlNet only for the conditional batch. + # To apply the output of ControlNet to both the unconditional and conditional batches, + # add 0 to the unconditional batch to keep it unchanged. + down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] + mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) + + # predict the noise residual + noise_pred = self.unet( + latent_model_input, + t, + encoder_hidden_states=prompt_embeds, + cross_attention_kwargs=cross_attention_kwargs, + down_block_additional_residuals=down_block_res_samples, + mid_block_additional_residual=mid_block_res_sample, + added_cond_kwargs=added_cond_kwargs, + return_dict=False, + enable_temporal_attentions=video_length > 1 + )[0] + + # perform guidance + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + + if do_classifier_free_guidance and guidance_rescale > 0.0: + # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) + + # compute the previous noisy sample x_t -> x_t-1 + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + callback(i, t, latents) + + # make sure the VAE is in float32 mode, as it overflows in float16 + if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + + # If we do sequential model offloading, let's offload unet and controlnet + # manually for max memory savings + if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: + self.unet.to("cpu") + self.controlnet.to("cpu") + torch.cuda.empty_cache() + + # if not output_type == "latent": + # # make sure the VAE is in float32 mode, as it overflows in float16 + # needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + # + # if needs_upcasting: + # self.upcast_vae() + # latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + # + # image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + # + # # cast back to fp16 if needed + # if needs_upcasting: + # self.vae.to(dtype=torch.float16) + # else: + # image = latents + # return StableDiffusionXLPipelineOutput(images=image) + + video = self.decode_latents(latents) + + # Convert to tensor + if output_type == "tensor": + video = torch.from_numpy(video) + + if not return_dict: + return video + + return HotshotPipelineXLOutput(videos=video) + + def decode_latents(self, latents): + video_length = latents.shape[2] + latents = 1 / self.vae.config.scaling_factor * latents + latents = rearrange(latents, "b c f h w -> (b f) c h w") + # video = self.vae.decode(latents).sample + video = [] + for frame_idx in tqdm(range(latents.shape[0])): + video.append(self.vae.decode( + latents[frame_idx:frame_idx+1]).sample) + video = torch.cat(video) + video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) + video = (video / 2.0 + 0.5).clamp(0, 1) + # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 + video = video.cpu().float().numpy() + return video + + # Overrride to properly handle the loading and unloading of the additional text encoder. + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.load_lora_weights + def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): + # We could have accessed the unet config from `lora_state_dict()` too. We pass + # it here explicitly to be able to tell that it's coming from an SDXL + # pipeline. + state_dict, network_alphas = self.lora_state_dict( + pretrained_model_name_or_path_or_dict, + unet_config=self.unet.config, + **kwargs, + ) + self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet) + + text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} + if len(text_encoder_state_dict) > 0: + self.load_lora_into_text_encoder( + text_encoder_state_dict, + network_alphas=network_alphas, + text_encoder=self.text_encoder, + prefix="text_encoder", + lora_scale=self.lora_scale, + ) + + text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} + if len(text_encoder_2_state_dict) > 0: + self.load_lora_into_text_encoder( + text_encoder_2_state_dict, + network_alphas=network_alphas, + text_encoder=self.text_encoder_2, + prefix="text_encoder_2", + lora_scale=self.lora_scale, + ) + + @classmethod + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.save_lora_weights + def save_lora_weights( + self, + save_directory: Union[str, os.PathLike], + unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, + text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, + text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, + is_main_process: bool = True, + weight_name: str = None, + save_function: Callable = None, + safe_serialization: bool = True, + ): + state_dict = {} + + def pack_weights(layers, prefix): + layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers + layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()} + return layers_state_dict + + state_dict.update(pack_weights(unet_lora_layers, "unet")) + + if text_encoder_lora_layers and text_encoder_2_lora_layers: + state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder")) + state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) + + self.write_lora_layers( + state_dict=state_dict, + save_directory=save_directory, + is_main_process=is_main_process, + weight_name=weight_name, + save_function=save_function, + safe_serialization=safe_serialization, + ) + + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._remove_text_encoder_monkey_patch + def _remove_text_encoder_monkey_patch(self): + self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder) + self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2) diff --git a/Hotshot-XL/hotshot_xl/pipelines/hotshot_xl_pipeline.py b/Hotshot-XL/hotshot_xl/pipelines/hotshot_xl_pipeline.py new file mode 100644 index 0000000000000000000000000000000000000000..1c3b41da67eacee21c8cb192de343e47d5fe30d0 --- /dev/null +++ b/Hotshot-XL/hotshot_xl/pipelines/hotshot_xl_pipeline.py @@ -0,0 +1,975 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Modifications: +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# - Adapted the SDXL Pipeline to work temporally + + +import os +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union + +import torch +from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer +from hotshot_xl import HotshotPipelineXLOutput + +from diffusers.image_processor import VaeImageProcessor +from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin +from diffusers.models import AutoencoderKL +from hotshot_xl.models.unet import UNet3DConditionModel +from diffusers.models.attention_processor import ( + AttnProcessor2_0, + LoRAAttnProcessor2_0, + LoRAXFormersAttnProcessor, + XFormersAttnProcessor, +) +from diffusers.schedulers import KarrasDiffusionSchedulers +from diffusers.utils import ( + is_accelerate_available, + is_accelerate_version, + logging, + replace_example_docstring, +) +from diffusers.utils.torch_utils import randn_tensor +from diffusers.pipelines.pipeline_utils import DiffusionPipeline +from tqdm import tqdm +from einops import repeat, rearrange +from diffusers.utils import deprecate, logging + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> import torch + >>> from hotshot_xl import HotshotPipelineXL + + >>> pipe = HotshotXLPipeline.from_pretrained( + ... "hotshotco/Hotshot-XL" + ... ) + >>> pipe = pipe.to("cuda") + + >>> prompt = "a photo of an astronaut riding a horse on mars" + >>> video = pipe(prompt, + ... width=672, height=384, + ... original_size=(1920, 1080), + ... target_size=(512, 512), + ... output_type="tensor" + ).video + ``` +""" + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + """ + Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and + Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 + """ + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + # rescale the results from guidance (fixes overexposure) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + + + + +class HotshotXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin): + r""" + Pipeline for text-to-image generation using Stable Diffusion XL. + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the + library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) + + In addition the pipeline inherits the following loading methods: + - *LoRA*: [`HotshotPipelineXL.load_lora_weights`] + - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`] + + as well as the following saving methods: + - *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`] + + Args: + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. + text_encoder ([`CLIPTextModel`]): + Frozen text-encoder. Stable Diffusion XL uses the text portion of + [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically + the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. + text_encoder_2 ([` CLIPTextModelWithProjection`]): + Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of + [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), + specifically the + [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) + variant. + tokenizer (`CLIPTokenizer`): + Tokenizer of class + [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). + tokenizer_2 (`CLIPTokenizer`): + Second Tokenizer of class + [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). + unet ([`UNet3DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of + [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. + """ + + def __init__( + self, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + text_encoder_2: CLIPTextModelWithProjection, + tokenizer: CLIPTokenizer, + tokenizer_2: CLIPTokenizer, + unet: UNet3DConditionModel, + scheduler: KarrasDiffusionSchedulers, + force_zeros_for_empty_prompt: bool = True, + add_watermarker: Optional[bool] = None, + ): + super().__init__() + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + text_encoder_2=text_encoder_2, + tokenizer=tokenizer, + tokenizer_2=tokenizer_2, + unet=unet, + scheduler=scheduler, + ) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.default_sample_size = self.unet.config.sample_size + self.watermark = None + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing + def enable_vae_slicing(self): + r""" + Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to + compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. + """ + self.vae.enable_slicing() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing + def disable_vae_slicing(self): + r""" + Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_slicing() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling + def enable_vae_tiling(self): + r""" + Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to + compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow + processing larger images. + """ + self.vae.enable_tiling() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling + def disable_vae_tiling(self): + r""" + Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_tiling() + + def enable_model_cpu_offload(self, gpu_id=0): + r""" + Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared + to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` + method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with + `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. + """ + if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): + from accelerate import cpu_offload_with_hook + else: + raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") + + device = torch.device(f"cuda:{gpu_id}") + + if self.device.type != "cpu": + self.to("cpu", silence_dtype_warnings=True) + torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) + + model_sequence = ( + [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + ) + model_sequence.extend([self.unet, self.vae]) + + hook = None + for cpu_offloaded_model in model_sequence: + _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) + + # We'll offload the last model manually. + self.final_offload_hook = hook + + def encode_prompt( + self, + prompt: str, + prompt_2: Optional[str] = None, + device: Optional[torch.device] = None, + num_images_per_prompt: int = 1, + do_classifier_free_guidance: bool = True, + negative_prompt: Optional[str] = None, + negative_prompt_2: Optional[str] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + lora_scale: Optional[float] = None, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + used in both text-encoders + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + do_classifier_free_guidance (`bool`): + whether to use classifier free guidance or not + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + negative_prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and + `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + If not provided, pooled text embeddings will be generated from `prompt` input argument. + negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` + input argument. + lora_scale (`float`, *optional*): + A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + """ + device = device or self._execution_device + + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, LoraLoaderMixin): + self._lora_scale = lora_scale + + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + # Define tokenizers and text encoders + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = ( + [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + ) + + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + # textual inversion: procecss multi-vector tokens if necessary + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + + text_inputs = tokenizer( + prompt, + padding="max_length", + max_length=tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( + text_input_ids, untruncated_ids + ): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {tokenizer.model_max_length} tokens: {removed_text}" + ) + + prompt_embeds = text_encoder( + text_input_ids.to(device), + output_hidden_states=True, + ) + + # We are only ALWAYS interested in the pooled output of the final text encoder + pooled_prompt_embeds = prompt_embeds[0] + prompt_embeds = prompt_embeds.hidden_states[-2] + + prompt_embeds_list.append(prompt_embeds) + + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + + # get unconditional embeddings for classifier free guidance + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or "" + negative_prompt_2 = negative_prompt_2 or negative_prompt + + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt, negative_prompt_2] + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + + negative_prompt_embeds_list = [] + for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer( + negative_prompt, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + + negative_prompt_embeds = text_encoder( + uncond_input.input_ids.to(device), + output_hidden_states=True, + ) + # We are only ALWAYS interested in the pooled output of the final text encoder + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + + negative_prompt_embeds_list.append(negative_prompt_embeds) + + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + + if do_classifier_free_guidance: + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( + bs_embed * num_images_per_prompt, -1 + ) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( + bs_embed * num_images_per_prompt, -1 + ) + + return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (ฮท) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to ฮท in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + def check_inputs( + self, + prompt, + prompt_2, + height, + width, + callback_steps, + negative_prompt=None, + negative_prompt_2=None, + prompt_embeds=None, + negative_prompt_embeds=None, + pooled_prompt_embeds=None, + negative_pooled_prompt_embeds=None, + ): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") + + if (callback_steps is None) or ( + callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) + ): + raise ValueError( + f"`callback_steps` has to be a positive integer but is {callback_steps} of type" + f" {type(callback_steps)}." + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): + raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError( + "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." + ) + + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError( + "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." + ) + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents + def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + + # scale the initial noise by the standard deviation required by the scheduler + latents = latents * self.scheduler.init_noise_sigma + return latents + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + + passed_add_embed_dim = ( + self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim + ) + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError( + f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." + ) + + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance( + self.vae.decoder.mid_block.attentions[0].processor, + ( + AttnProcessor2_0, + XFormersAttnProcessor, + LoRAXFormersAttnProcessor, + LoRAAttnProcessor2_0, + ), + ) + # if xformers or torch_2_0 is used attention block does not need + # to be in float32 which can save lots of memory + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Union[str, List[str]] = None, + prompt_2: Optional[Union[str, List[str]]] = None, + video_length: Optional[int] = 8, + num_images_per_prompt: Optional[int] = 1, + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 50, + denoising_end: Optional[float] = None, + guidance_scale: float = 5.0, + negative_prompt: Optional[Union[str, List[str]]] = None, + negative_prompt_2: Optional[Union[str, List[str]]] = None, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, + callback_steps: int = 1, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + guidance_rescale: float = 0.0, + original_size: Optional[Tuple[int, int]] = None, + crops_coords_top_left: Tuple[int, int] = (0, 0), + target_size: Optional[Tuple[int, int]] = None, + ): + r""" + Function invoked when calling the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. + instead. + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + used in both text-encoders + height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The width in pixels of the generated image. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + denoising_end (`float`, *optional*): + When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be + completed before it is intentionally prematurely terminated. As a result, the returned sample will + still retain a substantial amount of noise as determined by the discrete timesteps selected by the + scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a + "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image + Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) + guidance_scale (`float`, *optional*, defaults to 5.0): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). + `guidance_scale` is defined as `w` of equation 2. of [Imagen + Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > + 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, + usually at the expense of lower image quality. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + negative_prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and + `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (ฮท) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to + [`schedulers.DDIMScheduler`], will be ignored for others. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) + to make generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor will ge generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + If not provided, pooled text embeddings will be generated from `prompt` input argument. + negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` + input argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generate image. Choose between + [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead + of a plain tuple. + callback (`Callable`, *optional*): + A function that will be called every `callback_steps` steps during inference. The function will be + called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. + callback_steps (`int`, *optional*, defaults to 1): + The frequency at which the `callback` function will be called. If not specified, the callback will be + called at every step. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + guidance_rescale (`float`, *optional*, defaults to 0.7): + Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are + Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `ฯ†` in equation 16. of + [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). + Guidance rescale factor should fix overexposure when using zero terminal SNR. + original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. + `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as + explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): + `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position + `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting + `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + For most cases, `target_size` should be set to the desired height and width of the generated image. If + not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in + section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + + Examples: + + Returns: + [`~hotshot_xl.HotshotPipelineXLOutput`] or `tuple`: + [`~hotshot_xl.HotshotPipelineXLOutput`] if `return_dict` is True, otherwise a + `tuple`. When returning a tuple, the first element is a list with the generated images. + """ + + if video_length > 1: + print(f"Warning - setting num_images_per_prompt = 1 because video_length = {video_length}") + num_images_per_prompt = 1 + + # 0. Default height and width to unet + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + + original_size = original_size or (height, width) + target_size = target_size or (height, width) + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + prompt_2, + height, + width, + callback_steps, + negative_prompt, + negative_prompt_2, + prompt_embeds, + negative_prompt_embeds, + pooled_prompt_embeds, + negative_pooled_prompt_embeds, + ) + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + do_classifier_free_guidance = guidance_scale > 1.0 + + # 3. Encode input prompt + text_encoder_lora_scale = ( + cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None + ) + ( + prompt_embeds, + negative_prompt_embeds, + pooled_prompt_embeds, + negative_pooled_prompt_embeds, + ) = self.encode_prompt( + prompt=prompt, + prompt_2=prompt_2, + device=device, + num_images_per_prompt=num_images_per_prompt, + do_classifier_free_guidance=do_classifier_free_guidance, + negative_prompt=negative_prompt, + negative_prompt_2=negative_prompt_2, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, + lora_scale=text_encoder_lora_scale, + ) + + # 4. Prepare timesteps + self.scheduler.set_timesteps(num_inference_steps, device=device) + + timesteps = self.scheduler.timesteps + + # 5. Prepare latent variables + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + video_length, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + + # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 7. Prepare added time ids & embeddings + add_text_embeds = pooled_prompt_embeds + add_time_ids = self._get_add_time_ids( + original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype + ) + + # todo - negative_original_size from latest diffusers for cfg + + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) + + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) + + # 8. Denoising loop + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + + # 7.1 Apply denoising_end + if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1: + discrete_timestep_cutoff = int( + round( + self.scheduler.config.num_train_timesteps + - (denoising_end * self.scheduler.config.num_train_timesteps) + ) + ) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + # predict the noise residual + added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} + noise_pred = self.unet( + latent_model_input, + t, + encoder_hidden_states=prompt_embeds, + cross_attention_kwargs=cross_attention_kwargs, + added_cond_kwargs=added_cond_kwargs, + return_dict=False, + enable_temporal_attentions= video_length > 1 + )[0] + + # perform guidance + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + + if do_classifier_free_guidance and guidance_rescale > 0.0: + # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) + + # compute the previous noisy sample x_t -> x_t-1 + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + callback(i, t, latents) + + # make sure the VAE is in float32 mode, as it overflows in float16 + if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + + # if not output_type == "latent": + # image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + # else: + # image = latents + # return StableDiffusionXLPipelineOutput(images=image) + + # apply watermark if available + # if self.watermark is not None: + # image = self.watermark.apply_watermark(image) + + #image = self.image_processor.postprocess(image, output_type=output_type) + + video = self.decode_latents(latents) + + # Convert to tensor + if output_type == "tensor": + video = torch.from_numpy(video) + + if not return_dict: + return video + + return HotshotPipelineXLOutput(videos=video) + + # + # # Offload last model to CPU + # if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: + # self.final_offload_hook.offload() + # + # if not return_dict: + # return (image,) + # + # return StableDiffusionXLPipelineOutput(images=image) + + # Overrride to properly handle the loading and unloading of the additional text encoder. + def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): + # We could have accessed the unet config from `lora_state_dict()` too. We pass + # it here explicitly to be able to tell that it's coming from an SDXL + # pipeline. + state_dict, network_alphas = self.lora_state_dict( + pretrained_model_name_or_path_or_dict, + unet_config=self.unet.config, + **kwargs, + ) + self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet) + + text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} + if len(text_encoder_state_dict) > 0: + self.load_lora_into_text_encoder( + text_encoder_state_dict, + network_alphas=network_alphas, + text_encoder=self.text_encoder, + prefix="text_encoder", + lora_scale=self.lora_scale, + ) + + text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} + if len(text_encoder_2_state_dict) > 0: + self.load_lora_into_text_encoder( + text_encoder_2_state_dict, + network_alphas=network_alphas, + text_encoder=self.text_encoder_2, + prefix="text_encoder_2", + lora_scale=self.lora_scale, + ) + + @classmethod + def save_lora_weights( + self, + save_directory: Union[str, os.PathLike], + unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, + text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, + text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, + is_main_process: bool = True, + weight_name: str = None, + save_function: Callable = None, + safe_serialization: bool = False, + ): + state_dict = {} + + def pack_weights(layers, prefix): + layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers + layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()} + return layers_state_dict + + state_dict.update(pack_weights(unet_lora_layers, "unet")) + + if text_encoder_lora_layers and text_encoder_2_lora_layers: + state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder")) + state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) + + self.write_lora_layers( + state_dict=state_dict, + save_directory=save_directory, + is_main_process=is_main_process, + weight_name=weight_name, + save_function=save_function, + safe_serialization=safe_serialization, + ) + + def decode_latents(self, latents): + video_length = latents.shape[2] + latents = 1 / self.vae.config.scaling_factor * latents + latents = rearrange(latents, "b c f h w -> (b f) c h w") + # video = self.vae.decode(latents).sample + video = [] + for frame_idx in tqdm(range(latents.shape[0])): + video.append(self.vae.decode( + latents[frame_idx:frame_idx+1]).sample) + video = torch.cat(video) + video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) + video = (video / 2.0 + 0.5).clamp(0, 1) + # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 + video = video.cpu().float().numpy() + return video + + def _remove_text_encoder_monkey_patch(self): + self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder) + self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2) diff --git a/Hotshot-XL/hotshot_xl/utils.py b/Hotshot-XL/hotshot_xl/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..b7660c2a756ecae141333a7081ea358549db6ba6 --- /dev/null +++ b/Hotshot-XL/hotshot_xl/utils.py @@ -0,0 +1,213 @@ +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import List, Union +from io import BytesIO +import PIL +from PIL import ImageSequence, Image +import requests +import os + +def get_image(img_path) -> PIL.Image.Image: + if img_path.startswith("http"): + return PIL.Image.open(requests.get(img_path, stream=True).raw) + if os.path.exists(img_path): + return Image.open(img_path) + raise Exception("File not found") + +def images_to_gif_bytes(images: List, duration: int = 1000) -> bytes: + with BytesIO() as output_buffer: + # Save the first image + images[0].save(output_buffer, + format='GIF', + save_all=True, + append_images=images[1:], + duration=duration, + loop=0) # 0 means the GIF will loop indefinitely + + # Get the byte array from the buffer + gif_bytes = output_buffer.getvalue() + + return gif_bytes + + +def save_as_gif(images: List, file_path: str, duration: int = 1000): + with open(file_path, "wb") as f: + f.write(images_to_gif_bytes(images, duration)) + +def scale_aspect_fill(img, new_width, new_height): + new_width = int(new_width) + new_height = int(new_height) + + original_width, original_height = img.size + ratio_w = float(new_width) / original_width + ratio_h = float(new_height) / original_height + + if ratio_w > ratio_h: + # It must be fixed by width + resize_width = new_width + resize_height = round(original_height * ratio_w) + else: + # Fixed by height + resize_width = round(original_width * ratio_h) + resize_height = new_height + + img_resized = img.resize((resize_width, resize_height), Image.LANCZOS) + + # Calculate cropping boundaries and do crop + left = (resize_width - new_width) / 2 + top = (resize_height - new_height) / 2 + right = (resize_width + new_width) / 2 + bottom = (resize_height + new_height) / 2 + + img_cropped = img_resized.crop((left, top, right, bottom)) + + return img_cropped + +def extract_gif_frames_from_midpoint(image: Union[str, PIL.Image.Image], fps: int=8, target_duration: int=1000) -> list: + # Load the GIF + image = get_image(image) if type(image) is str else image + + frames = [] + + estimated_frame_time = None + + # some gifs contain the duration - others don't + # so if there is a duration we will grab it otherwise we will fall back + + for frame in ImageSequence.Iterator(image): + + frames.append(frame.copy()) + if 'duration' in frame.info: + frame_info_duration = frame.info['duration'] + if frame_info_duration > 0: + estimated_frame_time = frame_info_duration + + if estimated_frame_time is None: + if len(frames) <= 16: + # assume it's 8fps + estimated_frame_time = 1000 // 8 + else: + # assume it's 15 fps + estimated_frame_time = 70 + + if len(frames) < fps: + raise ValueError(f"fps of {fps} is too small for this gif as it only has {len(frames)} frames.") + + skip = len(frames) // fps + upper_bound_index = len(frames) - 1 + + best_indices = [x for x in range(0, len(frames), skip)][:fps] + offset = int(upper_bound_index - best_indices[-1]) // 2 + best_indices = [x + offset for x in best_indices] + best_duration = (best_indices[-1] - best_indices[0]) * estimated_frame_time + + while True: + + skip -= 1 + + if skip == 0: + break + + indices = [x for x in range(0, len(frames), skip)][:fps] + + # center the indices, so we sample the middle of the gif... + offset = int(upper_bound_index - indices[-1]) // 2 + if offset == 0: + # can't shift + break + indices = [x + offset for x in indices] + + # is the new duration closer to the target than last guess? + duration = (indices[-1] - indices[0]) * estimated_frame_time + if abs(duration - target_duration) > abs(best_duration - target_duration): + break + + best_indices = indices + best_duration = duration + + return [frames[index] for index in best_indices] + +def get_crop_coordinates(old_size: tuple, new_size: tuple) -> tuple: + """ + Calculate the crop coordinates after scaling an image to fit a new size. + + :param old_size: tuple of the form (width, height) representing the original size of the image. + :param new_size: tuple of the form (width, height) representing the desired size after scaling. + :return: tuple of the form (left, upper, right, lower) representing the normalized crop coordinates. + """ + # Check if the input tuples have the right form (width, height) + if not (isinstance(old_size, tuple) and isinstance(new_size, tuple) and + len(old_size) == 2 and len(new_size) == 2): + raise ValueError("old_size and new_size should be tuples of the form (width, height)") + + # Extract the width and height from the old and new sizes + old_width, old_height = old_size + new_width, new_height = new_size + + # Calculate the ratios for width and height + ratio_w = float(new_width) / old_width + ratio_h = float(new_height) / old_height + + # Determine which dimension is fixed (width or height) + if ratio_w > ratio_h: + # It must be fixed by width + resize_width = new_width + resize_height = round(old_height * ratio_w) + else: + # Fixed by height + resize_width = round(old_width * ratio_h) + resize_height = new_height + + # Calculate cropping boundaries in the resized image space + left = (resize_width - new_width) / 2 + upper = (resize_height - new_height) / 2 + right = (resize_width + new_width) / 2 + lower = (resize_height + new_height) / 2 + + # Normalize the cropping coordinates + + # Return the normalized coordinates as a tuple + return (left, upper, right, lower) + +aspect_ratio_to_1024_map = { + "0.42": [640, 1536], + "0.57": [768, 1344], + "0.68": [832, 1216], + "1.00": [1024, 1024], + "1.46": [1216, 832], + "1.75": [1344, 768], + "2.40": [1536, 640] +} + +res_to_aspect_map = { + 1024: aspect_ratio_to_1024_map, + 512: {key: [value[0] // 2, value[1] // 2] for key, value in aspect_ratio_to_1024_map.items()}, +} + +def best_aspect_ratio(aspect_ratio: float, resolution: int): + + map = res_to_aspect_map[resolution] + + d = 99999999 + res = None + for key, value in map.items(): + ar = value[0] / value[1] + diff = abs(aspect_ratio - ar) + if diff < d: + d = diff + res = value + + ar = res[0] / res[1] + return f"{ar:.2f}", res \ No newline at end of file diff --git a/Hotshot-XL/inference.py b/Hotshot-XL/inference.py new file mode 100644 index 0000000000000000000000000000000000000000..5394321cd68466e8ef433d4afedb658c2dcccc85 --- /dev/null +++ b/Hotshot-XL/inference.py @@ -0,0 +1,223 @@ +# Copyright 2023 Natural Synthetics Inc. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import sys + +sys.path.append("/") +import os +import argparse +import torch +from hotshot_xl.pipelines.hotshot_xl_pipeline import HotshotXLPipeline +from hotshot_xl.pipelines.hotshot_xl_controlnet_pipeline import HotshotXLControlNetPipeline +from hotshot_xl.models.unet import UNet3DConditionModel +import torchvision.transforms as transforms +from einops import rearrange +from hotshot_xl.utils import save_as_gif, extract_gif_frames_from_midpoint, scale_aspect_fill +from torch import autocast +from diffusers import ControlNetModel +from contextlib import contextmanager +from diffusers.schedulers.scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler +from diffusers.schedulers.scheduling_euler_discrete import EulerDiscreteScheduler + +SCHEDULERS = { + 'EulerAncestralDiscreteScheduler': EulerAncestralDiscreteScheduler, + 'EulerDiscreteScheduler': EulerDiscreteScheduler, + 'default': None, + # add more here +} + + +def parse_args(): + parser = argparse.ArgumentParser(description="Hotshot-XL inference") + parser.add_argument("--pretrained_path", type=str, default="hotshotco/Hotshot-XL") + parser.add_argument("--xformers", action="store_true") + parser.add_argument("--spatial_unet_base", type=str) + parser.add_argument("--lora", type=str) + parser.add_argument("--output", type=str, required=True) + parser.add_argument("--steps", type=int, default=30) + parser.add_argument("--prompt", type=str, + default="a bulldog in the captains chair of a spaceship, hd, high quality") + parser.add_argument("--negative_prompt", type=str, default="blurry") + parser.add_argument("--seed", type=int, default=455) + parser.add_argument("--width", type=int, default=672) + parser.add_argument("--height", type=int, default=384) + parser.add_argument("--target_width", type=int, default=512) + parser.add_argument("--target_height", type=int, default=512) + parser.add_argument("--og_width", type=int, default=1920) + parser.add_argument("--og_height", type=int, default=1080) + parser.add_argument("--video_length", type=int, default=8) + parser.add_argument("--video_duration", type=int, default=1000) + parser.add_argument('--scheduler', type=str, default='EulerAncestralDiscreteScheduler', + help='Name of the scheduler to use') + + parser.add_argument("--control_type", type=str, default=None, choices=["depth", "canny"]) + parser.add_argument("--controlnet_conditioning_scale", type=float, default=0.7) + parser.add_argument("--control_guidance_start", type=float, default=0.0) + parser.add_argument("--control_guidance_end", type=float, default=1.0) + parser.add_argument("--gif", type=str, default=None) + parser.add_argument("--precision", type=str, default='f16', choices=[ + 'f16', 'f32', 'bf16' + ]) + parser.add_argument("--autocast", type=str, default=None, choices=[ + 'f16', 'bf16' + ]) + + return parser.parse_args() + + +to_pil = transforms.ToPILImage() + + +def to_pil_images(video_frames: torch.Tensor, output_type='pil'): + video_frames = rearrange(video_frames, "b c f w h -> b f c w h") + bsz = video_frames.shape[0] + images = [] + for i in range(bsz): + video = video_frames[i] + for j in range(video.shape[0]): + if output_type == "pil": + images.append(to_pil(video[j])) + else: + images.append(video[j]) + return images + +@contextmanager +def maybe_auto_cast(data_type): + if data_type: + with autocast("cuda", dtype=data_type): + yield + else: + yield + + +def main(): + args = parse_args() + + if args.control_type and not args.gif: + raise ValueError("Controlnet specified but you didn't specify a gif!") + + if args.gif and not args.control_type: + print("warning: gif was specified but no control type was specified. gif will be ignored.") + + output_dir = os.path.dirname(args.output) + if output_dir: + os.makedirs(output_dir, exist_ok=True) + + device = torch.device("cuda") + + control_net_model_pretrained_path = None + if args.control_type: + control_type_to_model_map = { + "canny": "diffusers/controlnet-canny-sdxl-1.0", + "depth": "diffusers/controlnet-depth-sdxl-1.0", + } + control_net_model_pretrained_path = control_type_to_model_map[args.control_type] + + data_type = torch.float32 + + if args.precision == 'f16': + data_type = torch.half + elif args.precision == 'f32': + data_type = torch.float32 + elif args.precision == 'bf16': + data_type = torch.bfloat16 + + pipe_line_args = { + "torch_dtype": data_type, + "use_safetensors": True + } + + PipelineClass = HotshotXLPipeline + + if control_net_model_pretrained_path: + PipelineClass = HotshotXLControlNetPipeline + pipe_line_args['controlnet'] = \ + ControlNetModel.from_pretrained(control_net_model_pretrained_path, torch_dtype=data_type) + + if args.spatial_unet_base: + + unet_3d = UNet3DConditionModel.from_pretrained(args.pretrained_path, subfolder="unet").to(device) + + unet = UNet3DConditionModel.from_pretrained_spatial(args.spatial_unet_base).to(device) + + temporal_layers = {} + unet_3d_sd = unet_3d.state_dict() + + for k, v in unet_3d_sd.items(): + if 'temporal' in k: + temporal_layers[k] = v + + unet.load_state_dict(temporal_layers, strict=False) + + pipe_line_args['unet'] = unet + + del unet_3d_sd + del unet_3d + del temporal_layers + + pipe = PipelineClass.from_pretrained(args.pretrained_path, **pipe_line_args).to(device) + + if args.lora: + pipe.load_lora_weights(args.lora) + + SchedulerClass = SCHEDULERS[args.scheduler] + if SchedulerClass is not None: + pipe.scheduler = SchedulerClass.from_config(pipe.scheduler.config) + + if args.xformers: + pipe.enable_xformers_memory_efficient_attention() + + generator = torch.Generator().manual_seed(args.seed) if args.seed else None + + autocast_type = None + if args.autocast == 'f16': + autocast_type = torch.half + elif args.autocast == 'bf16': + autocast_type = torch.bfloat16 + + kwargs = {} + + if args.gif and type(pipe) is HotshotXLControlNetPipeline: + kwargs['control_images'] = [ + scale_aspect_fill(img, args.width, args.height).convert("RGB") \ + for img in + extract_gif_frames_from_midpoint(args.gif, fps=args.video_length, target_duration=args.video_duration) + ] + kwargs['controlnet_conditioning_scale'] = args.controlnet_conditioning_scale + kwargs['control_guidance_start'] = args.control_guidance_start + kwargs['control_guidance_end'] = args.control_guidance_end + + with maybe_auto_cast(autocast_type): + + images = pipe(args.prompt, + negative_prompt=args.negative_prompt, + width=args.width, + height=args.height, + original_size=(args.og_width, args.og_height), + target_size=(args.target_width, args.target_height), + num_inference_steps=args.steps, + video_length=args.video_length, + generator=generator, + output_type="tensor", **kwargs).videos + + images = to_pil_images(images, output_type="pil") + + if args.video_length > 1: + save_as_gif(images, args.output, duration=args.video_duration // args.video_length) + else: + images[0].save(args.output, format='JPEG', quality=95) + + +if __name__ == "__main__": + main() diff --git a/Hotshot-XL/output.gif b/Hotshot-XL/output.gif new file mode 100644 index 0000000000000000000000000000000000000000..4714db5a6ca255fa131def1461c9a90561863260 --- /dev/null +++ b/Hotshot-XL/output.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cd22cd80f6cad88aa326846d6bf954f01044fce917229bdbc40e365493f3a161 +size 1606177 diff --git a/Hotshot-XL/requirements.txt b/Hotshot-XL/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..17c3d6faa34794c966483520aa46af2d0434150c --- /dev/null +++ b/Hotshot-XL/requirements.txt @@ -0,0 +1,62 @@ +accelerate==0.23.0 +appdirs==1.4.4 +certifi==2023.7.22 +charset-normalizer==3.3.0 +click==8.1.7 +cmake==3.27.6 +decorator==4.4.2 +diffusers==0.21.4 +docker-pycreds==0.4.0 +einops==0.7.0 +filelock==3.12.4 +fsspec==2023.9.2 +gitdb==4.0.10 +GitPython==3.1.37 +huggingface-hub==0.16.4 +idna==3.4 +imageio==2.31.5 +imageio-ffmpeg==0.4.9 +importlib-metadata==6.8.0 +Jinja2==3.1.2 +lit==17.0.2 +MarkupSafe==2.1.3 +moviepy==1.0.3 +mpmath==1.3.0 +networkx==3.1 +numpy==1.26.0 +nvidia-cublas-cu11==11.10.3.66 +nvidia-cuda-cupti-cu11==11.7.101 +nvidia-cuda-nvrtc-cu11==11.7.99 +nvidia-cuda-runtime-cu11==11.7.99 +nvidia-cudnn-cu11==8.5.0.96 +nvidia-cufft-cu11==10.9.0.58 +nvidia-curand-cu11==10.2.10.91 +nvidia-cusolver-cu11==11.4.0.1 +nvidia-cusparse-cu11==11.7.4.91 +nvidia-nccl-cu11==2.14.3 +nvidia-nvtx-cu11==11.7.91 +packaging==23.2 +pathtools==0.1.2 +Pillow==10.0.1 +proglog==0.1.10 +protobuf==4.24.3 +psutil==5.9.5 +PyYAML==6.0.1 +regex==2023.10.3 +requests==2.31.0 +safetensors==0.3.3 +sentry-sdk==1.31.0 +setproctitle==1.3.3 +six==1.16.0 +smmap==5.0.1 +sympy==1.12 +tokenizers==0.14.0 +torch==2.0.1 +torchvision==0.15.2 +tqdm==4.66.1 +transformers==4.34.0 +triton==2.0.0 +typing_extensions==4.8.0 +urllib3==2.0.6 +wandb==0.15.11 +zipp==3.17.0 diff --git a/Hotshot-XL/run.sh b/Hotshot-XL/run.sh new file mode 100644 index 0000000000000000000000000000000000000000..ae415b2bb41371edf8d5f0d63e0a2be501208069 --- /dev/null +++ b/Hotshot-XL/run.sh @@ -0,0 +1,2 @@ +python inference.py --prompt="village men and women in a hut" --output="2.gif" + diff --git a/Hotshot-XL/setup.py b/Hotshot-XL/setup.py new file mode 100644 index 0000000000000000000000000000000000000000..a1a7f0ca65d590e0ded9cd0d8747826b60e24add --- /dev/null +++ b/Hotshot-XL/setup.py @@ -0,0 +1,15 @@ +from setuptools import setup, find_packages + +setup( + name='hotshot_xl', + version='1.0', + packages=find_packages(include=['hotshot_xl*',]), + author="Natural Synthetics Inc", + install_requires=[ + "torch>=2.0.1", + "torchvision>=0.15.2", + "diffusers>=0.21.4", + "transformers>=4.33.3", + "einops" + ], +) \ No newline at end of file