# Copyright 2023 Natural Synthetics Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Union from io import BytesIO import PIL from PIL import ImageSequence, Image import requests import os def get_image(img_path) -> PIL.Image.Image: if img_path.startswith("http"): return PIL.Image.open(requests.get(img_path, stream=True).raw) if os.path.exists(img_path): return Image.open(img_path) raise Exception("File not found") def images_to_gif_bytes(images: List, duration: int = 1000) -> bytes: with BytesIO() as output_buffer: # Save the first image images[0].save(output_buffer, format='GIF', save_all=True, append_images=images[1:], duration=duration, loop=0) # 0 means the GIF will loop indefinitely # Get the byte array from the buffer gif_bytes = output_buffer.getvalue() return gif_bytes def save_as_gif(images: List, file_path: str, duration: int = 1000): with open(file_path, "wb") as f: f.write(images_to_gif_bytes(images, duration)) def scale_aspect_fill(img, new_width, new_height): new_width = int(new_width) new_height = int(new_height) original_width, original_height = img.size ratio_w = float(new_width) / original_width ratio_h = float(new_height) / original_height if ratio_w > ratio_h: # It must be fixed by width resize_width = new_width resize_height = round(original_height * ratio_w) else: # Fixed by height resize_width = round(original_width * ratio_h) resize_height = new_height img_resized = img.resize((resize_width, resize_height), Image.LANCZOS) # Calculate cropping boundaries and do crop left = (resize_width - new_width) / 2 top = (resize_height - new_height) / 2 right = (resize_width + new_width) / 2 bottom = (resize_height + new_height) / 2 img_cropped = img_resized.crop((left, top, right, bottom)) return img_cropped def extract_gif_frames_from_midpoint(image: Union[str, PIL.Image.Image], fps: int=8, target_duration: int=1000) -> list: # Load the GIF image = get_image(image) if type(image) is str else image frames = [] estimated_frame_time = None # some gifs contain the duration - others don't # so if there is a duration we will grab it otherwise we will fall back for frame in ImageSequence.Iterator(image): frames.append(frame.copy()) if 'duration' in frame.info: frame_info_duration = frame.info['duration'] if frame_info_duration > 0: estimated_frame_time = frame_info_duration if estimated_frame_time is None: if len(frames) <= 16: # assume it's 8fps estimated_frame_time = 1000 // 8 else: # assume it's 15 fps estimated_frame_time = 70 if len(frames) < fps: raise ValueError(f"fps of {fps} is too small for this gif as it only has {len(frames)} frames.") skip = len(frames) // fps upper_bound_index = len(frames) - 1 best_indices = [x for x in range(0, len(frames), skip)][:fps] offset = int(upper_bound_index - best_indices[-1]) // 2 best_indices = [x + offset for x in best_indices] best_duration = (best_indices[-1] - best_indices[0]) * estimated_frame_time while True: skip -= 1 if skip == 0: break indices = [x for x in range(0, len(frames), skip)][:fps] # center the indices, so we sample the middle of the gif... offset = int(upper_bound_index - indices[-1]) // 2 if offset == 0: # can't shift break indices = [x + offset for x in indices] # is the new duration closer to the target than last guess? duration = (indices[-1] - indices[0]) * estimated_frame_time if abs(duration - target_duration) > abs(best_duration - target_duration): break best_indices = indices best_duration = duration return [frames[index] for index in best_indices] def get_crop_coordinates(old_size: tuple, new_size: tuple) -> tuple: """ Calculate the crop coordinates after scaling an image to fit a new size. :param old_size: tuple of the form (width, height) representing the original size of the image. :param new_size: tuple of the form (width, height) representing the desired size after scaling. :return: tuple of the form (left, upper, right, lower) representing the normalized crop coordinates. """ # Check if the input tuples have the right form (width, height) if not (isinstance(old_size, tuple) and isinstance(new_size, tuple) and len(old_size) == 2 and len(new_size) == 2): raise ValueError("old_size and new_size should be tuples of the form (width, height)") # Extract the width and height from the old and new sizes old_width, old_height = old_size new_width, new_height = new_size # Calculate the ratios for width and height ratio_w = float(new_width) / old_width ratio_h = float(new_height) / old_height # Determine which dimension is fixed (width or height) if ratio_w > ratio_h: # It must be fixed by width resize_width = new_width resize_height = round(old_height * ratio_w) else: # Fixed by height resize_width = round(old_width * ratio_h) resize_height = new_height # Calculate cropping boundaries in the resized image space left = (resize_width - new_width) / 2 upper = (resize_height - new_height) / 2 right = (resize_width + new_width) / 2 lower = (resize_height + new_height) / 2 # Normalize the cropping coordinates # Return the normalized coordinates as a tuple return (left, upper, right, lower) aspect_ratio_to_1024_map = { "0.42": [640, 1536], "0.57": [768, 1344], "0.68": [832, 1216], "1.00": [1024, 1024], "1.46": [1216, 832], "1.75": [1344, 768], "2.40": [1536, 640] } res_to_aspect_map = { 1024: aspect_ratio_to_1024_map, 512: {key: [value[0] // 2, value[1] // 2] for key, value in aspect_ratio_to_1024_map.items()}, } def best_aspect_ratio(aspect_ratio: float, resolution: int): map = res_to_aspect_map[resolution] d = 99999999 res = None for key, value in map.items(): ar = value[0] / value[1] diff = abs(aspect_ratio - ar) if diff < d: d = diff res = value ar = res[0] / res[1] return f"{ar:.2f}", res