File size: 1,707 Bytes
1588e19
 
15c51be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9edbbcc
 
fe59b5b
9edbbcc
 
 
 
fe59b5b
9edbbcc
190cc9e
 
 
 
 
 
 
 
 
 
1588e19
190cc9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: openrail
dataset_info:
  features:
  - name: hexsha
    dtype: string
  - name: size
    dtype: int64
  - name: content
    dtype: string
  - name: avg_line_length
    dtype: float64
  - name: max_line_length
    dtype: int64
  - name: alphanum_fraction
    dtype: float64
  splits:
  - name: train
    num_bytes: 3582248477.9086223
    num_examples: 806789
  - name: test
    num_bytes: 394048264.9973618
    num_examples: 88747
  - name: valid
    num_bytes: 3982797.09401595
    num_examples: 897
  download_size: 1323156008
  dataset_size: 3980279540
task_categories:
- text-generation
language:
- code
tags:
- code
pretty_name: TheStack-Java
size_categories:
- 1M<n<10M
---

## Dataset 1: TheStack - Java - Cleaned

**Description**: This dataset is drawn from TheStack Corpus, an open-source code dataset with over 3TB of GitHub data covering 48 programming languages. We selected a small portion of this dataset to optimize smaller language models for Java, a popular statically typed language.

**Target Language**: Java

**Dataset Size**:
- Training: 900,000 files
- Validation: 50,000 files
- Test: 50,000 files

**Preprocessing**:
1. Selected Java as the target language due to its popularity on GitHub.
2. Filtered out files with average line length > 100 characters, maximum line length > 1000 characters, and alphabet ratio < 25%.
3. Split files into 90% training, 5% validation, and 5% test sets.

**Tokenizer**: Byte Pair Encoding (BPE) tokenizer with tab and whitespace tokens. GPT-2 vocabulary extended with special tokens.

**Training Sequences**: Sequences constructed by joining training data text to reach a context length of 2048 tokens (1024 tokens for full fine-tuning).