andreagasparini commited on
Commit
75c382e
1 Parent(s): be1d1a3

Update librispeech_test_only.py

Browse files
Files changed (1) hide show
  1. librispeech_test_only.py +4 -105
librispeech_test_only.py CHANGED
@@ -46,24 +46,14 @@ _DL_URL = "http://www.openslr.org/resources/12/"
46
 
47
  _DL_URLS = {
48
  "clean": {
49
- "dev": _DL_URL + "dev-clean.tar.gz",
50
- "test": _DL_URL + "test-clean.tar.gz",
51
- # "train.100": _DL_URL + "train-clean-100.tar.gz",
52
- # "train.360": _DL_URL + "train-clean-360.tar.gz",
53
  },
54
  "other": {
55
- "test": _DL_URL + "test-other.tar.gz",
56
- "dev": _DL_URL + "dev-other.tar.gz",
57
- # "train.500": _DL_URL + "train-other-500.tar.gz",
58
  },
59
  "all": {
60
- "dev.clean": _DL_URL + "dev-clean.tar.gz",
61
- "dev.other": _DL_URL + "dev-other.tar.gz",
62
  "test.clean": _DL_URL + "test-clean.tar.gz",
63
- "test.other": _DL_URL + "test-other.tar.gz",
64
- # "train.clean.100": _DL_URL + "train-clean-100.tar.gz",
65
- # "train.clean.360": _DL_URL + "train-clean-360.tar.gz",
66
- # "train.other.500": _DL_URL + "train-other-500.tar.gz",
67
  },
68
  }
69
 
@@ -117,38 +107,8 @@ class LibrispeechASR(datasets.GeneratorBasedBuilder):
117
  archive_path = dl_manager.download(_DL_URLS[self.config.name])
118
  # (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
119
  local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
120
-
121
- train_splits = list()
122
- dev_splits = list()
123
 
124
  if self.config.name == "clean":
125
- """
126
- train_splits = [
127
- datasets.SplitGenerator(
128
- name="train.100",
129
- gen_kwargs={
130
- "local_extracted_archive": local_extracted_archive.get("train.100"),
131
- "files": dl_manager.iter_archive(archive_path["train.100"]),
132
- },
133
- ),
134
- datasets.SplitGenerator(
135
- name="train.360",
136
- gen_kwargs={
137
- "local_extracted_archive": local_extracted_archive.get("train.360"),
138
- "files": dl_manager.iter_archive(archive_path["train.360"]),
139
- },
140
- ),
141
- ]
142
- dev_splits = [
143
- datasets.SplitGenerator(
144
- name=datasets.Split.VALIDATION,
145
- gen_kwargs={
146
- "local_extracted_archive": local_extracted_archive.get("dev"),
147
- "files": dl_manager.iter_archive(archive_path["dev"]),
148
- },
149
- )
150
- ]
151
- """
152
  test_splits = [
153
  datasets.SplitGenerator(
154
  name=datasets.Split.TEST,
@@ -159,26 +119,6 @@ class LibrispeechASR(datasets.GeneratorBasedBuilder):
159
  )
160
  ]
161
  elif self.config.name == "other":
162
- """
163
- train_splits = [
164
- datasets.SplitGenerator(
165
- name="train.500",
166
- gen_kwargs={
167
- "local_extracted_archive": local_extracted_archive.get("train.500"),
168
- "files": dl_manager.iter_archive(archive_path["train.500"]),
169
- },
170
- )
171
- ]
172
- dev_splits = [
173
- datasets.SplitGenerator(
174
- name=datasets.Split.VALIDATION,
175
- gen_kwargs={
176
- "local_extracted_archive": local_extracted_archive.get("dev"),
177
- "files": dl_manager.iter_archive(archive_path["dev"]),
178
- },
179
- )
180
- ]
181
- """
182
  test_splits = [
183
  datasets.SplitGenerator(
184
  name=datasets.Split.TEST,
@@ -189,47 +129,6 @@ class LibrispeechASR(datasets.GeneratorBasedBuilder):
189
  )
190
  ]
191
  elif self.config.name == "all":
192
- """
193
- train_splits = [
194
- datasets.SplitGenerator(
195
- name="train.clean.100",
196
- gen_kwargs={
197
- "local_extracted_archive": local_extracted_archive.get("train.clean.100"),
198
- "files": dl_manager.iter_archive(archive_path["train.clean.100"]),
199
- },
200
- ),
201
- datasets.SplitGenerator(
202
- name="train.clean.360",
203
- gen_kwargs={
204
- "local_extracted_archive": local_extracted_archive.get("train.clean.360"),
205
- "files": dl_manager.iter_archive(archive_path["train.clean.360"]),
206
- },
207
- ),
208
- datasets.SplitGenerator(
209
- name="train.other.500",
210
- gen_kwargs={
211
- "local_extracted_archive": local_extracted_archive.get("train.other.500"),
212
- "files": dl_manager.iter_archive(archive_path["train.other.500"]),
213
- },
214
- ),
215
- ]
216
- dev_splits = [
217
- datasets.SplitGenerator(
218
- name="validation.clean",
219
- gen_kwargs={
220
- "local_extracted_archive": local_extracted_archive.get("validation.clean"),
221
- "files": dl_manager.iter_archive(archive_path["dev.clean"]),
222
- },
223
- ),
224
- datasets.SplitGenerator(
225
- name="validation.other",
226
- gen_kwargs={
227
- "local_extracted_archive": local_extracted_archive.get("validation.other"),
228
- "files": dl_manager.iter_archive(archive_path["dev.other"]),
229
- },
230
- ),
231
- ]
232
- """
233
  test_splits = [
234
  datasets.SplitGenerator(
235
  name="test.clean",
@@ -247,7 +146,7 @@ class LibrispeechASR(datasets.GeneratorBasedBuilder):
247
  ),
248
  ]
249
 
250
- return train_splits + dev_splits + test_splits
251
 
252
  def _generate_examples(self, files, local_extracted_archive):
253
  """Generate examples from a LibriSpeech archive_path."""
 
46
 
47
  _DL_URLS = {
48
  "clean": {
49
+ "test": _DL_URL + "test-clean.tar.gz"
 
 
 
50
  },
51
  "other": {
52
+ "test": _DL_URL + "test-other.tar.gz"
 
 
53
  },
54
  "all": {
 
 
55
  "test.clean": _DL_URL + "test-clean.tar.gz",
56
+ "test.other": _DL_URL + "test-other.tar.gz"
 
 
 
57
  },
58
  }
59
 
 
107
  archive_path = dl_manager.download(_DL_URLS[self.config.name])
108
  # (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
109
  local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
 
 
 
110
 
111
  if self.config.name == "clean":
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
  test_splits = [
113
  datasets.SplitGenerator(
114
  name=datasets.Split.TEST,
 
119
  )
120
  ]
121
  elif self.config.name == "other":
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
  test_splits = [
123
  datasets.SplitGenerator(
124
  name=datasets.Split.TEST,
 
129
  )
130
  ]
131
  elif self.config.name == "all":
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
  test_splits = [
133
  datasets.SplitGenerator(
134
  name="test.clean",
 
146
  ),
147
  ]
148
 
149
+ return test_splits
150
 
151
  def _generate_examples(self, files, local_extracted_archive):
152
  """Generate examples from a LibriSpeech archive_path."""