File size: 12,705 Bytes
e7dd21d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
# coding=utf-8
# Copyright 2022 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""
Librispeech automatic speech recognition dataset for reproducing Reborn UASR results.
Note that the silence in each audio has been removed by performing unsupervised VAD (https://github.com/zhenghuatan/rVADfast).
We only process the 100-hour split from LibriSpeech 'train-clean-100' as the training split.
"""
import os
import datasets
_CITATION = """\
@inproceedings{panayotov2015librispeech,
title={Librispeech: an ASR corpus based on public domain audio books},
author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
pages={5206--5210},
year={2015},
organization={IEEE}
}
@article{tan2020rvad,
title={rVAD: An unsupervised segment-based robust voice activity detection method},
author={Tan, Zheng-Hua and Dehak, Najim and others},
journal={Computer speech \& language},
volume={59},
pages={1--21},
year={2020},
publisher={Elsevier}
}
@article{tseng2024reborn,
title={REBORN: Reinforcement-Learned Boundary Segmentation with Iterative Training for Unsupervised ASR},
author={Tseng, Liang-Hsuan and Hu, En-Pei and Chiang, Cheng-Han and Tseng, Yuan and Lee, Hung-yi and Lee, Lin-shan and Sun, Shao-Hua},
journal={arXiv preprint arXiv:2402.03988},
year={2024}
}
"""
_DESCRIPTION = """\
LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,
prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read
audiobooks from the LibriVox project, and has been carefully segmented and aligned
This dataset is the 100-hour subset of LibriSpeech 'train-clean-100' split, with silence removed.
Additionally, all the dev and test sets are included for fair comparison and evaluation if needed.
The dataset is prepared by the Reborn UASR team.
Arxiv paper link: https://arxiv.org/abs/2402.03988
"""
_URL = "http://www.openslr.org/12"
_DL_URL_FORMAT = "data"
class RebornLibrispeechConfig(datasets.BuilderConfig):
"""BuilderConfig for Reborn-Librispeech."""
def __init__(self, name, **kwargs):
"""
Args:
name: `string`, name of dataset config (=language)
**kwargs: keyword arguments forwarded to super.
"""
super(RebornLibrispeechConfig, self).__init__(
version=datasets.Version("2.12.0", ""), name=name, **kwargs
)
# relative path to full data inside a repo (for example `data/train-clean-100`)
self.data_root_url = _DL_URL_FORMAT
class RebornLibrispeech(datasets.GeneratorBasedBuilder):
"""Multilingual Librispeech dataset."""
BUILDER_CONFIGS = [
RebornLibrispeechConfig(name="reborn_ls100hr", description="train-clean-100 LibriSpeech dataset without silence"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"file": datasets.Value("string"),
"audio": datasets.features.Audio(sampling_rate=16_000),
"word": datasets.Value("string"),
"phoneme": datasets.Value("string"),
"speaker_id": datasets.Value("int64"),
"chapter_id": datasets.Value("int64"),
"id": datasets.Value("string"),
}
),
supervised_keys=("file", "phone"),
homepage=_URL,
citation=_CITATION,
task_templates=None,
)
def _split_generators(self, dl_manager):
metadata = dl_manager.download({
"train-clean-100": self.config.data_root_url + "/metadata/train-clean-100.tsv",
"dev-clean": self.config.data_root_url + "/metadata/dev-clean.tsv",
"dev-clean-small": self.config.data_root_url + "/metadata/dev-clean-small.tsv",
"dev-other": self.config.data_root_url + "/metadata/dev-other.tsv",
"test-clean": self.config.data_root_url + "/metadata/test-clean.tsv",
"test-other": self.config.data_root_url + "/metadata/test-other.tsv",
})
all_splits = [
"train-clean-100",
"dev-clean",
"dev-other",
"test-clean",
"test-other",
]
# # Download handles.txt files containing ids for limited supervision train sets
# limited_supervision_9h = dl_manager.download(
# [self.config.data_root_url + "/train/limited_supervision/9hr/handles.txt"],
# )
# # in our case of 1 hour limited supervision ("train.1h") there are always 6 subfolders like:
# # "limited_supervision/1h/0/handles.txt", "limited_supervision/1h/1/handles.txt", ...
# limited_supervision_1h = dl_manager.download([
# self.config.data_root_url + f"/train/limited_supervision/1hr/{i}/handles.txt" for i in range(6)
# ])
# each split contains many .tar.gz archives with its audio files
# audio_filenames.txt contains the names of these archives
# audio_filenames_paths = dl_manager.download({
# "train": self.config.data_root_url + "/train/audio_filenames.txt",
# "dev": self.config.data_root_url + "/dev/audio_filenames.txt",
# "test": self.config.data_root_url + "/test/audio_filenames.txt",
# })
audio_archives = {}
for split in all_splits:
audio_archives[split] = dl_manager.download(
os.path.join(self.config.data_root_url, f"{split}.tar.gz")
)
# (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
local_extracted_archives = dl_manager.extract(audio_archives) if not dl_manager.is_streaming else {}
train_splits = [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"metadata_fpaths": [metadata["train-clean-100"]],
"audio_archives": [dl_manager.iter_archive(audio_archives["train"])],
"local_extracted_archives": [local_extracted_archives.get("train")],
}
),
datasets.SplitGenerator(
name="train-clean-100",
gen_kwargs={
"metadata_fpaths": [metadata["train-clean-100"]],
"audio_archives": [dl_manager.iter_archive(audio_archives["train"])],
"local_extracted_archives": [local_extracted_archives.get("train")],
}
),
]
dev_splits = [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"metadata_fpath": [metadata["dev-clean"], metadata["dev-other"]],
"audio_archives": [dl_manager.iter_archive(audio_archives["dev-clean"]), dl_manager.iter_archive(audio_archives["dev-other"])],
"local_extracted_archives": [local_extracted_archives.get("dev-clean"), local_extracted_archives.get("dev-other")],
}
),
datasets.SplitGenerator(
name="dev-clean",
gen_kwargs={
"metadata_fpaths": [metadata["dev-clean"]],
"audio_archives": [dl_manager.iter_archive(audio_archives["dev-clean"])],
"local_extracted_archives": [local_extracted_archives.get("dev-clean")],
},
),
datasets.SplitGenerator(
name="dev-other",
gen_kwargs={
"metadata_fpaths": [metadata["dev-other"]],
"audio_archives": [dl_manager.iter_archive(audio_archives["dev-other"])],
"local_extracted_archives": [local_extracted_archives.get("dev-other")],
},
),
datasets.SplitGenerator(
name="dev-clean-small",
gen_kwargs={
"metadata_fpaths": [metadata["dev-clean-small"]],
"audio_archives": [dl_manager.iter_archive(audio_archives["dev-clean"])],
"local_extracted_archives": [local_extracted_archives.get("dev-clean")],
},
),
]
test_splits = [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"metadata_fpaths": [metadata["test-clean"], metadata["test-other"]],
"audio_archives": [dl_manager.iter_archive(audio_archives["test-clean"]), dl_manager.iter_archive(audio_archives["test-other"])],
"local_extracted_archives": [local_extracted_archives.get("test-clean"), local_extracted_archives.get("test-other")],
}
),
datasets.SplitGenerator(
name="test-clean",
gen_kwargs={
"metadata_fpaths": [metadata["test-clean"]],
"audio_archives": [dl_manager.iter_archive(audio_archives["test-clean"])],
"local_extracted_archives": [local_extracted_archives.get("test-clean")],
}
),
datasets.SplitGenerator(
name="test-other",
gen_kwargs={
"metadata_fpaths": [metadata["test-other"]],
"audio_archives": [dl_manager.iter_archive(audio_archives["test-other"])],
"local_extracted_archives": [local_extracted_archives.get("test-other")],
}
),
]
return train_splits + dev_splits + test_splits
def _generate_examples(self, metadata_fpaths, audio_archives, local_extracted_archives):
"""Generate examples from a Multilingual LibriSpeech data dir."""
words, phones = dict(), dict()
for metadata_fpath in metadata_fpaths:
with open(metadata_fpath, "r", encoding="utf-8") as file:
for line in file:
audio_fpath, word, phone = line.strip().split("\t")
audio_id = audio_fpath.split('/')[-1].split(".flac")[0]
words[audio_id] = word
phones[audio_id] = phone
# limited_ids, limited_ids_archives_names = [], []
# if limited_ids_paths:
# for path in limited_ids_paths:
# with open(path, "r", encoding="utf-8") as file:
# limited_ids.extend([line.strip() for line in file.readlines()])
# limited_ids = set(limited_ids)
for archive_idx, audio_archive in enumerate(audio_archives):
# TODO: check that archive doesn't contain needed ids
# if limited_ids and audio_archive not in limited_ids_archives_names:
# continue
for audio_filename, file in audio_archive:
audio_id = audio_filename.split('/')[-1].split(".flac")[0]
speaker_id, chapter_id = (int(item) for item in audio_id.split("-")[:2])
word = words.get(audio_id, None)
if word == None:
continue
local_audio_file_path = os.path.join(
local_extracted_archives[archive_idx], audio_filename
) if local_extracted_archives[archive_idx] else None
yield audio_filename, {
"file": local_audio_file_path,
"audio": {
"path": local_audio_file_path if local_audio_file_path else audio_filename,
"bytes": file.read()
},
"word": word,
"phoneme": phones.get(audio_id, None),
"speaker_id": speaker_id,
"chapter_id": chapter_id,
"id": audio_id
} |