File size: 7,493 Bytes
53517ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691e35
 
53517ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49e796b
53517ab
 
4692bad
53517ab
 
67d838f
 
 
 
 
 
 
 
 
 
 
 
 
53517ab
 
 
 
1691e35
53517ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691e35
 
 
53517ab
 
1691e35
 
53517ab
 
1691e35
 
797d300
53517ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
797d300
53517ab
 
165a979
53517ab
67d838f
53517ab
 
 
 
 
1691e35
 
04ccf1b
1691e35
 
53517ab
1691e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9e58e2
 
 
67d838f
f9e58e2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
This dataset contains example data for running through the multiplexed imaging data pipeline in
Ark Analysis: https://github.com/angelolab/ark-analysis
"""

import json
import os

import datasets
import pathlib
import glob
import tifffile
import xarray as xr
import numpy as np

# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {Ark Analysis Example Dataset},
author={Angelo Lab},
year={2022}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This dataset contains 11 Field of Views (FOVs), each with 22 channels. 
"""

_HOMEPAGE = "https://github.com/angelolab/ark-analysis"

_LICENSE = "https://github.com/angelolab/ark-analysis/blob/main/LICENSE"

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL_REPO = "https://huggingface.co/datasets/angelolab/ark_example/resolve/main"


_URLS = {"base_dataset": f"{_URL_REPO}/data/input_data.zip"}

"""
Dataset Fov renaming:

TMA2_R8C3 -> fov0
TMA6_R4C5 -> fov1
TMA7_R5C4 -> fov2
TMA10_R7C3 -> fov3
TMA11_R9C6 -> fov4
TMA13_R8C5 -> fov5
TMA17_R9C2 -> fov6
TMA18_R9C2 -> fov7
TMA21_R2C5 -> fov8
TMA21_R12C6 -> fov9
TMA24_R9C1 -> fov10
"""

# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class ArkExample(datasets.GeneratorBasedBuilder):
    """The Dataset consists of 11 FOVs"""

    VERSION = datasets.Version("0.0.1")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'base_dataset')
    # data = datasets.load_dataset('my_dataset', 'dev_dataset')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="base_dataset",
            version=VERSION,
            description="This dataset contains only the 12 FOVs.",
        ),
        datasets.BuilderConfig(
            name="dev_dataset",
            version=VERSION,
            description="This dataset is a superset of the base_dataset, and contains intermediate data for all notebooks. \
                Therefore you can start at any notebook with this dataset.",
        ),
    ]

    DEFAULT_CONFIG_NAME = (
        "base_dataset"  # It's not mandatory to have a default configuration. Just use one if it make sense.
    )

    def _info(self):
        # This is the name of the configuration selected in BUILDER_CONFIGS above
        if self.config.name == "base_dataset":
            features = datasets.Features(
                {
                    "Channel Data": datasets.Sequence(datasets.Image()),
                    "Channel Names": datasets.Sequence(datasets.Value("string")),
                    "Data Path": datasets.Value("string"),
                }
            )
        else:  # This is an example to show how to have different features for "first_domain" and "second_domain"
            features = datasets.Features(
                {
                    "sentence": datasets.Value("string"),
                    "option2": datasets.Value("string"),
                    "second_domain_answer": datasets.Value("string")
                    # These are the features of your dataset like images, labels ...
                }
            )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        urls = _URLS[self.config.name]
        data_dir = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name="base_dataset",
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": pathlib.Path(data_dir)},
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath: pathlib.Path):

        # Get all TMA paths
        file_paths = list(pathlib.Path(filepath / "input_data").glob("*"))

        # Loop over all the TMAs
        for fp in file_paths:

            # Get the TMA FOV Name
            fov_name = fp.stem

            # Get all channels per TMA FOV
            channel_paths = fp.glob("*.tiff")

            chan_data = []
            chan_names = []
            for chan in channel_paths:
                chan_name = chan.stem
                chan_image: np.ndarray = tifffile.imread(chan)

                chan_data.append(chan_image)
                chan_names.append(chan_name)

            if self.config.name == "base_dataset":
                yield fov_name, {
                    "Channel Data": chan_data,
                    "Channel Names": chan_names,
                    "Data Path": filepath.as_posix(),
                }