File size: 8,969 Bytes
53517ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bf04b3
 
53517ab
3bf04b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53517ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bf04b3
6ede0ba
 
 
 
 
 
 
 
 
3bf04b3
53517ab
3bf04b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f54bf1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783c5be
 
 
 
99fbd44
 
 
3bf04b3
67d838f
53517ab
3bf04b3
53517ab
1691e35
53517ab
8affc79
53517ab
 
 
 
3bf04b3
 
 
 
 
 
53517ab
3bf04b3
53517ab
 
3bf04b3
53517ab
3bf04b3
 
 
 
 
 
53517ab
f54bf1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783c5be
 
 
 
 
99fbd44
 
 
 
 
f54bf1d
53517ab
 
 
1691e35
783c5be
53517ab
3bf04b3
53517ab
3bf04b3
 
53517ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bf04b3
 
 
 
 
 
797d300
53517ab
 
3bf04b3
53517ab
3bf04b3
53517ab
 
 
 
3bf04b3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
This dataset contains example data for running through the multiplexed imaging data pipeline in
Ark Analysis: https://github.com/angelolab/ark-analysis.


Dataset Fov renaming:

TMA2_R8C3 -> fov0
TMA6_R4C5 -> fov1
TMA7_R5C4 -> fov2
TMA10_R7C3 -> fov3
TMA11_R9C6 -> fov4
TMA13_R8C5 -> fov5
TMA17_R9C2 -> fov6
TMA18_R9C2 -> fov7
TMA21_R2C5 -> fov8
TMA21_R12C6 -> fov9
TMA24_R9C1 -> fov10

"""

import datasets
import pathlib

# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {Ark Analysis Example Dataset},
author={Angelo Lab},
year={2022}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This dataset contains 11 Field of Views (FOVs), each with 22 channels. 
"""

_HOMEPAGE = "https://github.com/angelolab/ark-analysis"

_LICENSE = "https://github.com/angelolab/ark-analysis/blob/main/LICENSE"

# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)

_URL_DATA = {
    "image_data": "data/image_data.zip",
    "cell_table": "data/segmentation/cell_table.zip",
    "deepcell_output": "data/segmentation/deepcell_output.zip",
    "example_pixel_output_dir": "data/pixie/example_pixel_output_dir.zip",
    "example_cell_output_dir": "data/pixie/example_cell_output_dir.zip",
    "spatial_lda": "data/spatial_analysis/spatial_lda.zip",
    "post_clustering": "data/post_clustering.zip",
    "ome_tiff": "data/ome_tiff.zip",
    "ez_seg_data": "data/ez_seg_data.zip"
}

_URL_DATASET_CONFIGS = {
    "segment_image_data": {"image_data": _URL_DATA["image_data"]},
    "cluster_pixels": {
        "image_data": _URL_DATA["image_data"],
        "cell_table": _URL_DATA["cell_table"],
        "deepcell_output": _URL_DATA["deepcell_output"],
    },
    "cluster_cells": {
        "image_data": _URL_DATA["image_data"],
        "cell_table": _URL_DATA["cell_table"],
        "deepcell_output": _URL_DATA["deepcell_output"],
        "example_pixel_output_dir": _URL_DATA["example_pixel_output_dir"],
    },
    "post_clustering": {
        "image_data": _URL_DATA["image_data"],
        "cell_table": _URL_DATA["cell_table"],
        "deepcell_output": _URL_DATA["deepcell_output"],
        "example_cell_output_dir": _URL_DATA["example_cell_output_dir"],
    },
    "fiber_segmentation": {
        "image_data": _URL_DATA["image_data"],
    },
    "LDA_preprocessing": {
        "image_data": _URL_DATA["image_data"],
        "cell_table": _URL_DATA["cell_table"],
    },
    "LDA_training_inference": {
        "image_data": _URL_DATA["image_data"],
        "cell_table": _URL_DATA["cell_table"],
        "spatial_lda": _URL_DATA["spatial_lda"],
    },
    "neighborhood_analysis": {
        "image_data": _URL_DATA["image_data"],
        "cell_table": _URL_DATA["cell_table"],
        "deepcell_output": _URL_DATA["deepcell_output"],
    },
    "pairwise_spatial_enrichment": {
        "image_data": _URL_DATA["image_data"],
        "cell_table": _URL_DATA["cell_table"],
        "deepcell_output": _URL_DATA["deepcell_output"],
        "post_clustering": _URL_DATA["post_clustering"],
    },
    "ome_tiff": {
        "ome_tiff": _URL_DATA["ome_tiff"],
    },
    "ez_seg_data": {
        "ez_seg_data": _URL_DATA["ez_seg_data"]
    }
}


# Note: Name of the dataset usually match the script name with CamelCase instead of snake_case
class ArkExample(datasets.GeneratorBasedBuilder):
    """The Dataset consists of 11 FOVs"""

    VERSION = datasets.Version("0.0.5")

    # You will be able to load one or the other configurations in the following list with
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="segment_image_data",
            version=VERSION,
            description="This configuration contains data used by notebook 1 - Segment Image Data.",
        ),
        datasets.BuilderConfig(
            name="cluster_pixels",
            version=VERSION,
            description="This configuration contains data used by notebook 2 - Pixel Clustering (Pixie Pipeline #1).",
        ),
        datasets.BuilderConfig(
            name="cluster_cells",
            version=VERSION,
            description="This configuration contains data used by notebook 3 - Cell Clustering (Pixie Pipeline #2).",
        ),
        datasets.BuilderConfig(
            name="post_clustering",
            version=VERSION,
            description="This configuration contains data used by notebook 4 - Post Clustering.",
        ),
        datasets.BuilderConfig(
            name="fiber_segmentation",
            version=VERSION,
            description="This configuration contains data used by the Fiber Segmentation Notebook.",
        ),
        datasets.BuilderConfig(
            name="LDA_preprocessing",
            version=VERSION,
            description="This configuration contains data used by the Spatial LDA - Preprocessing Notebook."
        ),
        datasets.BuilderConfig(
            name="LDA_training_inference",
            version=VERSION,
            description="This configuration contains data used by the Spatial LDA - Training and Inference Notebook."
        ),
        datasets.BuilderConfig(
            name="neighborhood_analysis",
            version=VERSION,
            description="This configuration contains data used by the Neighborhood Analysis Notebook."
        ),
        datasets.BuilderConfig(
            name="pairwise_spatial_enrichment",
            version=VERSION,
            description="This configuration contains data used by the Pairwise Spatial Enrichment Notebook."
        ),
        datasets.BuilderConfig(
            name="ome_tiff",
            version=VERSION,
            description="This configuration contains an OME-TIFF format of FOV1. Intended to be used with the OME-TIFF Conversion Notebook."
        ),
        datasets.BuilderConfig(
            name="ez_seg_data",
            version=VERSION,
            description="This configuration contains the data used by the ezSegmenter notebook."
        )
    ]

    def _info(self):
        # This is the name of the configuration selected in BUILDER_CONFIGS above
        if self.config.name in list(_URL_DATASET_CONFIGS.keys()):
            features = datasets.Features(
                {f: datasets.Value("string") for f in _URL_DATASET_CONFIGS[self.config.name].keys()}
            )
        else:
            ValueError(f"Dataset name is incorrect, options include {list(_URL_DATASET_CONFIGS.keys())}")
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        urls = _URL_DATASET_CONFIGS[self.config.name]
        data_dirs = {}
        for data_name, url in urls.items():
            dl_path = pathlib.Path(dl_manager.download_and_extract(url))
            data_dirs[data_name] = dl_path

        return [
            datasets.SplitGenerator(
                name=self.config.name,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"dataset_paths": data_dirs},
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, dataset_paths):
        yield self.config.name, dataset_paths