Datasets:
File size: 8,969 Bytes
53517ab 3bf04b3 53517ab 3bf04b3 53517ab 3bf04b3 6ede0ba 3bf04b3 53517ab 3bf04b3 f54bf1d 783c5be 99fbd44 3bf04b3 67d838f 53517ab 3bf04b3 53517ab 1691e35 53517ab 8affc79 53517ab 3bf04b3 53517ab 3bf04b3 53517ab 3bf04b3 53517ab 3bf04b3 53517ab f54bf1d 783c5be 99fbd44 f54bf1d 53517ab 1691e35 783c5be 53517ab 3bf04b3 53517ab 3bf04b3 53517ab 3bf04b3 797d300 53517ab 3bf04b3 53517ab 3bf04b3 53517ab 3bf04b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This dataset contains example data for running through the multiplexed imaging data pipeline in
Ark Analysis: https://github.com/angelolab/ark-analysis.
Dataset Fov renaming:
TMA2_R8C3 -> fov0
TMA6_R4C5 -> fov1
TMA7_R5C4 -> fov2
TMA10_R7C3 -> fov3
TMA11_R9C6 -> fov4
TMA13_R8C5 -> fov5
TMA17_R9C2 -> fov6
TMA18_R9C2 -> fov7
TMA21_R2C5 -> fov8
TMA21_R12C6 -> fov9
TMA24_R9C1 -> fov10
"""
import datasets
import pathlib
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {Ark Analysis Example Dataset},
author={Angelo Lab},
year={2022}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This dataset contains 11 Field of Views (FOVs), each with 22 channels.
"""
_HOMEPAGE = "https://github.com/angelolab/ark-analysis"
_LICENSE = "https://github.com/angelolab/ark-analysis/blob/main/LICENSE"
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL_DATA = {
"image_data": "data/image_data.zip",
"cell_table": "data/segmentation/cell_table.zip",
"deepcell_output": "data/segmentation/deepcell_output.zip",
"example_pixel_output_dir": "data/pixie/example_pixel_output_dir.zip",
"example_cell_output_dir": "data/pixie/example_cell_output_dir.zip",
"spatial_lda": "data/spatial_analysis/spatial_lda.zip",
"post_clustering": "data/post_clustering.zip",
"ome_tiff": "data/ome_tiff.zip",
"ez_seg_data": "data/ez_seg_data.zip"
}
_URL_DATASET_CONFIGS = {
"segment_image_data": {"image_data": _URL_DATA["image_data"]},
"cluster_pixels": {
"image_data": _URL_DATA["image_data"],
"cell_table": _URL_DATA["cell_table"],
"deepcell_output": _URL_DATA["deepcell_output"],
},
"cluster_cells": {
"image_data": _URL_DATA["image_data"],
"cell_table": _URL_DATA["cell_table"],
"deepcell_output": _URL_DATA["deepcell_output"],
"example_pixel_output_dir": _URL_DATA["example_pixel_output_dir"],
},
"post_clustering": {
"image_data": _URL_DATA["image_data"],
"cell_table": _URL_DATA["cell_table"],
"deepcell_output": _URL_DATA["deepcell_output"],
"example_cell_output_dir": _URL_DATA["example_cell_output_dir"],
},
"fiber_segmentation": {
"image_data": _URL_DATA["image_data"],
},
"LDA_preprocessing": {
"image_data": _URL_DATA["image_data"],
"cell_table": _URL_DATA["cell_table"],
},
"LDA_training_inference": {
"image_data": _URL_DATA["image_data"],
"cell_table": _URL_DATA["cell_table"],
"spatial_lda": _URL_DATA["spatial_lda"],
},
"neighborhood_analysis": {
"image_data": _URL_DATA["image_data"],
"cell_table": _URL_DATA["cell_table"],
"deepcell_output": _URL_DATA["deepcell_output"],
},
"pairwise_spatial_enrichment": {
"image_data": _URL_DATA["image_data"],
"cell_table": _URL_DATA["cell_table"],
"deepcell_output": _URL_DATA["deepcell_output"],
"post_clustering": _URL_DATA["post_clustering"],
},
"ome_tiff": {
"ome_tiff": _URL_DATA["ome_tiff"],
},
"ez_seg_data": {
"ez_seg_data": _URL_DATA["ez_seg_data"]
}
}
# Note: Name of the dataset usually match the script name with CamelCase instead of snake_case
class ArkExample(datasets.GeneratorBasedBuilder):
"""The Dataset consists of 11 FOVs"""
VERSION = datasets.Version("0.0.5")
# You will be able to load one or the other configurations in the following list with
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="segment_image_data",
version=VERSION,
description="This configuration contains data used by notebook 1 - Segment Image Data.",
),
datasets.BuilderConfig(
name="cluster_pixels",
version=VERSION,
description="This configuration contains data used by notebook 2 - Pixel Clustering (Pixie Pipeline #1).",
),
datasets.BuilderConfig(
name="cluster_cells",
version=VERSION,
description="This configuration contains data used by notebook 3 - Cell Clustering (Pixie Pipeline #2).",
),
datasets.BuilderConfig(
name="post_clustering",
version=VERSION,
description="This configuration contains data used by notebook 4 - Post Clustering.",
),
datasets.BuilderConfig(
name="fiber_segmentation",
version=VERSION,
description="This configuration contains data used by the Fiber Segmentation Notebook.",
),
datasets.BuilderConfig(
name="LDA_preprocessing",
version=VERSION,
description="This configuration contains data used by the Spatial LDA - Preprocessing Notebook."
),
datasets.BuilderConfig(
name="LDA_training_inference",
version=VERSION,
description="This configuration contains data used by the Spatial LDA - Training and Inference Notebook."
),
datasets.BuilderConfig(
name="neighborhood_analysis",
version=VERSION,
description="This configuration contains data used by the Neighborhood Analysis Notebook."
),
datasets.BuilderConfig(
name="pairwise_spatial_enrichment",
version=VERSION,
description="This configuration contains data used by the Pairwise Spatial Enrichment Notebook."
),
datasets.BuilderConfig(
name="ome_tiff",
version=VERSION,
description="This configuration contains an OME-TIFF format of FOV1. Intended to be used with the OME-TIFF Conversion Notebook."
),
datasets.BuilderConfig(
name="ez_seg_data",
version=VERSION,
description="This configuration contains the data used by the ezSegmenter notebook."
)
]
def _info(self):
# This is the name of the configuration selected in BUILDER_CONFIGS above
if self.config.name in list(_URL_DATASET_CONFIGS.keys()):
features = datasets.Features(
{f: datasets.Value("string") for f in _URL_DATASET_CONFIGS[self.config.name].keys()}
)
else:
ValueError(f"Dataset name is incorrect, options include {list(_URL_DATASET_CONFIGS.keys())}")
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
urls = _URL_DATASET_CONFIGS[self.config.name]
data_dirs = {}
for data_name, url in urls.items():
dl_path = pathlib.Path(dl_manager.download_and_extract(url))
data_dirs[data_name] = dl_path
return [
datasets.SplitGenerator(
name=self.config.name,
# These kwargs will be passed to _generate_examples
gen_kwargs={"dataset_paths": data_dirs},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, dataset_paths):
yield self.config.name, dataset_paths
|